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In this paper, the reproducing kernel Hilbert space method (RKHSM) is applied for
solving Troesch’s problem. We used numerical examples to illustrate the accuracy and implemen-
tation of the method. The analytical result of the equation has been obtained in terms of a conver-
gent series with easily computable components. The results are compared with the ones obtained by
the homotopy perturbation method (HPM), the Laplace decomposition method (LDM), the pertur-

bation method (PM), the Adomian decomposition method (ADM), the variational iteration
method (VIM), the B-spline method and the nonstandard finite difference scheme (FDS) by using
tables and figures. Numerical results show that the present method is effective.

© 2013 University of Bahrain. Production and hosting by Elsevier B.V. All rights reserved.

1. Introduction

We consider in this work the boundary-value problem, Tro-
esch’s problem

W' = Zsinh(Au), 0< x<1, (1.1)

with boundary conditions
u(0) =0, u(l)=1, (1.2)

where u = u(x) and 4 is a positive constant. This problem was
described and solved by Weibel (1958). It arises from a system
of nonlinear ordinary differential equations which occur in an
investigation of the confinement of a plasma column by radia-
tion pressure. Troesch (1976) found its numerical solution by
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the shooting method. The closed form solution to this problem
in terms of the Jacobian elliptic function has been given
(Roberts and Shipman, 1976) as

u(x) = %sinh" {“/(20) s {Ax, 1 - % (u’(O))z} } (1.3)

where 1/(0), the derivative of u at 0, is given by the expression
' (0) = 2+/1 — m, with m being the solution of the transcen-
dental equation

sinh (%)
Vv1I—m

where sc(4,m) is the Jacobi elliptic function and m is a modulus
of the jacobi elliptic function (0 < m < 1). From (1.3), it was
noticed that a pole of wu(x) occurs at a pole of
s¢ [},x, 1-1 (u’(O))z] . It was also noticed that the pole occurs at

1 16

This problem has been studied extensively. A numerical algo-
rithm based on the decomposition method is presented by Deeba

= sc(4,m), (1.4)

1815-3852 © 2013 University of Bahrain. Production and hosting by Elsevier B.V. All rights reserved.
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Figure 1 Compare the absolute errors previously obtained by
various methods with our method for 1 = 0.5.

et al. (2000), and they obtained the accurate numerical results
using a few terms of the iterative scheme. Khuri (2003) used
the Laplace transform and a modified decomposition technique
for problem (1.1) and (1.2). Momani et al. (2006) implemented
the variational iteration method for approximate and analytical
solutions of boundary value problems. Feng et al. (2007)
presented the modified homotopy perturbation method for
Troesch’s problem. Chang (2010) used the simple shooting
method for this problem. Chang (2011) , in other work, pro-
posed a variable transformation to solve Troesch’s problem.
The hyperbolic-type nonlinearity in the problem converted poly-
nomial type nonlinearities and the transformed problem is
solved by using the variational iteration method. Erdogan and
Ozis (2011) presented a new kind of finite difference scheme
for special second order nonlinear two-point boundary value
problems. Geng and Cui (2011) solved nonlinear two-point
boundary value problems by using a combination of the Adomi-
an decomposition method (ADM) and the reproducing kernel
method. Khuri and Sayfy (2011) used a finite element approach
based on the cubic B-spline collocation method to solve problem
(1.1) and (1.2). Hassan and El-Tawil (2011) used the homotopy
analysis method (HAM) to solve two-point boundary value
problems. Zarebnia and Sajjadian (2012) applied the sinc-
Galerkin method (SGM) for solving Troesch’s problem.
Bougoffa and and Al-khadhi (2009) used New Explicit Solutions
for Troesch’s Boundary Value Problem.

In this paper, the RKHSM (Cui and Deng, 1986; Cui and
Lin, 2009) will be used to investigate Troesch’s problem. In re-
cent years, a lot of attention has been devoted to the study of
RKHSM to investigate various scientific models. The
RKHSM which accurately computes the series solution is of
great interest to applied sciences. The method provides the
solution in a rapidly convergent series with components that
can be elegantly computed.

Recently, a lot of research work has been devoted to the
application of RKHSM to a wide class of stochastic and deter-
ministic problems involving fractional differential equation,
nonlinear oscillator with discontinuity, singular nonlinear
two-point periodic boundary value problems, integral equa-
tions and nonlinear partial differential equations and so on
(Cui and Deng, 1986; Jiang and Cui (2009)).

The efficiency of the method was used by many authors to
investigate several scientific applications. Geng and Cui (2007)
applied the RKHSM to handle the second-order boundary value
problems. Yao and Cui (2007) and Wang et al. (2008) investi-
gated a class of singular boundary value problems by this meth-

od and the obtained results were good. Zhou et al. (2007) used
the RKHSM effectively to solve second-order boundary value
problems. In Lii and Cui (2008) the method was used to solve
nonlinear infinite-delay-differential equations. Wang and Chao
(2008), Li and Cui (2009) and Zhou and Cui (2009) indepen-
dently employed the RKHSM to variable-coefficient partial dif-
ferential equations. Geng and Cui (2010) and Du and Cui (2010)
investigated the approximate solution of the forced Duffing
equation with integral boundary conditions by combining the
homotopy perturbation method and the RKHSM. Lv and Cui
(2010) presented a new algorithm to solve linear fifth-order
boundary value problems. In Jiang and Cui (2009) and Du
and Cui (2010), authors developed a new existence proof of solu-
tions for nonlinear boundary value problems. Cui and Du (2006)
obtained the representation of the exact solution for the nonlin-
ear Volterra—Fredholm integral equations by using the repro-
ducing kernel space method. Wu and Li (2010) applied the
iterative reproducing kernel method to obtain the analytical
approximate solution of a nonlinear oscillator with discontinu-
ties. Recently, the method was applied to the fractional partial
differential equations and multi-point boundary value problems
(Jiang and Lin, 2011; Mohammadi and Mokhtari, 2011). For
more details about RKHSM and the modified forms and its
effectiveness, see (Cui and Deng, 1986; Yao and Lin, 2011)
and the references therein.

The paper is organized as follows. Section 2 is devoted to
several reproducing kernel spaces and a linear operator is
introduced. Solution representation in W3[a, b] has been pre-
sented in Section 3. Section 4 provides the main results, the ex-
act and approximate solution of (1.1) and an iterative method
are developed for the kind of problems in the reproducing ker-
nel space. We have proved that the approximate solution con-
verges to the exact solution uniformly. Some numerical
experiments are illustrated in Section 5. We provide some con-
clusions in the last section.

2. Preliminaries

2.1. Reproducing kernel spaces
In this section, we define some useful reproducing kernel spaces.

Definition 2.1 (Reproducing kernel). Let E be a nonempty set.
A function K: Ex E— C is a reproducing kernel of the
Hilbert space H if and only if
{Vr €E, K(.,t)€H,
Vi€ ENo € H, (p(.).K(0) = ().
The last condition is called ’the reproducing property” the
value of the function ¢ at the point 7 is reproduced by the inner
product of ¢ with K(.,7).

Definition 2.2.

(2.1)

w1 =

u(x)|u(x),u' (x),u"(x), are absolutely continuous in [0, 1] }
u(x) € L*[0,1],x € [0, 1],u(0) = 0,u(1) = 0.

The inner product and the norm in W3[0, 1] are defined respec-
tively by

+ /0 u® (x)g® (x)dx, u(x), g(x) € W3[0, 1]
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and

Hu||W; =/(u, u>W§7 uec W;[Ov 1}

The space Wg [0,1] is a reproducing kernel space, i.e., for each
fixed y €[0,1] and any u(x) € W3[0, 1], there exists a function
R, (x) such that

u(y) = (), Ry (x))y.

Definition 2.3.

, u(x)|u(x), is absolutely continuous in [0, 1]

WZ [07 ” = 2 )
u'(x) € L7[0,1], x € [0,1],

The inner product and the norm in W3[0, 1] are defined respec-
tively by

(u(x), g(x)) 1 = u(0)2(0) +/0 W (x)g (x)dx, u(x), g(x) € W;[0,1],

(2.2)
and

H””W; =

(u,u)yy, € WH[0,1]. (2.3)
The space W; [0,1] is a reproducing kernel space and its repro-
ducing kernel function T'(y) is given by

To(y) = 1+x, x<y,
= l4+y, x>y

(2.4)
Theorem 2.1. The space W3[0, 1] is a complete reproducing ker-
nel space and, its reproducing kernel function R,(x) can be

denoted by
6

Doalx, x<y,
-1
6

Zdi(y)xiih x>,

i=1

R)-(x) =

where
a(y) =0,
)3 5 5 3

5
) =56 156" a6 T Y

o) L 2 S s S
=5 " T10a” T3 26
P R S PSP
R T R Ty R T VR TR T
)= i Dy 3 s L
0=~ Yy e Tt 0
. _ 1 1 4 1 5 1 2 1 3 !
“0)=To0 " 3" " s70’ e’ Y 156
1
d](y):mysv
1
T Ve T TA M TR E e
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a0 = ~ i’ 1 T 1aY 26
40 =153 ~ 51”3y T 7Y
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0= -3 T T ten’ tise”
1 1 1 5 1 1 3
b0 =756 33" “ 150"~ T wn?

Proof. By Definition 2.2 we have

(u(x) Zu 70 RS’)

+ / | U (x)RY (x)dx. (2.6)

Through several integrations by parts for (2.6) we have
((x), Ry () g = > (0) [R§f> (0) = (=D RE(0)]

+ Z (2 ’) ES—i)(l)
— /l u(x)R'S,G)(x)dx.
(2.7)

Note that property of the reproducing kernel

(2.8)

then by (2.7) we have the following equation,
“RO() = 6(x— ).

When x # y,

R},") (x)=0,

therefore
i=1
R,v (x) =

Since

—RO(x) = 6(x - ),
we have

BkRy\ ) = 8kRy ),

and

k=0,1,2,3,4, (2.9)

O Ry (y) =P R-(y) = —1.
Since R,(x) € W3[0, 1], it follows that
R,(0) = 0,R,(1) =0, 2.11)

From (2.8)—(2.11), the unknown coefficients ¢(y) and d{(y)
(i =1,2,...,6) can be obtained. Thus R,(x) is given by

(2.10)
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3. Solution representation in 130, 1]

In this section, the solution of (1.1) and (1.2) is given in the
reproducing kernel space W3[0, 1]. On defining the linear oper-
ator L: W3[0, 1] — Wi[0,1] as

(Lu)(x) = u"(x). (3.1)

Model problem (1.1) changes the following problem:
Lu=f(x,u), x € [0,1] 62
u(a) =0, u(b) =0,

Theorem 3.1. The operator L defined by (3.1) is a bounded
operator.

Proof. We only need to prove ||Lu|\W| MH“HW where
M > 0 is a given real constant. By (2.2) and (2.3), we have
/ [(Lu)'(

||Lu||W1 = (Lu, Lu) W= = [(Lu)(

By reproducing property, we have

u(x) = (u(.), Re(:)) w3

and

(Lu)(x) = (u(.), (LR)()) w2

SO

(L) ()] < Nl I LRy = Ml s (where M,
> 0 is a positive constant),

thus

(Lu)*(0) < M [l 3.

Since

(Lu) (x) = (u(.), (LR)' () ws.

then

|(Lu) ()] <

> 0 is a positive constant),

H”||Wg||(LRx)/H2W§ = MZH”HW% (where M,

so, we have

[(Lu) () < M3 Jullyys,

= Mllully,
where M = M7 + M; > 0 is a positive constant. [

4. The structure of the solution and the main results

In Eq. (3.1) it is clear that L : W3[0, 1] — W3[0, 1] is a bounded
linear operator. Put ¢,(x) = T\,(x) and (x) = L"p(x), where
L" is a conjugate operator of L. The orthonormal system
{¥:(x)}, of W3[0,1] can be derived from the Gram-Schmidt
orthogonahztlon process of {y,(x)},,

(x) = Zﬁiklpk (x) (Bi>0,
k=1

Theorem 4.1. For Eq. (3.1), if {x;};2, is dense on [0,1] then

i=12,..) (4.1)

{W,(x)}2, is the complete system of W3[0,1] and
lﬁi(x) = L}’ R»’((y)|y:x,"

Proof. We have

Yi(x) = (L)) (x) = (L0 (), Re(»)) = (@) (), LyR (¥))

= L,R.(y)]

y=x;*

The subscript y by the operator L indicates that the operator L
applies to the function of y. Clearly, y;(x) € W3[0, 1]. For each

fixed u(x) € W3[0,1], let (u(x),y(x)) = 0, (i = 1,2,...), which
means that,
(u(x), (L") (x)) = (Lu(.), ¢;(.)) = (Lu)(x;) = 0.

Note that, {x;};°, is dense on [0, 1], hence, (Lu)(x) = 0. From
the existence of L' it follows that u=0. So the proof of The-
orem 4.1 is complete. [

Theorem 4. 2 If u(x) is the exact solution of (3.2), then

ZZIM’ Xy i) i (),

i=1 k=

(4.2)
where {x;}7, is a dense set in [0,1].

Proof. From the (4.1) and the uniqueness of solution of (3.2)
we have

S B, L T () ()
i=1 k=1

S B L), Ty () ()
i=1 k=1

zfilﬁﬂﬂmmﬂh@»m%@)

Nm
=
=
£
<
5
s
=
=
=
=
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Table 1 The numerical results of example for boundary conditions at 2 = 0.1.

X Exact solution Approximate solution Absolute error Relative error Time
0.1 0.0998041752 0.0998041752 0.0 0.0 0.639
0.2 0.1996201980 0.1996201980 0.0 0.0 0.608
0.3 0.2994599206 0.2994599206 0.0 0.0 0.639
0.4 0.3993352030 0.3993352030 0.0 0.0 0.702
0.5 0.4992579186 0.4992579186 0.0 0.0 0.702
0.6 0.5992399580 0.5992399580 0.0 0.0 0.702
0.7 0.6992932326 0.6992932326 0.0 0.0 0.624
0.8 0.7994296804 0.7994296799 5%x1071° 6.25%x 10710 0.609
0.9 0.8996612690 0.8996612691 1x1071° 1.11x 1071 0.655
1.0 0.9999999996 1.0 4x1071° 4.000x 10~ 1° 0.593
Table 2 The numerical results of example for boundary conditions at 2 = 0.5.

X Exact solution Approximate solution Absolute error Relative error Time
0.1 0.09517690196 0.0951769018 7x107 ! 7.3547x 10710 0.702
0.2 0.1906338690 0.1906338724 3.4x107° 1.7835x 1078 0.826
0.3 0.2866534032 0.2866534036 4%x1071° 1.3954x 107° 0.733
0.4 0.3835229288 0.3835229364 7.6x107° 1.98162x 1078 0.858
0.5 0.4815373856 0.4815373906 5.0x 1077 1.0383x 10~% 0.796
0.6 0.5810019748 0.5810019770 22x107° 3.7865x 1077 0.827
0.7 0.6822351328 0.6822351353 2.5%x107° 3.66442x 1077 0.765
0.8 0.7855717868 0.7855717873 5%10°1° 6.36479 x 107 1° 0.843
0.9 0.8913669876 0.8913669937 6.1x107° 6.84342x 107° 0.780
1.0 1.0 1.0 0.0 0.0 0.858
Table 3 The numerical results of example for boundary conditions at 2 = 1.0.

X Exact solution Approximate solution Absolute error Relative error Time
0.1 0.0817969965 0.0817965570 4.3956 % 1077 5.37379x 107° 0.639
0.2 0.1645308708 0.1645307766 9.42x10°8 5.72536x 1077 0.639
0.3 0.2491673606 0.2491665307 8.299 x 1077 3.33069 x 107° 0.655
0.4 0.3367322088 0.336732458 2492 x 1077 7.40053 x 1077 0.670
0.5 0.4283471608 0.4283474657 3.049 x 1077 7.11805% 1077 0.733
0.6 0.5252740292 0.525275021 9.918 x 10~ 1.88815x 10°° 0.655
0.7 0.6289711432 0.6289706684 4.748 x 107 7.54883 x 107’ 0.686
0.8 0.7411683772 0.7411684117 3.45%x 1078 46548 % 1078 0.702
0.9 0.8639700206 0.8639709620 9.414x 1077 1.0896 x 107° 0.749
1.0 1.000000000 0.9999999997 3x 10710 3.0000 x 10~ '° 0.671
Table 4 The numerical results of example for boundary conditions at 2 = 1.5.

X Exact solution Approximate solution Absolute error Relative error Time
0.1 0.06364914304 0.0636491430 4x 1071 6.2844 x 10710 0.702
0.2 0.1288746243 0.1288746242 1x10°1° 7.7594 x 10710 0.655
0.3 0.1973406481 0.1973406478 3% 1077 1.5202x 107° 0.717
0.4 0.2709010994 0.2709010994 0.0 0.0 0.671
0.5 0.3517328782 0.3517328831 49%107° 1.3931x 107° 0.671
0.6 0.4425270074 0.4425270095 2.1x107° 47454 x 107° 0.639
0.7 0.5467812876 0.546781293 54x107° 9.8759x 1077 0.686
0.8 0.6692735758 0.6692735734 24x107° 3.5859 x 1077 0.733
0.9 0.8168700768 0.816870073 3.8x107° 4.6519% 1077 0.608
1.0 1.000000000 0.9999999996 4x1071° 4.0000 x 1071° 0.655
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Table 5 The numerical results of example for boundary conditions at 1 = 2.

X Exact solution Approximate solution Absolute error Relative error Time
0.1 0.04584503564 0.0458450399 426%107° 9.2921x 1078 0.608
0.2 0.09363547318 0.0936354708 2.38x107° 2.5417%x 1078 0.827
0.3 0.1454635787 0.1454635767 2.0x107° 1.3749 x 1078 0.639
0.4 0.2037490528 0.2037490524 4.1x10°1° 1.9631x 107° 0.702
0.5 0.2715009814 0.2715009813 1.2x107"° 3.6832x 107'° 0.733
0.6 0.3527451452 0.352745147 1.8x107° 5.1028 x 10~ 0.577
0.7 0.4532840708 0.453284080 9.2x107° 2.0296x 1078 0.671
0.8 0.5821576104 0.582157612 1.6%x107° 2.7483x 107° 0.639
0.9 0.7547145368 0.7547145379 1.1x10"° 1.4575% 1077 0.640
1.0 0.9999999996 1.000000006 6.4x107° 6.40000 x 10~° 0.671
Table 6 The approximate solution of example for boundary conditions at 4 = 10.

x RKHSM Time [], A=p=10 MHPM [7] VIM [6] ADM [4]

s = 100x, n = 1
0.1 0.40 0.655 0.2452382346 17.61750000 0.1186109866 667081.18744
0.2 0.80 1.528 0.3046904881 33.69333333 0.4461962517 1333955.1189
0.3 —0.1 0.624 0.02841363154 46.78583333 3.8003366781 1999860.1189
0.4 1.0 0.609 —0.1977376785 55.65333333 79.891472730 2661970.7366
0.5 0.450751 2.043 —0.3864733430 59.35416667 1880.3539472 3310585.4201
0.6 —0.2 0.655 —0.05740959172 57.34666667 41642.365193 3914127.8659
0.7 0.78 0.624 0.1574986416 49.58916666 878764.64189 4374578.5342
0.8 0.941065 1.841 0.5230782099 36.64000000 18064027.967 4406724.4178
0.9 0.3 0.796 0.08763209033 19.75750000 366613074.02 3290268.6374
1.0 4.460660162 1.670 —0.1219698894 1.000000000 7396932871.8 1.0000000006
0.08

0.07

Absolute eror
[-]
e

01 0.'2 03 04 05 06 07 [1X:] 09

Figure 2 Comparing the absolute errors previously obtained by
various methods with our method for 4 = 1.

Now the approximate solution u,(x) can be obtained by
truncating the n-term of the exact solution u(x)

un(x) = znzzl:ﬁikf(xkﬁ we )P (x)- (4.3)

i=1 k=1

Lemma 4.1. [f u(x) € W3[0, 1], then there exists M; > 0, such
that

l[ull 2o,y < Milull s

where [|u]
maxeo,1)|u” (x)|.

A1 = maxxg[ovl]\u(x)\ + max,ve[0,1]|u’(x)|+

Approximate Solution (RKHSM)

Figure 3  The reproducing kernel Hilbert solutions of Troesch’s
problem for 4 < 2.

Lemma 4.2. If ||u, — ullys — 0,x, — x, (n— c0) and f(x,u) is
continuous for x € [0,1], then

S, ty1 (%)) — flx,u(x)) as n — oc.

Proof. Since |[lu, —ul|;3 — 0(n — o0), by Lemma 4.1, we
know u,(x) is convergent uniformly to wu(x), therefore, the
proof is complete. [

Remark 4.1.

(i) If (3.2) is linear then the analytical solution of (3.2) can
be obtained directly by (4.2).
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(i1) If (3.2) is nonlinear then the solution of (3.2) can be
obtained by the following iterative method.

We construct an iterative sequence u,(x), putting,

any fixed uy(x) € W3[0, 1],
w(x) = S AG(), 44
i1

where

A = ﬁllf(xlvuo(xl))v

= ;ﬁzkf(xlm U1 (X)), @5)

An = Zﬂl1/cf(x/€? Up—1 (X/()).
k=1

Next we will prove that u,(x) given by the iterative formula
(4.4) is convergent to the exact solution (4.2).

Theorem 4.3. Suppose the following conditions are satisfied. (i)
H”n”w‘ is bounded; (ii) {xi};°, is dense in [0,1]; (iii)
fx, u) € Wh0,1] for any u(x) € W3[0,1]. Then u,(x) in iter-
ative formula (4.4) converges to the exact solution of (4.2) in
W30,1] and

= Ai(x)
=1
where A; is given by (4.5).
Proof.

(i) First, we will prove the convergence of u,(x). By (4.4),
we have

un+1(x) - un( ) + AVH»llp)H»l( )
From the orthogonality of {¥;(x)}?,, it follows that

+ (An+l)2 + (An)2 + (AnH)z

n+1

=Sy
=1
From boundedness of [|u,||,;s, we have
D (A
=1

ie.

{4y elP(i=1,2,...).

2 2 2
HunJrlHW; = ”unHWg = Hunflnwg

Let m>n, in view of (u, — u,_1)L@n_1 — t,_>)L
.. L(uy+1 — uy), it follows that
”um - unHzW; = Hum — Uy F Uy — Uy + -+ Upt1 — un”i{/;
< Mot = s 4o s — 1l

= Z — 0(m,n — o0).
i=n+1
Considering the completeness of W3[0,1], there exists

u(x) € W3[0, 1], such that

Il Hux
u,(x) — u(x), as n — oo.

(i1) Second, we will prove u(x) is the solution of (3.2).
By Lemma 4.1 and Theorem 4.3 (i), we know u,(x)

convergence uniformly to u(x). It follows that, on taking
limits in (4.4),

Since

(Lu)(x;) :i

it follows that

Zﬂ”/ (Lu)(x;) z < (x) Zﬂ”/ >

Z Dy = A
=1

If n = 1, then
(Lu)(x1) = fx1, uo(x1)). (4.6)
If n = 2, then

Bar (L) (x1) + B (Lut)(x2) = P flx1, to(x1))
+ Bnf(x2, ur (x2)). (4.7)

From (4.6) and (4.7), it is clear that

(Lu)(x2) = flx2, 101 (x2)).-

Futhermore, it is easy to see by induction that

(Lu)(x7) = f1x5, w1 (x7)). (4.8)

Notice that {x;};, is dense on interval [0,1], and y € [0,1],
there exists a subsequence {xn,.}, such that x,, — y, as j — oo.
Hence, let j — oo in (4.8), by the convergence of u,(x) and
Lemma 4.2 , we have

(Lu)(v) = fy, u(y)),

that is, u(x) is the solution of (3.2) and

= A,
=1
where A; is given by (4.5). O

Corollarly 4.1. Assume that the conditions of Theorem 4.3 hold,
then u,(x) in (4.4) satisfies |[u, — ul|c2p; — 0, n— oo, where
u(x) is the solution of (3.2).

Theorem 4.4. Assume u(x) is the solution of Eq. (3.2) and r,,(x)
is the error between the approximate solution u,(x) and the
exact solution u(x). Then the error sequence r,(x) is a mono-
tone decreasing in the sense of ||.||W; and ||r,(x)l s — 0.
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Proof. From (4.2) and (4.3), it follows that,

Il = 1> S Biftes ()

i=n+1k=1

3 (iﬂf,ﬂxk,uk)) (49)

i=n+1 \ k=1

(4.9) shows that the error r, is decreasing in the sense of
[-llws O3

5. Numerical results

In this section, numerical example is provided to show the
accuracy of the present method for different values of 1. All
computations are performed by Maple 13. Results obtained
by the method are compared with the exact solution, and each
A values of the Adomian decomposition method (ADM)
(Deeba et al., 2000), the Laplace decomposition method
(LDM) (Khuri, 2003), the Variational iteration method
(VIM) (Momani et al., 2006), the Modified homotopy pertur-
bation method (MHPM) (Feng et al., 2007), the Nonstandard
finite difference scheme (FDS) (Erdogan and Ozis, 2011), the
B-spline collocation method (Khuri and Sayfy, 2011), and
the sinc-Galerkin method (SGM) (Zarebnia and Sajjadian,
2012) are found to be in good agreement with each other.
The RKHSM does not require discretization of the variables,
i.e., time and space, it is not affected by the computation round
off errors and one is not faced with the necessity of large com-
puter memory and time. The numerical results we obtained
justify the advantage of this methodology.

Remark 5.1. Bougoffa and Al-khadhi solved (1.1), (1.2) via
u=pu (x)y and lie point symmetry. They obtained the
following explicit solution of this problem.

y= ﬁ In (tan2 (i? /uz(x)dx+nx+gi?s(0)>),n

=0,1,...,

where
() = [ 1)y = (1), A00) = (), = = 10, = 1,

1 o U Va n
- oy Ve 1 -
a 1Oo,tan (expz) 5 (s(0) + s( ))+n77:+4,

using this explicit solution one can obtain different numerical
results by arbitrary constants. In our study we found numeri-
cal results. Under the following conditions we compared our
method with their method and both methods give stable results
in Table 6.

We consider (1.1) and (1.2) for numerical results. After
homogenizing the boundary conditions of (1.1) and (1.2) we
obtain (5.1)

{y”(x) = Asinh(A(y(x) + x)),0 < x < 1, 5.0)

y(0) = y(1) = 0.

Thus, if the method described above is applied to the (5.1) we
find the following tables and figures.

y (X)

02 03 04 05 06 07 08 09 1

Figure 4 Comparing the numerical results previously obtained
by various methods with our method and with the exact solution
for 2 = 0.5.

Figure 5 Comparing the numerical results previously obtained
by various methods with our method and with the exact solution
for 2 = 1.

Tables 1-5 list the exact solution, approximate solution,
absolute error, relative error and time corresponding to the
various values of 4. As shown in the tables the method gave
very good results for this problem. From semi-analytical and
spline methods, the absolute error obtained is of around 1073,
although by this method the absolute error obtained of around
1078, In Table 6 given results compared with other existing
results. As shown in Table 6; MHPM, VIM and ADM
methods gave unstable and divergent results. But our method
and the method in Bougoffa and and Al-khadhi (2009) gave
stable results. In Figs. 1 and 2, respectively, for A = 0.5 and
A =1 we compared the absolute error previously obtained by
various methods with the absolute error that we obtained by
this method. In Fig. 3 for 2 <2 the approximate solution
obtained by RKHSM was given. In Figs. 4 and 5 respectively,
for A =0.5 and 2 =1 we compared the numerical results
previously obtained by various methods with the numerical
results that we obtained by this method.

6. Conclusion

In this paper, we introduce an algorithm for solving Troesch’s
problem. For illustration purposes, we consider (1.1) and (1.2)
for different values of A which were selected to show the com-
putational accuracy. It may be concluded that, the RKHSM is
very powerful and efficient in finding an approximate solution
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for wide classes of problem. The approximate solution ob-
tained by the present method is uniformly convergent.

Clearly, the series solution methodology can be applied to
much more complicated nonlinear differential equations and
boundary value problems (Cui and Deng, 1986; Yao and Lin,
2011; Yang et al., 2008; Geng et al., 2010; Geng and Cui,
2007; Geng and Cui, 2012; Du and Geng, 2008; Wu and Li,
2011). However, if the problem becomes nonlinear, then the
RKM does not require discretization or perturbation and it
does not make closure approximation. Results of numerical
examples show that the present method is an accurate and reli-
able analytical method for solving Troesch’s problem.
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