Journal of the Association of Arab Universities for Basic and Applied Sciences (2012) 12, 65-73

j
B}

w’ University of Bahrain ;F’m@mnm
ti\ P L] . > . e > ‘?_“ S
& J;.\ Journal of the Association of Arab Universities for oy y
= ] \
2 < Basic and Applied Sciences =
A G Er=L
@4& j www.elsevier.com/locate/jaaubas <r
/P"UN P www.sciencedirect.com e
L ] -f_zﬁmmzzz::—

Jsdl) (e Adiaa daja aladdi héﬁujjﬂﬁ&ywu‘ﬂwm&)ﬂ\d#\
Obdlas alell ¢ by e 2l

) 65719-95863 e ¢ julle daala caslell AlS eyl ad

: gaidlall

) gl e dladll e agloaniiy Ll pi (e ¥alae ola iy Ay o3 Al Caad) 1 B
dadll e agloaniy il cValae Ol (AalalSill Lg)palis and) 48U CY bl e Ao gana plasinly
&l o ) ABY) Gae duhy @b WS Laghd cVobe ) Jsa of oS J5Y) gsil e
481 (e Adle Aan Clpeall mny Lol Aaaall A8kl o it DA (s Aiplall o3¢] se il

___________________________________________________________________________________________________________________________________|
F. Mirzaee and E. Hadadiyan



Journal of the Association of Arab Universities for Basic and Applied Sciences (2012) 12, 65-73

« _— . Jle
é\t‘e’?'} University of Bahrain ({Fj_cf_.___
% o . » e

) Ju\ Journal of the Association of Arab Universities for - e

(&R ¥ . . . |

Ny 3 Basic and Applied Sciences i

w2 4 : =r

76’ www.elsev1e;.c0m/10cate/1aaubas \/_i OO
vt www.sciencedirect.com nﬁzgné;_xgﬁ";
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In this article a robust approach for solving mixed nonlinear Volterra—Fredholm type
integral equations of the first kind is investigated. By using the modified two-dimensional block-
pulse functions (M2D-BFs) and their operational matrix of integration, first kind mixed nonlinear
Volterra—Fredholm type integral equations can by reduced to a nonlinear system of equations. The
coefficients matrix of this system is a block matrix with lower triangular blocks. Some theorems are
included to show the convergence and advantage of this method. Numerical results show that the

approximate solutions have a good degree of accuracy.
© 2012 University of Bahrain. Production and hosting by Elsevier B.V. All rights reserved.

1. Introduction

In this paper we applied the direct method for solving mixed
nonlinear Volterra—Fredholm type integral equations of the
first kind of the form:

| Gers.tauts.npads = fix.p)s - (xon) € 0,1 x 0,
0 Ja
(1)
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where u(s,7) is an unknown function, f(x,y) and G(x,y,s,t,u(s,t))
are analytical function on [0,1) x Q and [0,1) x Q*, respectively,
where Q is a close subset on RY(d =1,2,3). Existence and
uniqueness results for Eq. (1) may be found in (Diekmann,
1978; Pachpatte, 1978; Thieme, 1977).

Equation of type (1) often arise from the mathematical
modeling of the spreading, in space and time, of some conta-
gious disease in a population living in a habitat Q (Diekmann,
1978; Thieme, 1977), in the theory of nonlinear parabolic
boundary value problems (Pachpatte, 1978), and in many
physical and biological models.

The literature on numerical methods for solving Eq. (1)
mainly consists of projection methods, collocation methods,
the trapezoidal Nystrom method, Adomain decomposition
method, He’s homotopy perturbation method and the two-
dimensional block-pulse functions (Adomian, 1990, 1994;
Adomian and Rach, 1992; Biazar et al., 2011; Brunner, 1990;
Cardone et al., 2006; Cherruault et al., 1992; Guogqiang,
1995; Hacia, 1996; Kauthen, 1989; Maleknejad and Fadaei
Yami, 2006; Maleknejad and Hadizadeh, 1999; Maleknejad
and Mahdiani, 2011; Wazwaz, 2006; Yee, 1993).
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Assume now that:

G(x,p,s,t,u(s, 1)) = k(x,p,s,t)[u(s, )], (2)

where p is a positive integer. In the present paper, we apply a
modification of block-pulse functions (Maleknejad and
Rahimi, 2011), to solve the mixed nonlinear Volterra—

Fredholm type integral Eq. (1) with Eq. (2).

2. M2D-BFs and their properties

Definition 1. An (m + 1)’>set of M2D-BFs consists of

(m + 1> functions which are defined over district
= [0,1) x[0,1) as follows:
1 (x,y) €Dy, h,h=0(1)m
e - 2 3
P (%:7) { 0 otherwise. 3
where D; ;, = {(x,y)|x € I,,,y € I,,.}, and
[0,h—¢) o=0,
L=< [oh—¢(a+1)h—¢) o=1(1)m, (4)
[1—¢1) o =m.

where m is an arbitrary positive integer, and / = L.

Since, each M2D-BF takes only one value in its subregion,
the M2D-BFs can be expressed by the two modified one-
dimensional block-pulse functions (M1D-BFs):

G (%,3) = by, (X) s, (), (5)
where ¢, (x) and ¢, (y) are the M1D-BFs related to variables x

and y, respectively. The M2D-BFs are disjointed with each
other:

oy iz(x7y) I =Ji, b =],

o o = K 6
buslx )00 = { e (©
and are orthogonal with each other:

/ / Gip iy (X, )5, (X, y)dydx
_ { (It| S)A(Ih s) ll _lel2 _]27 (7)
0 otherwise.

where (x,y) € D, iy,iz,j1,j» = 0(1)m and A(Z;,
length of intervals [; , and [, , respectively.

.) and A([,,) are

2.1. Vector forms

Consider the first (m + 1) terms of M2D-BFs and write them
concisely as (m + 1)*vector:

Do (X,9) = [Po0(x,3), -, Pom (X, 9), -, Prno(X,2), - -,
G (05 (x,3) € D. ®)
Whence Eqgs. (6) and (8) implies that:
bop(xy) 0 ... 0
0 ¢oalxy) o 0

q)/YLS (x7.y)¢/n & (‘C )/)

- Pum(X,3) (1) (12
©)

Now suppose that X be a (m + 1)*-vector. Hence by using Eq.
(9) we obtain:
D, (x, )0, (x, )X = XD, (x, ), (10)

mge

where X = diag(X) is a (m + 1)?> x (m + 1)* diagonal matrix.
2.2. M2D-BFs expansions

A function f{(x,y) defined over district L(D) may be expanded
by the M2D-BFs as:

m

S0 9) 2 fona(x,) ZZ S i (X, )
=0i,=0
_F (I)mf(\ y) (I)me(x y)Fm,m (11)

where F,,, . is an (m + 1)> x 1 vector given by

ms [fOOa-"Lﬁ),mw”a. I11,0a~~~7.fm,l11]T7 (12)
and @, .(x,y) is defined in Eq. (8), and f; ;,, are obtained as:

1

fon =55 | A 13

CNCARTX AR A AR (13)

Similarly a function of four variables, k(x,y,s,t), on district
L*(D x D) may be approximated with respect to M2D-BFs

such as:
k(x,y,s,t) ~ q)nc,s(xay)Km,sq)m,s(Sa 1, (14)

where @, .(x,y) and ®,, (s,f) are M2D-BFs vector of dimen-
sion (m + 1), and K, is the (m + 1)>x (m + 1)> M2D-BFs
coefficients matrix.

3. Convergence analysis

In this section, we show that the given method in the previous
sections, is convergent and its order of convergence is 0(#)
For our purposes we will need the following theorems.

Theorem 1. Let

m m

ﬁha X y sztl I’7¢ll i X }
i1=0ir=
and
fl:l-,iz = A(Ilvs / /fx y i1,iy Y y)d‘cdy,
l],l? —0(1)

Then the following equation
1ol
| [ ) =futoyasas, (15)

achieves its minimum value and also we have

/0. /0 F(x,y)dxdy = ZZ;% Wb el (16)

i1=0i=
Proof. It is an immediate consequence of theorem which was
proved by Jiang and Schaufelberger (1992). O
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Theorem 2. Assume f(x,y) is continuous and is differentiable
over district [—h,1 + hlx[—=h1 + h], and fu.(x,y); & =25,
for i = 0(1)k — 1), are correspondingly M2D-BFs(¢ey) = 2D-
BFs, M2D-BFs(ey), ..., M2D-BFs(¢._1) expansions of f(x, y)
based on (m + 1> M2D-BFs over district D and

kam, X,0),

then for sufficient large m we have:

11(x, )

fmk X, y

- 1 , X
_fn1.k(x7y)||oo 5 %mpflx'lf(xvy) _fm.é:/(xvy)”oo

Proof. We consider g(x »y) and g’ (x,y) in the district
[=1,ih) x [=L 2L which are approx1mately equal to con-
stants n; and n,, respectively, where m is so large. Also, we
use page z = nix + nyy + b instead of f(x,y) in the district
’;1‘,’;‘) x [EL 2D Now in the district [L,L+4)x
LLy 81) we have:

m’m

j;n,/((xmy)

2k o 17)

but % =<4 hand Eq. (17) can be reformulated as:

(n1 +m)h

ﬁn,k(xmy) 2k . (]8)

In other words:

i
:(m +l’lz)—+b+
m

max  [f(x, ) = fui(x, )|
xye[arter)
~ merﬁiin |mix +my+b *ﬁn,k(xvyﬂ < |”lé+”2n%
_ﬂn.k(-xvyﬂ
(m +mnp)h
_ 19
s (19)
so, we have:
max  [f(x,) = fo (6, 2)l > max |flx,)
(x.y) €D (x.y) e D/
i i
7fm.s,(x7y)‘ = ‘)11—+n2—+b
m m
1 i i i i
——qm—+m—+b+n—+ml—+h
4 m m m m
+b+m(i+h) +nzi+b+n1<i+h)
m m
i h
+nz(i+h)+b}‘ (m +m)h (20)
m 2

where D' = [£ L4 ) x [L L p),

m’m ‘m

By using Egs. (19) and (20) the proof is completed. [

Theorem 3. Let the representation error between f(x,y) and its
two-dimensional ~ block-pulse ~ functions, f,,(X, ) = fua (X, )
(M2D-BFs(&y) = 2D — BFs), over the district D, as follows:

e(x,y) =f(x,»)

Then ||e(x

_f;11(x7y)'
D) =0(,) and

lim f,(x,y) = 11m fm,o(x ) =flx,p).

m—-+00

Proof. See (Maleknejad et al., 2010). [J

Theorems 2 and 3 conclude that error estimation for M2D-

BFs is [le(x,»)] = O(z;)-
If we assume E; and E, are errors between f{x,y) and its
2D-BFs and M2D-BFs expansions, respectively, from

Theorem 2 we have E, < %El, and from (Maleknejad et al.,
2010) we have E; < @, where M is bounded of |Df{x
and m shows number of 2D-BFs.

So, we have

V2M

= < —
B = (el < Yo e1)

where k is times of modifications of the M2D-BFs series.
Assume now that f(x,y) is approximated by

Fonar (X, 7) ZE f,. P (x,0),
=0 ip=
whereas, ﬁl_,z are the approximation of f; ;, and
Fonsr (X, ) ZE /‘,. 1 bi i, (%, 7),
=0 ip=
then for (x,y) € D;, ;, we have
”ffl,iz(bil,iz(xvy) 7f(xvy)|| = |l]7;'11i2¢i1j2(xay) *f()ﬁy)
_f}l-i2¢i17i2(x7y)
+.fil>iz¢i1<i2(xvy)”
< |Vz-'|.iz¢i1,i2(x7y) _f(x7y)H
+ |Vi1,iz¢i1,i3 (xvy)
7ﬁ1#’2¢[1 Jiy (X, }’)H (22)
We have
H/Z;'lqizqsihiz (x7y) _ﬁl-i2¢f|,ig(x’y)||

1

B (/’f a / “ (i ®iis (6:3) = firia i iy (%) dydv)
= lfie —fia </1, /1,7, dydx)

(Ill.él)A([lz«h)lfll-lz - llwIZ ‘
i) AU ) for = Ml - (23)

Consequently by using Egs. (21)—(23), the following error
bound is obtained:

A
<A

- V2M -
|lfilv[2¢[| Jin 7f(x7y)H < W + A(Iil-,si)A(Iibei)“f;n 7ﬂ|oc' (24)
Moreover Eq. (24) implies that:
Jim (% 0) = f(x,)- (25)
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4. Method of solution

In this section, we solve mixed nonlinear Volterra—Fredholm
type integral equations of the first kind of the form Eq. (1) with
Eq. (2) by using M2D-BFs.

We now approximate functions u(x,),f(x,y),[u(x,»)]’ and
k(x,y,s,t) with respect to M2D-BFs by manipulation as
Section 2:

u(x,y) = (D,Z,C(va) Um.ua

S, ) = @ (. 9) Fs

(u(x, )" ~ QHTH( ) Unap,

k(x7y7 S, t) - (I)m‘g(xyy)Km,eq)m,a(& t)7

(26)

where ®,, .(x,y) is defined in Eq. (8), the vectors U,,., Fp.,
U p» and matrix K, , are M2D-BFs coefficients of u(x,y).f(-
x,»), [u(x,y)) and k(x,y,s,r) respectively.

Lemma 1. Let (im + 1)2-vectors Uy, and U,,,, be M2D-BFs
coefficients of u(x,y) and [u(x,y))’, respectively. If

T
Um,s = [Uo‘o, s Uomy e s Um0y e ey umm} 3 (27)
then we have:
T
D D
U”LU-,[) = |:ug707 t %ni’ t u]m.07 ct uﬁun ’ (28)

(e, ) = u(x, y)[u(x, y))
= UT (I)ma( )(Dy:,s(x:y) Unep
=U,, Unop@ums(X, 7). (29)

Now by using Eq. (28) we obtain

~ T
UT Ulﬂ‘«“r,]? = [%;17 t u{;t}’ e 71[5;*»()17 tet uﬂ+]:| ) (30)

mge » mm

therefore Eq. (28) holds for (p + 1), and the lemma is
established. [J

To approximate the integral part in Eq. (1) with Eq. (2),
from Eq. (26) we get

X 1
/ / k(x,y,s,t)[u(s, )] dtds
7(DmLx.} Iﬂé(/ / HHSI(I),],;LS t)dlds) mep-
(31)

Now by using Egs. (5) and (9), denoting R; for the (j + 1)th
row of the conventional integration operational matrix P,
((Ppig)om+ 1yx@m+1y 1s operational matrix of 1D-BFs defined
over [0 1) see Maleknejad and Mahdiani, 2011) and consider-

’C y Knaq)mx(s t)(D (3' I)Um(],dzds

where p > 1, is a positive integer. ing [0 Ndt = A(1,,) follows:
Proof. (By induction) When p = 1, Eq. (28) follows at once
from [u(x,»)F = u(x,y). Suppose that Eq. (28) holds for p,
X 1
/ / D,,.(s, Z)(D;'n(s, 1)dtds
0
[0 [0 Do (8)py(t)deds ... 0 0
= 0 IN fo gbo 1)dtds 0
0 - 0 fo fo m m dldS (m-*—l)2><(m-%—l)2
(h— &) Ry®y, .(x) 0 . 0 e 0 (32)
0 hRo®,,,(x) ... 0 0 . 0
0 0 &R D,y (x) 0 0
0 0 0 (h—&)Ry®ps(x) ... 0
0 0 0 0 N SR,,,(D,,M(X) (m+1)2><(m+l)2

we shall deduce it for (p + 1). Since [u(x,)’ " = u(x,y)
[u(x,»)), from Eqgs. (26) and (10) it follows that

Also by using Eq. (5), Eq. (8) can be reformulated as:
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bo(x) 0 0 0
0 Po(x) 0 0
(Dm.;;(xay) = . . [¢0(y)7"'7¢m(y)7'-'7¢0(y)74",(ﬁm(y)](Ter])le‘ (33)
0 0 ¢771 (x) 0
0 0 0 d)m(x) (rr:+1)2><(m+1)2
So, we have
(I);,a(x’y)Kmﬁ = [d)()(y)? ceey d)m(y)v AR} ¢O(y)7 R} ¢m(y)](m+1)2><l
ki1¢(x) Ky 1)@ (x) Ky (1) Do () kl,(m+1)2¢’o(x)
Kmr1),1¢(X) Kmr1).mr1)$o(X) K1) m(m1) P (X) k(m+1),(m+1)2¢0(x)
>< . .
km(m+l),1 (rbm (X) km(erl)‘(erl)qsm ()C) km(m+l),m(m+1) d)m ()C) km(m+1).(m+l)2 ¢m (.X)
k(m+l)271 d)m(x) k(m+1)2.(m+l)¢m(x) k(mH)z.m(mH)(rbm (x) k(rnﬂ)z,(rnﬂ)2 d)m(x) (m+1)>x (m+1)?
(34)

Also, we have:
(h—)

T h(xX) + (h =)y (x) + -+ (h— &), (x), i=0
RO) = {g¢,<x> i (5) -+ i (), i (1) 1),
L (x), i=m
and
$i(x), i=]j
$:(x)(x) = {0, otherwise
(35)

By using Eqs. (32), (34) and (35), Eq. (31) can be reformulated
as:

[(ﬁo(}’), RN ¢m(y)7 IR ¢0(y)7 MR ¢m(y)](m+l)2><]

Aw 0 0 0
A An 0 0
A Ay An 0 Uy, 9
Awo - Am A A [ a1y (mar)?
where
B AL ke (x),  i=]
Ai;= , (37)
AL )AL )kii(x),  otherwise
where
I=(m+ i+ )(H)((m+1)(i+1)),
((m+ Dj+ D) ((m+ 1)+ 1)),
z

and 0 is a zero matrix. Also

Apw 0 O 0
Ay Ay 0 0
A20 A2l A22 0
AmO Aml AmZ Amm (m+|)2><(/11+])2
bo(x) ... 0 0 0
0 cpp(x) ... 0 0
0 0 ... ¢,(x) ... 0
0 0 0 . ¢m(x)
where
Ow 0 0 0
QIO Qll 0 0
Q— QZO QZI Q22 0
QmO le Qm2 Qmm

-0,

(m+1)%x(m+1)?
(38)
) (39)

(m41)2x (m+1)?
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Table 1 Numerical results of Example 1 with M2D-BFs. Table 2 Error results for Example 1.
Nodes (x, y) Error for m =8 Nodes (x, y) Present method Method of Maleknejad
— o k=1 k=13 = and Mahdiani (2011)

() (x,) =27 m=8andk =2 —
I=1 0.03748936 0.02837304 0.02522153 1 0.02837304 0.0288649
=8 0.05090571 0.03943282 0.03190341 _ : ’
1=3 002574872 001813532 0.01391462 - § 8'8?2‘1‘3225 8'3??%3
I=4 0.04112879 0.02553757 0.02222506 B : ’ :

4 0.02553757 0.0277814

So, we have :
_ Ag/'i) A(Ir,s)klm i :J
0, = herwise (40) vl » .
A1) A )ky,  otherwise /0 /0 k(x,y,s,y)u(s, 1)) dtds ~ @, (x,y)QU,,. . (41)

Error(x,y)

0.12—

0.09—

0.06

Error(x,y)

0.03

0.06—

o
=
T
/

Error(x,y)

0.02

Figure 1

0

(aym=8and k=1

(bym=8and k=2

(c)m=8and k=3

Absolute value of error, Example 1 with m = 8§ and k = 1,2,3.
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Table 3 Numerical results of Example 2 with M2D-BFs.
Nodes (x, )

Error for m = 8

(x,y)=2" k=1 k=2 k=3

=1 0.04289052 0.03148406 0.02743874
=2 0.06470576 0.04585369 0.04071913
[=3 0.03803418 0.02437943 0.02249845
I=4 0.03592263 0.02836157 0.02045372

Substituting Egs. (26) and (41) into Eq. (1) with Eq. (2) gives:
(Dr{;,s(x’y)Fm‘ﬁ = q)r:_g(x’y)QUm,g,p = Frms = QUm,z:,p' (42)

After solving the above nonlinear system by using Newton—
Raphson method, we can find U, and then

0.15

Error(x,y)

Ups(X,p) = U,Z.ﬂ’m,s(xay)- (43)
Then
1 k—1
u(x, y) 2 il (x, y) = Ezum,s,-(xvy)v (44)
=0
where & =%, i =0(1)(k — 1) is the estimation of the solution

of mixed nonlinear Volterra—Fredholm type integral equation
of the first kind.

5. Numerical examples

In this section to demonstrate the effectiveness of our ap-
proach several examples are presented. All results are com-
puted by using a program written in the Matlab. The

»*7\‘“‘?»’ ‘/(4‘
W

(@m=8and k=1

Error(x,y)

(b)ym=8andk=2

Error(x,y)

(c)m=8and k=3

Figure 2 Absolute value of error, Example 2 with m = 8 and k = 1,2,3.
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Table 4 Error results for Example 2.

Nodes (x, ) Present method Method of Maleknejad
and Mahdiani (2011)
(x,y)=2"" m=8and k =2 m =16
[=1 0.03148406 0.04289006
/=2 0.04585369 0.04589757
=3 0.02437943 0.04034072
=4 0.02836157 0.04312157

numerical experiments are carried our for the selected grid
point which are proposed as (2’1; [ =1,2,3,4) and m terms
and k times of modifications of the M2D-BFs series. The fol-
lowing problems have been tested.

Example 1. Consider the following mixed linear Volterra—
Fredholm type integral equation (Maleknejad and Mahdiani,
2011):

/0/0 cos(y = )" uls. dids = flx,»); (%) € [0,1) x
(45)

where

fl%3) = e (2e0s(0) +sin(2 ~ ) +sin(2)). (46)

The exact solution is u(x,y) = e *cos(y). Table 1 and Fig. 1
illustrate the numerical results for this example.

The error results for proposed method besides the error for
method of Maleknejad and Mahdiani (2011) are tabulated in
Table 2.

Example 2. Consider the following mixed nonlinear Volterra—
Fredholm type integral equation (Maleknejad and Mahdiani,
2011):

/,\' /1([ +y)€2x—xu2(s7 z)dtds :‘f(xyy); (x,y) € [07 1) X Q,
0 0

(47)
where

X x=2

) 1 1 1
fx,p) =zxye™ +—xe™ — - xye”

3 —x—2
3 1 3 ——xe . (48)

4
The exact solution is u(x,y) = e~ 7. Table 3 and Fig. 2 illus-
trate the numerical results for this example.

The error results for proposed method besides the error for
method of Maleknejad and Mahdiani (2011) are tabulated in
Table 4.

6. Conclusion

In this paper a computational method for approximate solution
of mixed nonlinear Volterra—Fredholm type integral equations
of the first kind, based on the expansion of the solution as series
of M2D-BFs was presented. This method converts a mixed
nonlinear Volterra—Fredholm type integral equation whose

answer is the coefficients of M2D-BFs expansion of the solu-
tion of mixed nonlinear Volterra—Fredholm type integral equa-
tion. Also, we have shown that our approach is convergent and
its order of convergence is O(ﬁ) This method can be easily ex-
tended and applied to mixed nonlinear Volterra—Fredholm
type integral equations of the second kind and nonlinear system
of the mixed Volterra—Fredholm type integral equations.
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