
 
 

 الحركه المقيدة لجسيمة على مسار بيضاوي

 

 ه، رائد حجاويفلخالد نوا
 

 ، الاردن 01716قسم الفيزياء، جامعة مؤتة، الكرك 
 

 :الملخص
عتيادية لإالمقاربه ا: في هذا العمل تم استقصاء الحركة لجسيمة مقيدة على مسار بيضوي باستخدام مقاربتين هما

لقد تم حساب أقواس بواسون وأقواس ديراك للاحاثيات المعممة باستخدام تقنيه سكارديكو وقد لوحظ   .ومقاربة ديراك
ن العلاقات التبادلية الغير منتهيه بين المتغيرات أعلى المستوى الكمي، ف . وجود كميات غير محفوظة في النظام

نه ثابت أن الزخم المعمم وجد بأسار دائري فولكن عند حد حالة الحركة في م ،لى مبدأ عدم التحديدإالمعممة تؤدي 
  .الحركة
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Abstract In this work we investigate the constrained motion of a particle on an ellipse in the frame-

work of two approaches: the standard approach and Dirac’s approach. The Poisson brackets and the

Dirac brackets of the generalized variables are calculated by using Scardicchio’s technique, and it is

observed that there exist nonconserved quantities in the system. On the quantum level, the nonvan-

ishing commutators between the generalized variables lead to the principle of uncertainty. However,

in the limit case of motion on a circle the generalized momentum is found to be a constant of motion.
ª 2012 University of Bahrain. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

The classical dynamics of a particle constrained to move on an
ellipse is an interesting example of analysing the classical
dynamics of constrained particles. The analysis of such a con-

strained system includes the construction of Dirac brackets be-
tween observable quantities. Moreover, Dirac gave very
general rules to construct the Hamiltonian and calculate sensi-

ble brackets that can be used to describe the classical and, by
the canonical quantization procedure, the quantum dynamics.

In fact, Dirac bracket is a generalization of the Poisson
bracket to correctly treat systems with second class constraints

in Hamiltonian mechanics. The first systematic attempt to pro-
vide mathematically consistent quantization procedure for
constrained systems was given by Dirac (1950, 1964), who de-

rived a formal ‘‘replacement’’ for the canonical Poisson brack-
ets which play today a fundamental role in the canonical
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formalism for constrained Hamiltonian systems on both clas-

sical and quantum levels.
A unified geometric description picture of various Dirac

brackets for regular and singular Lagrangians with holonomic
or non-holonomic constraints has been investigated in refer-

ence (Ibort et al., 1999). A classification of constraints into first
and second class as envisaged by Dirac also emerges naturally
from this picture.

In spite of the considerable attention paid to that formula
in the mathematical literature (Marsden and Ratiu, 1994;
Bhaskara and Viswanath, 1988; Sudarshan and Mukunda,

1974), and several attempts to use the Dirac brackets in the
quantization of gauge invariant systems (Deriglazov et al.,
1996; Ferrari and Lazzizzera, 1997), until recently there were

few attempts to actually use this formalism in more conven-
tional applications.

Nguyen and Turski (2001a,b), recently provided few exam-
ples of these applications in classical and continuummechanics,

and they proposed a canonical description for constrained dis-
sipative systems through an extension of the concept of Dirac
brackets developed originally for the conservative constrained

Hamiltonian dynamics, to the non-Hamiltonian, namely metric
and mixed metriplectic, constrained dynamics (Nguyen and
Turski, 2001a,b). It turns out that this generalized unified for-

mula for the Dirac brackets is very useful in the description
and analysis of a wider class of dynamical systems.
ier B.V. All rights reserved.
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Scardicchio (2002) investigated the Dirac approach to
analyse the classical and quantum dynamics of a particle
constrained on a circle. The method of Lagrange multipliers

is used for quantizing the system.
The paper is organized into four sections. In Section 2 we

discuss the motion of a constrained particle on an ellipse with-

in the framework of the standard approach and the Dirac ap-
proach. In Section 3 we discuss as a special case, the motion on
a circle. In Section 4 we present a conclusion.

2. Particle on an ellipse

Let us treat a particle moving on an ellipse as a constrained
system. We will investigate the motion in the framework of
two approaches: the standard- and the Dirac approach.

2.1. Standard approach

Considering the motion in the horizontal xy-plane, the

Lagrangian that describes the motion of a particle on an ellipse
is expressed as

L ¼ 1

2
mð _x2 þ _y2Þ ð1Þ

subject to the constraint

x2

a2
þ y2

b2
¼ 1: ð2Þ

Upon using the parametric equations:

x ¼ a cos h; y ¼ b sin h ð3Þ

the Lagrangian (1) then reduced to

L ¼ 1

2
mða2 sin2 hþ b2 cos2 hÞ _h2: ð4Þ

In accordance to the standard procedure for transforming a

Lagrangian system into a Hamiltonian one, we introduce the
generalized momentum

ph ¼
@L

@ _h
¼ mða2 sin2 hþ b2 cos2 hÞ _h: ð5Þ

Therefore the Hamiltonian function, formed in accordance
with

H ¼ ph
_h� L

becomes

H ¼ p2h
2mða2 sin2 hþ b2 cos2 hÞ

: ð6Þ

The Poisson bracket of two dynamical variables u and v is
defined as

fu; vg ¼
XN
i¼1

@u

@qi

@v

@pi
� @u

@pi

@v

@qi

where u and v are regarded as functions of the coordinates and
momenta qi and pi. The time evolution of a dynamical variable
can also be written in terms of a Poisson bracket by noting that

du

dt
¼
XN
i¼1

@u

@qi

dqi
dt
þ @u

@pi

dpi
dt

� �
¼
XN
i¼1

@u

@qi

@H

@pi
� @u

@pi

@H

@qi

� �

¼ fu;Hg:
It is easily demonstrated that

_ph ¼ fph;Hg ¼
1

2
ða2 � b2Þ _h2 sin 2h: ð7Þ

However, this result shows that ph is not conserved, i.e., it is
not a constant of motion.

2.2. Dirac’s approach

Using the method of Lagrange multipliers (Goldstein, 2002),

the Lagrangian (1) can be written as

L ¼ 1

2
mð _x2 þ _y2Þ � kðb2x2 þ a2y2 � a2b2Þ: ð8Þ

where k is a Lagrange multiplier and treated as an independent

variable.
The conjugate momenta are

px ¼
@L

@ _x
¼ m _x; ð9Þ

py ¼
@L

@ _y
¼ m _y; ð10Þ

pk ¼
@L

@ _k
¼ /1 � 0: ð11Þ

where ‘‘�’’ means weak equality in Dirac’s sense. Eq. (11) is
the primary constraint of this system. From Eqs. (8)–(11),

the total Hamiltonian is given by

HT ¼
p2x
2m
þ

p2y
2m
þ kðb2x2 þ a2y2 � a2b2Þ þ u1pk: ð12Þ

where u1 ¼ _k is a Lagrange multiplier. To keep consistency for

the system, all constraints are to be imposed after working out
all Poisson brackets. In order that the system be compatible
with the dynamical evolution, we require all constraints to
be conserved throughout all the time. This requirement is

called a consistency condition. In our case, it is necessary that
/2 � _/1 � 0. We have thus a new constraint (secondary con-
straint) /2 � 0 on the system. Furthermore, we impose the

consistency condition on /2 � 0. In general, the above argu-
ments continue till either no new constraint turns up further
or a condition on a Lagrange multiplier in the Hamiltonian

is obtained.
In doing so, the consistency condition for the primary con-

straint /1

_/1 ¼ f/1;HTg ¼ �ðb2x2 þ a2y2 � a2b2Þ ð13Þ

leads to a new secondary constraint, /2

/2 ¼ b2x2 þ a2y2 � a2b2 � 0: ð14Þ

The consistency condition for /2

_/2 ¼ f/2;HTg ¼
b2

m
ð2xpx � 1Þ þ a2

m
ð2ypy � 1Þ ð15Þ

gives a new constraint, /3

/3 ¼
2b2

m
xpx þ

2a2

m
ypy �

ða2 þ b2Þ
m

� 0: ð16Þ

And by imposing the consistency condition for the constraint

/3

_/3 ¼ f/3;HTg ¼
4b2

m
p2x þ

4a2

m
p2y �

4b4

m
kx2 � 4a4

m
ky2; ð17Þ

we arrive at a new constraint, /4
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/4 ¼
4

m
ðb2p2x þ a2p2yÞ �

4k
m
ðb4x2 þ a4y2Þ � 0: ð18Þ

In making use of the consistency condition to this constraint

_/4 ¼ f/4;HTg ¼ 8kð1� 2xpxÞ b4

m
þ b4

2m2

h i
þ 8kð1� 2ypyÞ a4

m
þ a4

2m2

h i

�u1 4
m
ðb2x2þ a2y2Þ

ð19Þ

we get an equation for u1

u1 ¼ 2k
ð1� 2xpxÞ b4 þ b4

2m

h i
þ ð1� 2ypyÞ a4 þ a4

2m

h i
b2x2 þ a2y2

: ð20Þ

Since we regard the constraint equations as strong equa-
tions, one can ignore the term u1/1 from the total Hamilto-
nian. We can also ignore the Lagrangian multiplier term
because of /2. So the Hamiltonian becomes the free one

HT ¼
p2x
2m
þ

p2y
2m

: ð21Þ

The above Hamiltonian seems exactly that of uncon-
strained one, and the equations of motion would be the same.

In fact, this is not correct because we will change the canonical
brackets, so that the information of the constrained Hamilto-
nian is included in these new canonical brackets.

The Poisson brackets between the four constraints can be
written in antisymmetric matrix, Mij = {/i,/j}, as:

M ¼

0 0 0 M14

0 0 M23 M24

0 M32 0 M34

M41 M42 M43 0

0
BBB@

1
CCCA; ð22Þ

where

M14 ¼
4a2b2

m
;

M23 ¼
4

m
ðb4x2 þ a4y2Þ;

M24 ¼
16

m
b4xpx þ a4ypy
� �

� 8

m
ðb4 þ a4Þ;

M34 ¼
16

m2
ðb4p2x þ a4p2yÞ þ

16k
m2
ðb4x2 þ a4y2Þ:

ð23Þ

This matrix is inverted to give another antisymmetric one, G:

G ¼M�1 ¼ 1

D

0 G12 G13 G14

G21 0 G23 0

G31 G32 0 0

G41 0 0 0

0
BBB@

1
CCCA; ð24Þ

where

D ¼M14M23M32M41 ð25Þ

is the determinant of M, and the elements of the antisymmetric
matrix G are

G12 ¼M41M23M34;

G13 ¼M41M24M32;

G14 ¼ �M23M32M41;

G23 ¼ �M14M32M41:

ð26Þ
It is an important part of Dirac’s development of Hamiltonian
mechanics to handle more general Lagrangians. More ab-
stractly the two forms implied from the Dirac bracket is the

restriction of the symplectic form to the constraint surface in
the phase space. Suppose we have a constrained system repre-
sented by a Lagrangian L and a set of constraints /m � 0,

while computing the Hamiltonian and the Poisson brackets
of the system, the constraints must be taken care of. This is
done by the Dirac procedure, where instead of Poisson brack-

ets, the brackets are the Dirac brackets, defined by

½q; pq�D � fq; pqg �
X
ij

fq;/igGijf/j; pqg: ð27Þ

Accordingly, the Dirac brackets of canonical variables are gi-

ven as follows:

½k; pk�D ¼ 0;

½x; px�D ¼ 1� b4x2

b4x2 þ a4y2
;

½y; py�D ¼ 1� a4y2

b4x2 þ a4y2
;

½x; py�D ¼ �
a2b2xy

b2x2 þ a2y2
¼ �xy;

½y; px�D ¼ �
a2b2xy

b2x2 þ a2y2
¼ �xy;

½x; y�D ¼ 0;

½px; py�D ¼ �a2b
2 x

b4x2 þ a4y2
py þ px

y

b4x2 þ a4y2

� �
:

ð28Þ

From these results some quantities cannot be measured simul-
taneously, this leads to the principle of uncertainty between
these quantities.

We are in a level now to quantize the system. Introduce the
constraint /3

/3 ¼ 2b2xpx þ 2a2ypy � ða2 þ b2Þ � 0 ð29Þ

and using Eq. (3), one can write

py ¼
�b
a

cos h
sin h

px þ
a2 þ b2

2a2b sin h
: ð30Þ

The z-component of angular momentum

Lz ¼ xpy � ypx ð31Þ

can be written in terms of a generalized coordinate h as

Lz ¼ a cos h
�b
a

cos h
sin h

px þ
a2 þ b2

2a2b sin h

� �
� b sin hpx ð32Þ

or

Lz ¼
�b
sin h

px þ
a2 þ b2

2ab sin h
cos h ð33Þ

Thus, the x-component of linear momentum reads

px ¼
� sin h

b
Lz þ

cos h

2ab2
ða2 þ b2Þ

¼ �a sin h

a2 sin2 hþ b2 cos2 h
ph: ð34Þ
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When using canonical quantization with a constrained
Hamiltonian system, the commutator of the operators is set
to i⁄times their classical Poisson bracket i.e., quantization pro-

ceeds by the replacement fq; pqg ¼ 1
i�h
½q; pq�. Therefore the com-

mutation relations between the quantum operators x, y and px
give

½x; px� ¼ i�h
a

b
sin2 h ¼ i�h

a

b
1� x2

a2

� �
: ð35Þ

½y; px� ¼ �i�h sin h cos h ¼ �i�h xy
ab
: ð36Þ

Similarly, the y-component of linear momentum reads

py ¼
� cos h

a
Lz þ

sin h
2a2b

ða2 þ b2Þ ¼ b cos h

a2 sin2 hþ b2 cos2 h
ph ð37Þ

and the commutation relations between the quantum opera-
tors x, y and py give

½x; py� ¼ i�h
xy

ab
; ð38Þ

½y; py� ¼ i�h
b

a

x2

a2
¼ i�h

b

a
1� y2

b2

� �
: ð39Þ

Finally, the commutation relation between px, and py gives

½px; py� ¼ �
i�h

ab
Lz ¼ �

i�h

ab
ðxpy � ypxÞ

¼ �i�h
a2 cos2 hþ b2 sin2 h

ph: ð40Þ
3. Motion on a circle

If a = b, the equation of constraint, Eq. (2), is reduced to an

equation of a circle of radius a

x2 þ y2 ¼ a2: ð41Þ

Making use of Eq. (40), the z-component of angular momen-

tum can be written as

Lz ¼
ab

a2 cos2 hþ b2 sin2 h
ph ð42Þ

and in the limit a = b, it reduces to

Lz ¼ ph: ð43Þ

This result shows that the conjugate momentum, ph, represents

the z-component of the angular momentum, and by using Eq.
(7), it becomes a constant of motion in the classical limit.

Moreover substituting Eqs. (34) and (37) in Eq. (21), we get

H ¼ p2h
2mða2 cos2 hþ b2 sin2 hÞ

: ð44Þ

In the limit a= b, this Hamiltonian reduces to

H ¼ p2h
2ma2

ð45Þ
which commutes with ph i.e., it is also a constant of motion in

the quantum level.
Finally, one can show that the Dirac brackets Eq. (28) con-

cide exactly with those obtained by Scardicchio (2002) in the

limit a= b.

4. Conclusion

We consider a constrained motion of a particle on an ellipse
using the standard approach and Dirac’s approach. In the
standard approach we calculate the time evolution of the
dynamical variable ph, and the result shows that this quantity

is not a constant of motion. However, in Dirac’s approach we
evaluate the Dirac brackets between the phase space variables,
and we get results that differ from the corresponding Poisson

brackets between the same generalized variables.
At the quantum level, the nonvanishing commutators be-

tween the generalized variables, lead to the uncertainty princi-

ple for such variables. Hence, there exist nonconserved
quantities in the system. In the limit a= b which is the case
of a constrained motion on a circle, the conjugate momentum,

ph, becomes a conserved quantity.
In the future we hope to study the constraint motion in

three dimensions such as the motion of a particle on an ellip-
soid besides the motion on a sphere.
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