Basic and Applied Sciences

www.elsevier.com/locate/jaaubas www.sciencedirect.com

ORIGINAL ARTICLE

Solving the class equation $x^{d}=\beta$ in an alternating group for each $\beta \in H \cap C^{\alpha}$ and $n \notin \theta$

Shuker Mahmood *, Andrew Rajah
School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
Available online 5 October 2011

KEYWORDS

Alternating groups;
Permutations;
Conjugate classes;
Cycle type;
Ambivalent groups

Abstract

In this paper we find the solutions to the class equation $x^{d}=\beta$ in the alternating group A_{n} (i.e. find the solutions set $\left.X=\left\{x \in A_{n} \mid x^{d} \in A(\beta)\right\}\right)$ and find the number of these solutions $|X|$ for each $\beta \in H \cap C^{\alpha}$ and $n \notin \theta$, where $H=\left\{C^{\alpha}\right.$ of $S_{n} \mid n>1$, with all parts α_{k} of α different and odd $\}. C^{\alpha}$ is conjugacy class of S_{n} and form class C^{α} depends on the cycle partition α of its elements. If $(14>n \notin \theta \cup\{9,11,13\})$ and $\beta \in H \cap C^{\alpha}$ in A_{n}, then F_{n} contains C^{α}, where $F_{n}=\left\{C^{\alpha}\right.$ of $S_{n} \mid$ the number of parts α_{k} of α with the property $\alpha_{k} \equiv 3(\bmod 4)$ is odd $\}$. In this work we introduce several theorems to solve the class equation $x^{d}=\beta$ in the alternating group A_{n} where $\beta \in H \cap C^{\alpha}$ and $n \notin \theta$ and we find the number of the solutions for n to be: (i) $14>n \notin \theta$, (ii) $14>n \notin \theta$ and $(n+1) \notin \theta$, (iii) $14>n \notin \theta$ and $C^{\alpha} \neq[1,3,7]$, (iv) $n=9,11,13$, (v) $n>14$.

© 2011 University of Bahrain. Production and hosting by Elsevier B.V. All rights reserved.

1. Introduction

The main purpose of this work is to solve and find the number of solutions to the class equation $x^{d}=\beta$ in an alternating group, where β ranges over the conjugacy class $A(\beta)$ in A_{n} and d is a positive integer. In this paper we solve the class equation $x^{d}=\beta$ in A_{n}, where $\beta \in H \cap C^{\alpha}$ and $n \notin \theta=\{1,2,5,6,10,14\}$ and we find the number of solutions when $H=\left\{C^{\alpha}\right.$ of $S_{n} \mid n>1$, with all parts α_{k} and α different and odd $\}$. C^{α} is conjugacy class of S_{n}. If $\lambda \in C^{\alpha}$ and $\lambda \notin H \cap C^{\alpha}$, then C^{α} does not split into the two

[^0]1815-3852 © 2011 University of Bahrain. Production and hosting by Elsevier B.V. All rights reserved.

Peer review under responsibility of University of Bahrain. doi:10.1016/j.jaubas.2011.06.006
classes $C^{\alpha \pm}$ of A_{n}. The Frobenius equation $x^{d}=c$ in finite groups was introduced by Frobenius (1903), and studied by many others, such as Ishihara et al. (2001), Takegahara (2002), Chigira (1996), who dealt with some types of finite groups, including finite cyclic groups, finite p-groups, and Wreath products of finite groups. Choose any $\beta \in S_{n}$ and write it as $\gamma_{1} \gamma_{2} \ldots \gamma_{c(\beta)}$. With γ_{i} disjoint cycles of length α_{i} and $c(\beta)$ are the number of disjoint cycle factors including the 1 -cycle of β. Since disjoint cycles commute, we can assume that $\alpha_{1} \geqslant \alpha_{2} \geqslant$ $\cdots \geqslant \alpha_{c(\beta)}$ (Rotman, 1995). Therefore $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{c(\beta)}\right)$ is a partition of n and it is call cycle type of β. Let $C^{\alpha} \subset S_{n}$ be the set of all elements with cycle type α, then we can determine the conjugate class of $\beta \in S_{n}$ by using cycle type of β, since each pair of λ and β in S_{n} are conjugate if they have the same cycle type (Zeindler, 2010). Therefore, the number of conjugacy classes of S_{n} is the number of partitions of n. However, this is not necessarily true in an alternating group. Let $\beta=(124)$ and $\lambda=(1$ 42) be two permutations in S_{4} that belong to the same conjugacy class $C^{\alpha}=[1,3]$ in S_{4} (i.e. $\left.C^{\alpha}(\beta)=C^{\alpha}(\lambda)\right)$. Since $\alpha(\beta)=\left(\alpha_{1}(\beta)\right.$, $\left.\alpha_{2}(\beta)\right)=(1,3)=\left(\alpha_{1}(\lambda), \alpha_{2}(\lambda)\right)=\alpha(\lambda)$, they have the same cycle type, but λ and β are not conjugate in A_{4}. Let $\beta=(123)(456)(789)$ and $\lambda=(537)(169)(248)$ in S_{9} where
they belong to the same conjugacy class $C^{\alpha}=\left[3^{3}\right]$ in S_{4} since $\alpha(\beta)=(3,3,3)=\alpha(\lambda)$. But here λ and β are conjugate in A_{9}. The first and second examples demonstrate that it is not necessary for two permutations to have the same cycle structure in order to be conjugate in A_{n}. In this work we discuss the conjugacy classes in an alternating group and we denote conjugacy class of β in A_{n} by $A(\beta)$.

Definition 1.1. A partition α is a sequence of nonnegative integers $\left(\alpha_{1}, \alpha_{2}, \ldots\right)$ with $\alpha_{1} \geqslant \alpha_{2} \geqslant \cdots$ and $\sum_{i=1}^{\infty} \alpha_{i}<\infty$. The length $l(\alpha)$ and the size $|\alpha|$ of α are defined as $l(\alpha)=\operatorname{Max}\{i \in$ $\left.N ; \alpha_{i} \neq 0\right\}$ and $|\alpha|=\sum_{i=1}^{\infty} \alpha_{i}$. We set $\alpha \vdash n=\{\alpha$ partition; $|\alpha|=n\}$ for $n \in N$. An element of $\alpha \vdash n$ is called a partition of n (Zeindler, 2010).

Remark 1.2. We only write the non zero components of a partition. Choose any $\beta \in S_{n}$ and write it as $\gamma_{1} \gamma_{2} \ldots \gamma_{c(\beta)}$. With γ_{i} disjoint cycles of length α_{i} and $c(\beta)$ are the number of disjoint cycle factors including the 1 -cycle of β. Since disjoint cycles commute, we can assume that $\alpha_{1} \geqslant \alpha_{2} \geqslant \ldots \geqslant \alpha_{c(\beta)}$. Therefore $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{c(\beta)}\right)$ is a partition of n and each α_{i} is called part of α (see Zeindler, 2010).

Definition 1.3. We call the partition $\alpha=\alpha(\beta)=\left(\alpha_{1}(\beta), \alpha_{2}(\beta)\right.$, $\left.\ldots, \alpha_{c(\beta)}(\beta)\right)$ the cycle type of β (Zeindler, 2010).

Definition 1.4. Let α be a partition of n. We define $C^{\alpha} \subset S_{n}$ to be the set of all elements with cycle type α (Zeindler, 2010).

Definition 1.5. Let $\beta \in S_{n}$ be given. We define $c_{m}=c_{m}^{(n)}=$ $c_{m}^{(n)}(\beta)$ to be the number of cycles of length m of β (Zeindler, 2010).

Lemma 1.6. $C^{\alpha \pm}$ of A_{n} are ambivalent if and only if the number of parts α_{k} of α with the property $\alpha_{k} \equiv 3(\bmod 4)$ is even (James et al., 1984).

Remark 1.7

(1) The relationship between partitions and c_{m} is as follows: if $\beta \in C^{\alpha}$ is given then $c_{m}^{(n)}(\beta)=\left|\left\{i: \alpha_{i}=m\right\}\right|$ (see Zeindler (2010)).
(2) The cardinality of each C^{α} can be found as follows: $\left|C^{\alpha}\right|=\frac{n!}{z_{\alpha}} \quad$ with $\quad z_{\alpha}=\prod_{r=1}^{n} r^{c_{r}}\left(c_{r}\right)!\quad$ and $\quad c_{r}=c_{r}^{(n)}(\beta)=$ $\left|\left\{i: \alpha_{i} \stackrel{z_{\alpha}}{=} r\right\}\right|$ (see Bump (2004)).
(3) If x is a solution of $x^{d}=\beta, d$ is a positive integer, and y is a conjugate to x, then y is a solution of $x^{d}=\lambda$, where λ is conjugate to β in an alternating group (or any finite group). We call $x^{d}=\beta$ a class equation in A_{n}, where β and x belong to conjugate classes in an alternating group (see Taban (2007)).

Definition 1.8. Let $\beta \in C^{\alpha}$, where β is a permutation in an alternating group. We define the $A(\beta)$ conjugacy class of β in A_{n} by:

$$
\begin{aligned}
A(\beta) & =\left\{\gamma \in A_{n} \mid \gamma=t \beta t^{-1} ; \text { for some } t \in A_{n}\right\} \\
& =\left\{\begin{array}{l}
\left.C^{\alpha}, \quad \text { if } \beta \notin H\right) \\
C^{\alpha+} \text { or } C^{\alpha-}, \quad(\text { if } \beta \in H)
\end{array}\right.
\end{aligned}
$$

where $H=\left\{C^{\alpha}\right.$ of $S_{n} \mid n>1$, with all parts α_{k} of α different and odd $\}$.

Remark 1.9

(1) $\beta \in C^{\alpha} \cap H^{C} \cap A_{n} \Rightarrow A(\beta)=C^{\alpha}$, where H^{C} is a complement set of H.
(2) $\beta \in C^{\alpha} \cap H \Rightarrow \beta \in A_{n}$ and C^{α} splits into the two classes $C^{\alpha \pm}$ of A_{n}.
(3) $\beta \in H \Rightarrow A(\beta)=\left\{\begin{array}{l}C^{\alpha+} \text { if } \beta \in C^{\alpha+} \\ C^{\alpha-} \text { if } \beta \in C^{\alpha-}\end{array}\right.$
(4) If $n \in \theta=\{1,2,5,6,10,14\}$, then for each $\beta \in A_{n}$ we have β conjugate to its inverse in $A_{n}\left(\beta \widetilde{\widetilde{A}_{n}} \beta^{-1}\right)$.

Definition 1.10. Let $F_{n}=\left\{C^{\alpha}\right.$ of $S_{n} \mid$ the number of parts α_{k} of α with the property $\alpha_{k} \equiv 3(\bmod 4)$ is odd\}. Then for each $\beta \in H \cap C^{\alpha} \cap F_{n}$ in S_{n}, we define $C^{\alpha \pm}$ of A_{n} by:
$C^{\alpha+}=\left\{\lambda \in A_{n} \mid \lambda=\gamma \beta \gamma^{-1} ;\right.$ for some $\left.\gamma \in A_{n}\right\}=A(\beta)$
$C^{\alpha-}=\left\{\lambda \in A_{n} \mid \lambda=\gamma \beta^{-1} \gamma^{-1} ;\right.$ for some $\left.\gamma \in A_{n}\right\}=A\left(\beta^{-1}\right)$

Remark 1.11

(1) Suppose $n \notin \theta \& \beta \in H \cap C^{\alpha}$ in A_{n}, then we have:
(i) If $(n+1) \in \theta$, then $C^{\alpha} \neq[4]$ (since $H \cap[4]=\phi$).
(ii) If $(n+1) \in \theta$, and $C^{\alpha} \neq[n]$, then β does not conjugate to its inverse in A_{n}.
(iii) If $(n+1) \in \theta$ and $C^{\alpha}=[n]$, then $n=(9$ or 13$)$, and $\left(\beta \approx \beta^{-1}\right)$. So we define $C^{\alpha \pm}$ by:
$\left.C^{\alpha+}=\sim_{n} n\right]^{+}=A(\beta)$ and $C^{\alpha-}=\{[n]-A(\beta)\}$ or
$\left\{A\left(\beta^{\#}\right)\right.$; for some $\beta^{\#} \in[n]$ do not conjugate to $\left.\beta\right\}$.
(2) Suppose $n \in \theta$ and $\beta \in H \cap C^{\alpha}$ in A_{n}, where $C^{\alpha}=\left[k_{1}, k_{2}, \ldots, k_{L}\right]$ and $k_{i} \neq 1,(1 \leqslant i \leqslant L)$ then
we have:
(i) $\beta \in H \cap\left[1, k_{1}, k_{2}, \ldots, k_{L}\right]$ in A_{n+1}.
(ii) $\left(\beta \underset{A_{n+1}}{\approx} \beta^{-1}\right)$.
*Finally, based on (1) and (2), we consider for all (14>n£ $)$ and $\beta \in H \cap C^{\alpha}$ in A_{n}, but $\beta \notin H \cap C^{\alpha} \cap F_{n}$ in $A_{n} \Rightarrow C^{\alpha}=[9]$ or [13] or $[1,3,7]$. So we define $[1,3,7]^{\mp}$ by $[1,3,7]^{+}=A(\beta)$ and $[1,3,7]^{-}=A\left(\beta^{\#}\right)$, where $\beta^{\#} \in[1,3,7]$ does not conjugate to β.

Theorem 1.12. Let $A(\beta)$ be the conjugacy class of β in A_{n}, $\beta \in[K, L] \cap H$ and $14>n \notin \theta$, where [K,L] is a class of S_{n}. If p is a positive integer such that $\operatorname{gcd}(p, K)=1$ and $g c d$ $(p, L)=1$, then the solutions of $x^{p} \in A(\beta)$ in A_{n} are:
(1) $[K, L]^{-}$if $\beta^{p}=\left(\beta^{-1}\right.$ or $\left.\gamma\right)$, where γ is conjugate to β^{-1}.
(2) $[K, L]^{+}$if $\beta^{p}=(\beta$ or $\gamma)$, where γ is conjugate to β.

Proof. Since $\beta \in A_{n} \cap[K, L] \cap H,[K, L]$ splits into two classes $[K, L]^{ \pm}$of A_{n}. However, $14>n \notin \theta \Rightarrow[K, L] \in F_{n} \Rightarrow A(\beta)=$ $[K, L]^{+}$and $A\left(\beta^{-1}\right)=[K, L]^{-1}$. Also, since $\operatorname{gcd}(p, K)=1$, p does not divide K, and since $\operatorname{gcd}(p, L)=1, p$ does not divide L. Then by Taban (2007, lemma 3.9) we have $[K, L]$ as the solution set of $x^{p} \in[K, L]$ in S_{n}.
(1) Assume $\beta^{p}=\left(\beta^{-1}\right.$ or $\gamma=b \beta^{-1} b^{-1}$; for some $\left.b \in A_{n}\right)$, and let $\lambda \in[K, L]$. Then either $\lambda \in[K, L]^{+}$, or $\lambda \in[K, L]^{-}$.

$$
\begin{aligned}
& \text { If } \begin{array}{c}
\lambda \in[K, L]^{+}, \\
\left(\begin{array}{c}
\beta^{-1} t^{-1} \\
\text { or } \\
\\
t b \beta^{-1}(t b)^{-1}
\end{array}\right],
\end{array}, \lambda_{n}^{p} \in[K, L]^{-} \Rightarrow \lambda^{p} \notin[K, L]^{+1}, \quad \lambda^{p}=t \beta^{p} t^{-1}= \\
& \text { If } \begin{array}{c}
\lambda \in[K, L]^{-}, \quad \exists t \in A_{n} \ni \lambda=t \beta^{-1} t^{-1}, \quad \lambda^{p}=t \beta^{-p} t^{-1}= \\
\left(\begin{array}{c}
t \beta t^{-1} \\
\text { or } \\
t b \beta(t b)^{-1}
\end{array}\right], \lambda^{p} \in[K, L]^{+}=A(\beta) .
\end{array}
\end{aligned}
$$

Then the solution set of $x^{p} \in A(\beta)$ in is $[K, L]^{-}$.
(2) Assume $\beta^{p}=\left(\beta\right.$ or $\gamma=b \beta b^{-1}$; for some $\left.b \in A_{n}\right)$, and let $\lambda \in[K, L]$. Then either $\lambda \in[K, L]^{+}$or $\lambda \in[K, L]^{-}$.

$$
\begin{aligned}
& \text { If } \quad \begin{array}{c}
\lambda \in[K, L]^{+}, \quad \exists t \in A_{n} \ni \lambda=t \beta t^{-1}, \quad \lambda^{p}=t \beta^{p} t^{-1} \\
=\left(\begin{array}{c}
t \beta t^{-1} \\
\text { or } \\
t b \beta(t b)^{-1}
\end{array}\right], \quad \lambda^{p} \in[K, L]^{+}=A(\beta) \Rightarrow \lambda^{p} \notin[K, L] .
\end{array} .
\end{aligned}
$$

If $\lambda \in[K, L]^{-}, \quad \exists t \in A_{n} \ni \lambda=t \beta^{-1} t^{-1}, \quad \lambda^{p}=t \beta^{-p} t^{-1}=$ $\left(\begin{array}{c}t \beta^{-1} t^{-1} \\ \text { or } \\ t b \beta^{-1}(t b)^{-1}\end{array}\right], \lambda^{p} \in[K, L]^{-} \Rightarrow \lambda^{p} \notin A(\beta)$.

Then the solution set of $x^{p} \in A(\beta)$ in A_{n} is $[K, L]^{+}$.
Lemma 1.13. Let $A(\beta)$ be the conjugacy class of β in A_{n}, $14>n \notin \theta \&(n+1) \notin \theta$, and $\beta \in[n] \cap H$, where [$n]$ is a class of S_{n}. If p and q are two different prime numbers, $p \mid n$ and $q \mid n$, then there is no solution of $x^{p q} \in A(\beta)$ in A_{n}.

Proof. Since $\beta \in A_{n} \cap[n] \cap H,[n]$ splits into two classes $[n]^{ \pm}$of A_{n}. However, $14>n \notin \theta \&(n+1) \notin \theta \Rightarrow[n] \in F_{n} \Rightarrow A(\beta)=$ $[n]^{+}$, then by Taban (2007, lemma 3.9) there is no solution of $x^{p q} \in[n]$ in S_{n}. So there is no solution of $x^{p q} \in A(\beta)$ in A_{n}.

Lemma 1.14. Let $A(\beta)$ be the conjugacy class of β in A_{n}, $14>n \notin \theta \&(n+1) \notin \theta$, and $\beta \in[n] \cap H$, where [$n]$ is a class of S_{n}. If p and q are two different prime numbers, $p \mid n$ and q does not divide n, then there is no solution of $x^{p q} \in A(\beta)$ in A_{n}.

Proof. Since $\beta \in A_{n} \cap[n] \cap H,[n]$ splits into two classes $[n]^{ \pm}$of A_{n}. However, $14>n \notin \theta \quad \& \quad(n+1) \notin \theta \Rightarrow[n] \in F_{n} \Rightarrow$ $A(\beta)=[n]^{+}$, then by Taban (2007, lemma 3.4) there is no solution of $x^{p q} \in[n]$ in S_{n}. So there is no solution of $x^{p q} \in A(\beta)$ in A_{n}.

Theorem 1.15. Let $A(\beta)$ be the conjugacy class of β in A_{n}, $14>n \notin \theta \&(n+1) \notin \theta$, and $\beta \in[n] \cap H$, where $[n]$ is a class of S_{n}. If p and q are different prime numbers such that $\operatorname{gcd}(p, n)=1$ and $\operatorname{gcd}(q, n)=1$, then the solutions of $x^{p q} \in A(\beta)$ in A_{n} are:
(1) $[n]^{-}$if $\beta^{p q}=\left(\beta^{-1}\right.$ or $\left.\gamma\right)$, where γ is conjugate to β^{-1}.
(2) $[n]^{+}$if $\beta^{p q}=(\beta$ or $\gamma)$, where γ is conjugate to β.

Proof. Since $\beta \in A_{n} \cap[n] \cap H,[n]$ splits into two classes $[n]^{ \pm}$of A_{n}. However, $14>n \notin \theta \&(n+1) \notin \theta \Rightarrow[n] \in F_{n} \Rightarrow A(\beta)=[n]^{+}$
and $A\left(\beta^{-1}\right)=[n]^{-}$. Also, since, $g c d(p, n)=1, p$ does not divide n, and $\operatorname{gcd}(q, n)=1, q$ does not divide n. Then by Taban (2007, lemma 3.4) we have $[n]$ as the solution set of $x^{p q} \in[n]$ in S_{n}.
(1) Assume $\beta^{p q}=\left(\beta^{-1}\right.$ or $\gamma=b \beta^{-1} b^{-1}$; for some $\left.b \in A_{n}\right)$, and let $\lambda \in[n]$. Then either $\lambda \in[n]^{+}$or $\lambda \in[n]^{-}$.

$$
\text { If } \lambda \in[n]^{+}, \exists t \in A_{n} \ni \lambda=t \beta t^{-1}, \lambda^{p q}=t \beta^{p q} t^{-1}=\left(\begin{array}{c}
t \beta^{-1} t^{-1} \\
\text { or } \\
t b \beta^{-1}(t b)^{-1}
\end{array}\right],
$$

$\lambda^{p q} \in[n]^{-} \Rightarrow \lambda^{p q} \notin[n]^{+}=A(\beta)$.
If $\lambda \in[n]^{-}, \quad \exists t \in A_{n} \ni \lambda=t \beta^{-1} t^{-1}, \quad \lambda^{p q}=t \beta^{-p q} t^{-1}=$
$\left(\begin{array}{c}t \beta t^{-1} \\ \text { or } \\ t b \beta(t b)^{-1}\end{array}\right], \lambda^{p q} \in[n]^{+}=A(\beta)$. Then the solution set of $x^{p q} \in A(\beta)$ in A_{n} is $[n]^{-}$.
(2) Assume $\beta^{p q}=\left(\beta\right.$ or $\left.\gamma=b \beta b^{-1}\right)$; for some $\left.b \in A_{n}\right)$, and let $\lambda \in[n]$. Then either $\lambda \in[n]^{+}$or $\lambda \in[n]^{-}$.

$$
\begin{aligned}
& \text { If } \lambda \in[n]^{+}, \exists t \in A_{n} \ni \lambda=t \beta t^{-1}, \lambda^{p q}=t \beta^{p q} t^{-1}=\left(\begin{array}{c}
t \beta t^{-1} \\
\text { or } \\
t b \beta(t b)^{-1}
\end{array}\right], \\
& \lambda^{p q} \in[n]^{+}=A(\beta) \Rightarrow \lambda^{p q} \notin[n]^{-} . \\
& \text {If } \begin{array}{c}
\lambda \in[n]^{-}, \exists t \in A_{n} \ni \lambda=t \beta^{-1} t^{-1}, \lambda^{p q}=t \beta^{-p q} t^{-1}= \\
\left(\begin{array}{c}
t \beta^{-1} t^{-1} \\
\text { or } \\
t b \beta^{-1}(t b)^{-1}
\end{array}\right], \lambda^{p q} \in[n]^{-} \Rightarrow \lambda^{p q} \notin A(\beta) \text {. Then the solu- } \\
\text { tion set of } x^{p q} \in A(\beta) \text { in } A_{n} \text { is }[n]^{+} .
\end{array} .
\end{aligned}
$$

Lemma 1.16. Let $A(\beta)$ be the conjugacy class of β in A_{n}, $14>n \notin \theta \&(n+1) \notin \theta$, and $\beta \in[n] \cap H$, where [$n]$ is a class of S_{n}. If p is prime number such that $p \mid n$, then there is no solution of $x^{p} \in A(\beta)$ in A_{n}.

Proof. Since $\beta \in A_{n} \cap[K, L] \cap H,[K, L]$ splits into two classes $[K, L]^{ \pm} \quad$ of $\quad A_{n}$. However, $\quad 14>n \notin \theta \Rightarrow[K, L] \in F_{n} \Rightarrow$ $A(\beta)=[K, L]^{+}$, then by Taban (2007, lemma 3.8) we have there is no solution of $x^{p} \in[K, L]$ in S_{n}. So there is no solution of $x^{p} \in A(\beta)$ in A_{n}.

Theorem 1.17. Let $A(\beta)$ be the conjugacy class of β in $A_{n}, 14>n \notin \theta$, and $\beta \in[K, L] \cap H$ where $[K, L]$ is a class of S_{n}. If $p \mid K$ and $p \mid L$, then there is no solution of $x^{p} \in A(\beta)$ in A_{n}.

Proof. Since $\beta \in A_{n} \cap[K, L] \cap H,[K, L]$ splits into two classes $[K, L]^{ \pm}$of A_{n}. However, $14>n \notin \theta \Rightarrow[K, L] \in F_{n} \Rightarrow A(\beta)=$ $[K, L]^{+}$, then by Taban (2007, lemma 3.8) we have there is no solution of $x^{p} \in[K, L]$ in S_{n}. So there is no solution of $x^{p} \in A(\beta)$ in A_{n}.

Theorem 1.18. Let $A(\beta)$ be the conjugacy class of β in A_{n}, $\beta \in[n] \cap H, 14>n \notin \theta \&(n+1) \notin \theta$, where [n] is a class of S_{n}. If p is a prime number such that $\operatorname{gcd}(n, p)=1$, then the solutions of $x^{p} \in A(\beta)$ in A_{n} are:
(1) $[n]^{-}$if $\beta^{P}=\left(\beta^{-1}\right.$ or $\left.\gamma\right)$, where γ is conjugate to β^{-1}.
(2) $[n]^{+}$if $\beta^{P}=(\beta$ or $\gamma)$, where γ is conjugate to β.

Proof. Since $\beta \in A_{n} \cap[n] \cap H,[n]$ splits into two classes $[n]^{ \pm}$of A_{n}. However, $14>n \notin \theta \&(n+1) \notin \theta \Rightarrow[n] \in F_{n} \Rightarrow A(\beta)=$ $[n]^{+}$and $A\left(\beta^{-1}\right)=[n]^{-}$. Also, since $\operatorname{gcd}(n, p)=1, p$ does not divide n. Then by Taban (2007, lemma 3.2) we have $[n]=[n]^{+} \cup[n]^{-}$as a solution of $x^{p} \in[n]$ in S_{n}. But, $[n]=A(\beta) \cup[n]^{-1}$ then the solution set of $x^{p} \in A(\beta)$ in A_{n} is either $[n]^{-}$or $[n]^{+}$.
(1) Assume $\beta^{p}=\left(\beta^{-1}\right.$ or $\gamma=b \beta^{-1} b^{-1}$; for some $\left.b \in A_{n}\right)$, and let $\lambda \in[n]$. Then either $\lambda \in[n]^{+}$or $\lambda \in[n]^{-}$.

$$
\begin{aligned}
& \text { If } \lambda \in[n]^{+}, \quad \exists t \in A_{n} \ni \lambda=t \beta t^{-1}, \\
& \lambda^{p}=t \beta^{p} t^{-1}=\left(\begin{array}{c}
t \beta^{-1} t^{-1} \\
\text { or } \\
t b \beta^{-1}(t b)^{-1}
\end{array}\right], \quad \lambda^{p} \in[n]^{-} \Rightarrow \quad \lambda^{p} \notin[n]^{+}=A(\beta),
\end{aligned}
$$

$$
\text { If } \lambda \in[n]^{-}, \quad \exists t \in A_{n} \ni \lambda=t \beta^{-1} t^{-1}
$$

$$
\lambda^{p}=t \beta^{-p} t^{-1}=\left(\begin{array}{c}
t \beta t^{-1} \\
\text { or } \\
t b \beta(t b)^{-1}
\end{array}\right], \quad \lambda^{p} \in[n]^{+}=A(\beta)
$$

Then the solution set of $x^{p} \in A(\beta)$ in A_{n} is $[n]^{-}$.
(2) Assume $\beta^{p}=\left(\beta\right.$ or $\gamma=b \beta b^{-1}$; for some $\left.b \in A_{n}\right)$, and let $\lambda \in[n]$. Then either $\lambda \in[n]^{+}$or $\lambda \in[n]^{-}$.

$$
\begin{aligned}
& \text { If } \lambda \in[n]^{+}, \quad \exists t \in A_{n} \ni \lambda=t \beta t^{-1}, \\
& \left.\lambda^{p}=t \beta^{p} t^{-1}=\left(\begin{array}{c}
t \beta t^{-1} \\
\text { or } \\
t b \beta(t b)^{-1}
\end{array}\right], \quad \lambda^{p} \in[n]^{+}=A(\beta) \Rightarrow \lambda^{p} \notin n\right]^{-}, \\
& \text {If } \lambda \in[n]^{-}, \quad \exists t \in A_{n} \ni \lambda=t \beta^{-1} t^{-1}, \\
& \lambda^{p}=t \beta^{-p} t^{-1}=\left(\begin{array}{c}
t \beta^{-1} t^{-1} \\
\text { or } \\
t b \beta^{-1}(t b)^{-1}
\end{array}\right], \lambda^{p} \in[n]^{-} \Rightarrow \lambda^{p} \notin A(\beta) .
\end{aligned}
$$

Then the solution set of $x^{p} \in A(\beta)$ in A_{n} is $[n]^{+}$.
Example 1.19. Find the solutions of $x^{5} \in A\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$ in A_{3}.

Solution:

Since $(14>3 \notin \theta),\left(\begin{array}{ll}1 & 3\end{array}\right) \in[3] \cap H, \operatorname{gcd}(3,5)=1$, and $(13$ $2)^{5}=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)^{-1}$, then the solution of $x^{5} \in A\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$ in A_{3} is $[3]^{-}=\left\{\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\}$.

Lemma 1.20. Let $A(\beta)$ be the conjugacy class of β in A_{n}, and $\beta \in[n] \cap H$, where $14>n \notin \theta \&(n+1) \notin \theta$, and [$n]$ is a class of S_{n}. If $p \mid n$, then there is no solution of $x^{p m} \in A(\beta)$ in A_{n}.

Proof. Since $\beta \in A_{n} \cap[n] \cap H,[n]$ splits into two classes $[n]^{ \pm}$of A_{n}. However, $14>n \notin \theta \&(n+1) \notin \theta \Rightarrow[n] \in F_{n} \Rightarrow A(\beta)=$ $[n]^{+}$, then by Taban (2007, lemma 3.12) we have there is no solution of $x^{p^{m}} \in[n]$ in S_{n}. So there is no solution of $x^{p^{p^{m}}} \in A_{(\beta)}$ in A_{n}.

Lemma 1.21. Let $A(\beta)$ be the conjugacy class of β in A_{n}, and $\beta \in[n] \cap H$, where $14>n \notin \theta \&(n+1) \notin \theta$, and [n] is a class of S_{n}. If p and q are different prime numbers, $p \mid n$ and $q \mid n$ then there is no solution of $x^{p^{n} q^{d}} \in A(\beta)$ in A_{n}.

Proof. Since $\beta \in A_{n} \cap[n] \cap H,[n]$ splits into two classes $[n]^{ \pm}$of A_{n}. However, $14>n \notin \theta \&(n+1) \notin \theta \Rightarrow[n] \in F_{n} \Rightarrow A(\beta)=$ $[n]^{+}$, then by Taban (2007, lemma 3.14) we have there is no solution of $x^{p^{m} q^{d}} \in[n]$ in S_{n}. So there is no solution of $x^{p^{p^{\prime \prime}} q^{d}} \in A_{\beta}$ in A_{n}.

Lemma 1.22. Let $A(\beta)$ be the conjugacy class of β in A_{n}, If p and q are two different prime numbers such that $p \mid n, q$ does not divide n, and $\beta \in[n] \cap H$ where $14>n \notin \theta \quad$ \& $(n+1) \notin \theta$, and [n] is a class of S_{n}, then there is no solution of $x^{p^{p^{m}} q^{d}} \in A(\beta)$ in A_{n}.

Proof. Since $\beta \in A_{n} \cap[n] \cap H$, $[n]$ splits into two classes $[n]^{ \pm}$of A_{n}. However, $14>n \notin \theta \&(n+1) \notin \theta \Rightarrow[n] \in F_{n} \Rightarrow A(\beta)=$ $[n]^{+}$, then by Taban (2007, lemma 3.15) we have there is no solution of $x^{p^{m} q^{d}} \in[n]$ in S_{n}. So there is no solution of $x^{p^{m} q^{d}} \in A(\beta)$ in A_{n}.

Lemma 1.23. Let $A(\beta)$ be the conjugacy class of β in A_{n}, $14>n \notin \theta \&(n+1) \notin \theta$, where [n] is a class of S_{n}. If p and q are different prime numbers such that $\operatorname{gcd}(p, n)=1$ and $g c d$ $(q, n)=1$, then the solutions of $x^{p^{n} q^{d}} \in A(\beta)$ in A_{n} are:
(1) $[n]^{-}$if $\beta^{P^{m} q^{d}}=\left(\beta^{-1}\right.$ or $\left.\gamma\right)$, where γ is conjugate to β^{-1}.
(2) $[n]^{+}$if $\beta^{p m} q^{d}=(\beta$ or $\gamma)$, where γ is conjugate to β.

Proof. $\beta \in A_{n} \cap[n] \cap H,[n]$ splits into two classes $[n]^{ \pm}$of A_{n}. However, $14>n \notin \theta \&(n+1) \notin \theta \Rightarrow[n] \in F_{n} \Rightarrow A(\beta)=[n]^{+}$, and since $\operatorname{gcd}(p, n)=1, p$ does not divide n and $\operatorname{gcd}(q, n)=$ $1 \Rightarrow q$ does not divide n. Then by Taban (2007, lemma 3.2) we have $[n]=[n]^{+} \cup[n]^{-}$as a solution set of $x^{p^{m{ }^{m}} q^{d} \in[n] \text { in }}$ S_{n}. But, $[n]=A(\beta) \cup[n]^{-}$then the solution set of $x^{p^{m} q^{d}} \in A(\beta)$ in A_{n} is either $[n]^{-}$or $[n]^{+}$.
(1) Assume $\beta^{p^{m} q^{d}}=\left(\beta^{-1}\right.$ or $\gamma=b \beta^{-1} b^{-1}$; for some $\left.b \in A_{n}\right)$, and let $\lambda \in[n]$. Then either $\lambda \in[n]^{+}$or $\lambda \in[n]^{-}$.

$$
\begin{aligned}
& \text { If } \lambda \in[n]^{+}, \quad \exists t \in A_{n} \ni \lambda=t \beta t^{-1}, \\
& \lambda^{p^{m} q^{d}}=t \beta^{\left(p^{m} q^{d}\right)} t^{-1}=\left(\begin{array}{c}
t \beta^{-1} t^{-1} \\
\text { or } \\
t b \beta^{-1}(t b)^{-1}
\end{array}\right], \\
& \lambda^{p^{m} q^{d}} \in[n]^{-} \Rightarrow \lambda^{p^{m} q^{d}} \notin[n]^{+}=A(\beta), \\
& \text { If } \lambda \in[n]^{-}, \quad \exists t \in A_{n} \ni \lambda=t \beta^{-1} t^{-1}, \\
& \lambda^{p^{m} q^{d}}=t \beta^{-\left(p^{m} q^{d}\right)} t^{-1}=\left(\begin{array}{c}
t \beta t^{-1} \\
\text { or } \\
t b \beta(t b)^{-1}
\end{array}\right], \quad \lambda^{p^{m} q^{d}} \in[n]^{+}=A(\beta) .
\end{aligned}
$$

Then the solution set of $x^{p^{m} q^{d}} \in A(\beta)$ in A_{n} is $[n]^{-}$.
(2) Assume $\beta^{p^{n} q^{d}}=\left(\beta\right.$ or $\gamma=b \beta b^{-1}$; for some $\left.b \in A_{n}\right)$, and let $\lambda \in[n]$. Then either $\lambda \in[n]^{+}$or $\lambda \in[n]^{-}$.

$$
\begin{aligned}
& \text { If } \lambda \in[n]^{+}, \quad \exists t \in A_{n} \ni \lambda=t \beta t^{-1}, \\
& \lambda^{p^{m} q^{d}}=t p^{p^{m} q^{d}} t^{-1}=\left(\begin{array}{c}
t \beta t^{-1} \\
\text { or } \\
t b \beta(t b)^{-1}
\end{array}\right], \\
& \lambda^{p^{m} q^{d}} \in[n]^{+}=A(\beta) \Rightarrow \lambda^{p^{m} q^{d}} \notin[n]^{-},
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } \lambda \in[n]^{-}, \quad \exists t \in A_{n} \ni \lambda=t \beta^{-1} t^{-1}, \\
& \lambda^{p^{m} q^{d}}=t \beta^{-\left(p^{m} q^{d}\right)} t^{-1}=\left(\begin{array}{c}
t \beta^{-1} t^{-1} \\
\text { or } \\
t b \beta^{-1}(t b)^{-1}
\end{array}\right], \\
& \lambda^{p^{m} q^{d}} \in[n]^{-} \Rightarrow \lambda^{p^{m} q^{d}} \notin A(\beta) .
\end{aligned}
$$

Then the solution set of $x^{p^{p} q^{d}} \in A(\beta)$ in A_{n} is $[n]^{+}$.
Lemma 1.24. Let $A(\beta)$ be the conjugacy class of β in A_{n}, $14>n \notin \theta \&(n+1) \notin \theta$, and $\beta \in[n] \cap H$, where [$n]$ is a class of S_{n}. If $p_{1}, p_{2}, \ldots, p_{m}$ are different prime numbers such that, p_{i}, $\|_{n_{d_{1}}, d_{2}} \forall i=1, \ldots, m$, then there is no solution for $x^{p_{1}^{d_{1}} p_{2}^{d_{2}} \ldots p_{m}^{d_{m}}} \in A(\beta)$ in A_{n}.

Proof. Since $\beta \in A_{n} \cap[n] \cap H,[n]$ splits into two classes $[n]^{ \pm}$of A_{n}. However, $14>n \notin \theta \&(n+1) \notin \theta \Rightarrow[n] \in F_{n} \Rightarrow A(\beta)=$ $[n]^{+}$, then by Taban (2007, lemma 3.17) we have there is no solution of $x^{p_{1}^{d_{1}} p_{2}^{d_{2}} \ldots p_{n}^{d_{n}}} \epsilon[n]$ in S_{n}. So there is no solution of $x^{p_{1}^{p_{1}} p_{2}^{d_{2}} \ldots p_{m}^{d_{n}}} \in A(\beta)$ in A_{n}.

Lemma 1.25. Let $A(\beta)$ be the conjugacy class of β in A_{n}, $\beta \in[n] \cap H$, and $14>n \notin \theta \&(n+1) \notin \theta$, where is $[n]$ is a class of S_{n}. If $p_{1}, p_{2}, \ldots, p_{m}$ are different prime numbers and $p_{i} n$

Proof. Since $\beta \in A_{n} \cap H,[n]$ splits into two classes of $[n]^{ \pm}$of A_{n}. However, $14>n \notin \theta \&(n+1) \notin \theta \Rightarrow[n] \in F_{n} \Rightarrow A(\beta)=$ $[n]^{+}$, then by Taban (2007, lemma 3.19) we have there is no solution of $x^{p_{1}^{d_{1}} p_{2}^{d_{2} \cdots} P_{m}^{d_{m}}} \in[n]$ in S_{n}. So there is no solution of $x^{p_{1}^{d_{1}} p_{2}^{d_{2} \cdots} p_{m}^{d_{m}}} \in A(\beta)$ in A_{n}.

Lemma 1.26. Let $A(\beta)$ be the conjugacy class of β in A_{n}, $14>n \notin \theta$, and $\beta \in\left[k_{l}, k_{2}, \ldots, k_{l}\right] \cap H$, where $\left[k_{1}, k_{2}, \ldots, k_{l}\right] \neq$ $[1,3,7]$ is a class of S_{n}. If p is a prime number such that $\operatorname{gcd}\left(p, k_{i}\right)=1$, for each i, then the solutions of $x^{p} \in A(\beta)$ are:
(1) $\left[k_{1}, k_{2}, \ldots, k_{l}\right]^{-}$if $\beta^{p}=\beta^{-1}$ or γ, where γ is conjugate to β^{-1}.
(2) $\left[k_{l}, k_{2}, \ldots, k_{l}\right]^{+}$if $\beta^{p}=\beta$ or γ, where γ is conjugate to β.

Proof. Since $\beta \in A_{n} \cap H \cap\left[k_{1}, k_{2}, \ldots, k_{1}\right],\left[k_{1}, k_{2}, \ldots, k_{]}\right]$splits into two classes $\left[k_{1}, k_{2}, \ldots, k_{l}\right]^{ \pm}$of A_{n}. However, $14 \geqslant n \notin \theta$ and $\left[k_{1}, k_{2}, \ldots, k_{l}\right] \neq[1,3,7] \Rightarrow\left[k_{1}, k_{2}, \ldots, k_{l}\right] \in F \Rightarrow A(\beta)=\left[k_{1}\right.$, $\left.k_{2}, \ldots, k_{1}\right]^{+}$, and $A\left(\beta^{-1}\right)=\left[k_{1}, k_{2}, \ldots, k_{1}\right]^{-}$. Also, since $\operatorname{gcd}\left(p, k_{i}\right)=1$ for each $\lambda\left[k_{1}, k_{2}, \ldots, k_{l}\right] \Rightarrow \lambda^{p}\left[k_{1}, k_{2}, \ldots, k_{l}\right]$. Then by Taban (2007, lemma 2.8) we have for each $\lambda \in\left[k_{1}, k_{2}, \ldots, k_{l}\right] \Rightarrow \lambda^{p} \in\left[k_{1}, k_{2}, \ldots, k_{1}\right]$.
(1) Assume $\beta^{p}=\left(\beta^{-1}\right.$ or $\gamma=b \beta^{-1} b^{-1}$; for some $\left.b \in A_{n}\right)$, and let $\lambda \in\left[k_{1}, k_{2}, \ldots, k_{]}\right]$. Then either $\lambda \in\left[k_{1}, k_{2}, \ldots, k_{l}\right]^{+}$ or $\lambda \in\left[k_{1}, k_{2}, \ldots, k_{l}\right]^{-}$.

$$
\begin{aligned}
& \text { If } \lambda \in\left[k_{1}, k_{2}, \ldots, k_{l}\right]^{+}, \quad \exists t \epsilon A_{n} \ni \lambda=t \beta t^{-1}, \\
& \lambda^{p}=t \beta^{p} t^{-1}=\left(\begin{array}{c}
t \beta^{-1} t^{-1} \\
\text { or } \\
t b \beta^{-1}(t b)^{-1}
\end{array}\right], \\
& \lambda^{p} \in\left[k_{1}, k_{2}, \ldots, k_{1}\right]^{-} \Rightarrow \lambda^{p} \notin\left[k_{1}, k_{2}, \ldots, k_{1}\right]^{+}=A(\beta),
\end{aligned}
$$

If $\lambda \epsilon\left[k_{1}, k_{2}, \ldots, k_{l}\right]^{-}, \quad \exists t \epsilon A_{n} \ni \lambda=t \beta^{-1} t^{-1}$,
$\lambda^{p}=t \beta^{-p} t^{-1}=\left(\begin{array}{c}t \beta t^{-1} \\ \text { or } \\ t b \beta(t b)^{-1}\end{array}\right]$,
$\lambda^{p} \epsilon\left[k_{1}, k_{2}, \ldots, k_{1}\right]^{+}=A(\beta)$.
Then the solution set of $x^{p} \in A(\beta)$ in A_{n} is $\left[k_{1}, k_{2}, \ldots, k_{1}\right]^{-}$.
(2) Assume $\beta^{p}=\left(\beta\right.$ or $\gamma=b \beta b^{-1}$ for some $\left.b \in A_{n}\right)$, and let $\lambda \in\left[k_{1}, k_{2}, \ldots, k_{1}\right]$. Then either $\lambda \in\left[k_{1}, k_{2}, \ldots, k_{1}\right]^{+}$or $\lambda \in\left[k_{1}, k_{2}, \ldots, k_{1}\right]^{-}$.

$$
\begin{aligned}
& \text { If } \lambda \epsilon\left[k_{1}, k_{2}, \ldots, k_{l}\right]^{+}, \quad \exists t \epsilon A_{n} \ni \lambda=t \beta t^{-1}, \\
& \lambda^{p}=t \beta^{p} t^{-1}=\left(\begin{array}{c}
t \beta t^{-1} \\
\text { or } \\
t b \beta(t b)^{-1}
\end{array}\right], \\
& \lambda^{p} \epsilon\left[k_{1}, k_{2}, \ldots, k_{1}\right]^{+}=A(\beta) \Rightarrow \lambda^{p} \notin\left[k_{1}, k_{2}, \ldots, k_{1}\right]^{-}, \\
& \text {If } \lambda \epsilon\left[k_{1}, k_{2}, \ldots, k_{1}\right]^{-}, \quad \exists t \epsilon A_{n} \ni \lambda=t \beta^{-1} t^{-1}, \\
& \lambda^{p}=t \beta^{-p} t^{-1}=\left(\begin{array}{c}
t \beta^{-1} t^{-1} \\
\text { or } \\
t b \beta^{-1}(t b)^{-1}
\end{array}\right], \\
& \lambda^{p} \in\left[k_{1}, k_{2}, \ldots, k_{1}\right]^{-} \Rightarrow \lambda^{p} \notin A(\beta) .
\end{aligned}
$$

Then the solution set of $x^{p} \in A(\beta)$ in A_{n} is $\left[k_{1}, k_{2}, \ldots, k_{1}\right]^{+}$.

Remark 1.27. If there is no solution for $x^{p} \in\left[k_{i}\right]$, for some $1 \leqslant i \leqslant l$ then there exists no solution for $x^{p} \in\left[k_{1}, k_{2}, \ldots, k_{]}\right]$.

Lemma 1.28. Let $A(\beta)$ be the conjugacy class of β in A_{n}, $14>n \notin \theta$, and $\beta \in\left[k_{1}, k_{2}, \ldots, k_{l}\right] \cap H$, where $\left[k_{1}, k_{2}, \ldots, k_{l}\right] \neq$ $[1,3,7]$ is a class of S_{n}. If p is a prime number such that $p \mid k_{i}$, for some i, then no solution of $x^{p} \in A(\beta)$ in A_{n}.

Proof. Since $\beta \in A_{n} \cap H \cap\left[k_{1}, k_{2}, \ldots, k_{]}\right],\left[k_{1}, k_{2}, \ldots, k_{]}\right]$splits into two classes $\left[k_{1}, k_{2}, \ldots, k_{1}\right]^{ \pm}$of A_{n}. Since $A(\beta)=$ $\left[k_{1}, k_{2}, \ldots, k_{]}\right]^{+}$and $p k_{i}$, then by Taban (2007, lemma 3.1) we have no solution for $x^{p} \in\left[k_{i}\right]$ in S_{n}. Then no solution for $x^{p} \in\left[k_{1}, k_{2}, \ldots, k_{l}\right]$ in. So no solution for $x^{p} \in A(\beta)$ in A_{n}.

Lemma 1.29. Let $A(\beta)$ be the conjugacy class of β in A_{n}, $14>n \notin \theta$, and $\beta \in\left[k_{1}, k_{2}, \ldots, k_{l}\right] \cap H$, where $\left[k_{1}, k_{2}, \ldots, k_{l}\right] \neq$ $[1,3,7]$ is a class of S_{n}, P is a prime number, is a positive integer. If for some $1 \leqslant i \leqslant l$ such that $p \mid k_{i}$, then we have no solution of $\left.x^{p^{m}} \epsilon A \beta\right)$ in A_{n}.

Proof. Since $\beta \in A_{n} \cap H \cap\left[k_{1}, k_{2}, \ldots, k_{]}\right],\left[k_{1}, k_{2}, \ldots, k_{]}\right]$splits into two classes $\left[k_{1}, k_{2}, \ldots, k_{1}\right]^{ \pm}$of A_{n}. Since $A(\beta)=$ $\left[k_{1}, k_{2}, \ldots, k_{]}\right]^{+}$and $p \mid k_{i}$, then by Taban (2007, lemma 3.12) we have no solution for $x^{p^{p n}} \in\left[k_{i}\right]$ in S_{n}. So no solution for $x^{p^{p m}} \in\left[k_{1}, k_{2}, \ldots, k_{l}\right]$ in S_{n}. Then no solution for $x^{p^{m}} \epsilon A(\beta)$ in A_{n}.

Definition 1.30. Let $\beta \in[9]$ of S_{9}, where $\beta=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right.$, $a_{6}, a_{7}, a_{8}, a_{9}$). We define class $[9]^{+}$of A_{9} by $A(\beta)=[9]^{+}=$ $\left\{\mu \in[9] \mid \mu=t \beta t^{-1}\right.$; for some $\left.t \in A_{9}\right\}$.

Remark 1.31

(i) $[9]^{-1}=[9]-A(\beta)=\left\{\mu \in[9] \| \neq t \beta t^{-1}\right.$; for all $\left.t \in A_{9}\right\}$.
(ii) Let $\beta \in[9]$ of S_{9} where $\beta=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}\right)$, $\bar{\beta}=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}\right) \bar{\beta}=\left(a_{1}, a_{5}, a_{9}, a_{4}, a_{8}, a_{3}\right.$, $\left.a_{7}, a_{2}, a_{6}\right)$ and d is a positive integer we have:

(1)	$\beta^{d}=\beta \Longleftrightarrow d \equiv 1(\bmod 9)$
(2)	$\beta^{d}=\bar{\beta} \Longleftrightarrow d \equiv 2(\bmod 9)$
(3)	$\beta^{d}=\overline{\bar{p}}$
(4)	$\beta^{d}=\bar{\beta}^{-1} \Longleftrightarrow d \equiv 4(\bmod 9)$
(5)	$\beta^{d}=\bar{\beta}^{-1} \Longleftrightarrow d \equiv 5(\bmod 9)$
(6)	$\beta^{d}=\beta^{-1} \Longleftrightarrow d \equiv 7(\bmod 9)$

(iii) (1) $\quad A(\beta)=A\left(\beta^{-1}\right), A(\bar{\beta})=A\left(\beta^{\overline{-1}}\right), A(\overline{\bar{\beta}})=A\left(\overline{\overline{\beta^{-1}}}\right)$ [Since for each $\lambda \in[9]^{\mp}$ in A_{9}, where $\lambda=\left(b_{1}, b_{2}\right.$, $\left.b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8}, b_{9}\right), \quad \exists \mu=\left(b_{1}, b_{8}\right) \quad\left(b_{2}, b_{7}\right)$ $\left(b_{3}, b_{6}\right)\left(b_{4}, b_{5}\right) \in A_{9}$ such that $\left.\mu \lambda \mu^{-1}=\lambda^{-1}\right]$.
(2) $A(\beta)=A(\bar{\beta})$ since $\exists t=\left(a_{3}, a_{6}\right)\left(a_{1}, a_{5}, a_{7}, a_{8}, a_{4}, a_{2}\right)$ $\in A_{9}$ such that $t \beta t^{-1}=\bar{\beta}$.
(3) $A\left(\beta^{-1}\right)=A(\overline{\bar{\beta}})$ since $\exists t=\left(a_{3}, a_{9}\right)\left(a_{1}, a_{8}, a_{7}, a_{2}, a_{4}\right.$, $\left.a_{5}\right) \in A_{9}$ such that $t \overline{\bar{\beta}} t^{-1}=\beta^{-1}$.

Theorem 1.32. Let $\beta \in[9]$ of S_{9}. If d is a positive integer such that $\operatorname{gcd}(d, 9)=1$, then the solutions of $x^{d} \in A(\beta)$ in A_{9} are $A(\beta)$.

Proof. Since $\beta \in[9] \cap H \cap A_{9}$, [9] splits into two classes $A(\beta) \&$ [9] ${ }^{-}$of A_{9} and $\operatorname{gcd}(d, 9)=1$, then d does not divide 9 . Then by Taban (2007, lemma 3.2), the solution set of $x^{d} \in[9]$ in S_{9} is [9]. For each $\lambda \in$ [9] we have $\alpha \in A(\beta)$ or $\alpha \notin A(\beta)$. If, $\alpha \in A(\beta)$ we have $\lambda \approx \underset{A_{9}}{\approx} \beta\left(\lambda\right.$ conjugate to β in $\left.A_{9}\right) \Rightarrow \lambda^{d} \widetilde{\widetilde{A}}_{9} \beta^{d}$. How-ever, $\beta^{d} \approx \beta \Rightarrow \lambda^{d} \widetilde{A}_{9} \beta \Rightarrow \lambda^{d} \in A(\beta)$. If $\alpha \notin A(\beta)$, assume $\lambda^{d} \in A(\beta) \Rightarrow \lambda^{d} \approx \beta$. But $\beta \approx \widetilde{A}_{9} \beta^{d} \Rightarrow \lambda^{d} \approx \widetilde{A}_{9} \beta^{d} \Rightarrow \lambda \approx \beta \Rightarrow$, (which is a contradiction). Then the solution of in A_{9} is $A(\beta)$.
Definition 1.33. Let $\beta=\gamma \lambda \in[1,3,7]$ of S_{11}, where $\gamma=\left(b_{1}, b_{2}, b_{3}\right), \lambda=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right)$. We define classes $[1,3,7]^{ \pm}$of A_{11} by:

$$
\begin{array}{r}
A(\beta)=[1,3,7]^{+}=\left\{\mu \in[1,3,7] \mid \mu=t \beta t^{-1} ; \quad \text { for } \quad\right. \text { some } \\
\left.t \in A_{11}\right\} \text { and } A(\#)=[1,3,7]^{-}=\left\{\mu \in[1,3,7] \mid \mu=t \beta t^{-1} ;\right. \text { for }
\end{array}
$$ some $\left.t \in A_{11}\right\}$ where $\stackrel{\#}{\beta}=\gamma \bar{\lambda}$ and $\bar{\lambda}=\left(a_{1}, a_{4}, a_{7}, a_{3}, a_{6}, a_{2}, a_{5}\right)$.

Remark 1.34

(i) Let $\beta=\gamma \lambda \in[1,3,7]$ of S_{11} where $\gamma=\left(b_{1}, b_{2}, b_{3}\right)$, $\overline{\bar{\lambda}}=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right), \bar{\lambda}=\left(a_{1}, a_{4}, a_{7}, a_{3}, a_{6}, a_{2}, a_{5}\right)$, $\bar{\lambda}=\left(a_{1}, a_{3}, a_{5}, a_{7}, a_{2}, a_{4}, a_{6}\right)$, and d is a positive integer number. We have:

(1)	$\beta^{d}=\beta \Longleftrightarrow d \equiv 1(\bmod 21)$
(2)	$\beta^{d}=\gamma^{-1} \Longleftrightarrow \Longleftrightarrow \overline{\bar{\lambda}} \Longleftrightarrow d \equiv 2(\bmod 21)$
(3)	$\beta^{d}=\gamma \bar{\lambda}^{-1} \Longleftrightarrow d \equiv 4(\bmod 21)$
(4)	$\beta^{d}=\gamma^{-1} \overline{\bar{\lambda}}^{-1} \Longleftrightarrow d \equiv 5(\bmod 21)$
(5)	$\beta^{d}=\gamma^{-1} \lambda \Longleftrightarrow d \equiv 8(\bmod 21)$
(6)	$\beta^{d}=\gamma \bar{\lambda} \Longleftrightarrow d \equiv 10(\bmod 21)$
(7)	$\beta^{d}=\gamma^{-1} \bar{\lambda}^{-1} \Longleftrightarrow d \equiv 11(\bmod 21)$
(8)	$\beta^{d}=\gamma \lambda^{-1} \Longleftrightarrow d \equiv 13(\bmod 21)$
(9)	$\beta^{d}=\gamma \overline{\bar{\lambda}} \Longleftrightarrow d \equiv 16(\bmod 21)$
(10)	$\beta^{d}=\gamma^{-1} \bar{\lambda} \Longleftrightarrow d \equiv 17(\bmod 21)$
(11)	$\beta^{d}=\gamma \bar{\lambda}^{-1} \Longleftrightarrow d \equiv 19(\bmod 21)$
(12)	$\beta^{d}=\beta^{-1} \Longleftrightarrow d \equiv 20(\bmod 21)$

(ii) (1) $A(\beta)=A\left(\beta^{-1}\right), A\left(\gamma^{-1} \overline{\bar{\lambda}}\right)=A\left(\gamma \bar{\lambda}^{-1}\right), A\left(\gamma^{-1}\right)=$ $A\left(\gamma^{-1} \bar{\lambda}\right), A\left(\gamma^{-1} \bar{\lambda}^{-1}\right)=A(\gamma \bar{\lambda}), A\left(\gamma^{-1} \lambda\right)=A\left(\gamma \lambda^{-1}\right), A(\gamma \bar{\lambda})=$ $A\left(\gamma^{-1} \bar{\lambda}^{-1}\right)$ [Since for each $\beta=\gamma \lambda \in[1,3,7]$ in A_{11} where $\gamma=\left(b_{1}, b_{2}, b_{3}\right), \lambda=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right), \exists \mu=\left(b_{1}, b_{3}\right)$ $\left(a_{2}, a_{7}\right)\left(a_{3}, a_{6}\right)\left(a_{4}, a_{5}\right) \in A_{11}$ such that $\left.\mu \lambda \mu^{-1}=\lambda^{-1}\right]$.
(2) $A(\beta)=A\left(\gamma^{-1} \bar{\lambda}\right)$ [since $\exists t=\left(b_{2}, b_{3}\right)\left(a_{1}, a_{4}, a_{5}, a_{3}, a_{7}\right.$, $\left.a_{6}\right) \in A_{11}$ such that $\left.t \beta t^{-1}=\gamma^{-1} \bar{\lambda}\right]$.
(3) $A(\beta)=A(\gamma \overline{\bar{\lambda}})\left[\right.$ since $\exists t=\left(a_{1}, a_{3}, a_{4}\right)\left(a_{7}, a_{6}, a_{2}\right) \in A_{11}$ such that $\left.t \beta t^{-1}=\gamma \bar{\gamma} \overline{\bar{\lambda}}\right]$.
(4) $A\left(\bar{\gamma}^{-1}\right)=A(\gamma \bar{\lambda})$ [since $\exists t=\left(a_{1}, a_{4}, a_{2}\right)\left(a_{3}, a_{5}, a_{6}\right) \in$ A_{11} such that $\left.t \gamma \bar{\lambda}^{-1} t^{-1}=\gamma \bar{\lambda}\right]$.
(5) $A\left(\gamma \overline{\bar{\lambda}}^{-1}\right)=A\left(\gamma \lambda^{-1}\right)$ [since $\exists t=\left(a_{1}, a_{6}, a_{5}\right)\left(a_{2}, a_{3}, a_{7}\right) \in$ A_{11} such that $\left.t \gamma \lambda^{-1} t^{-1}=\gamma \bar{\lambda}^{-1}\right]$.

Theorem 1.35. Let $L=\{m \in N \mid m \equiv q(\bmod 21)$; for some $q=1,4,5,16,17,20\}$. If d is a positive integer such that $\operatorname{gcd}(d, 3)=1 \& \operatorname{gcd}(d, 7)=1$ and $\beta \in[1,3,7]$ of S_{11}, then the solutions of $x^{d} \in A(\beta)$ in A_{11} are:
(1) $A(\beta)$ if $d \in L$.
(2) $A(\stackrel{\#}{\beta})$ if $d \notin L$.

Proof. Since $\underset{\#}{ } \in[1,3,7] \cap H \cap A_{11},[1,3,7]$ splits into two classes $A(\beta) \& A(\beta)$ of $A_{11}, \operatorname{gcd}(d, 3)=1$ and $\operatorname{gcd}(d, 7)=1$, then d does not divide 3 and d does not divide 7. Then by Taban (2007, lemma 2.8) we have $[1,3,7]=A(\beta) \cup A(\beta)$ as a solution set $_{\#}$ of $x^{d} \in[1,3,7]=A(\beta) \cup A\left({ }_{\beta}^{(\beta)}\right)$ in S_{11}. However, $A(\beta) \cap$ $A(\beta)=\phi$, so for each $\pi \in[1,3,7] \Rightarrow(\pi \in A(\beta) \& \pi \notin A(\beta))$ or $(\pi \in A(\beta) \& \pi \notin A(\beta))$.
(1) Assume $d \in L$. If $\pi \in A(\beta)$, then we have $\left(\pi \underset{A_{11}}{ } \beta\right) \pi$ conjugate to β in A_{11}. However, $\pi^{d} \approx \pi$ (since $d \in L \underset{\#}{\Rightarrow} \pi^{d} \underset{A_{11}}{\approx} \beta \Rightarrow \pi^{d} \in \underset{\#}{A(\beta) \&} \pi^{d} \notin A(\beta) . \quad$ If $\pi \in A\binom{\#}{\#}$, we have $\left(\pi \underset{\#}{A_{11}}{ }^{\#}\right.$). But $\pi^{d} \widetilde{A_{11}} \pi$ (since $d \in L) \Rightarrow \pi^{d} \widetilde{\widetilde{A}_{11}} \stackrel{\#}{\beta} \Rightarrow \pi^{d} \in A(\beta) \& \pi^{d} \notin A(\beta)$. Then the solution set of $x^{d} \in A(\beta)$ in A_{11} is $A(\beta)$.
(2) Assume $d \notin L$. If $\pi \in A(\beta)$, then we have $\left(\pi \underset{A_{11}}{\approx} \beta\right) \Rightarrow \underset{\#}{\#} \underset{A_{11}}{\underset{A_{11}}{\#}} \underset{\#}{\#}$. However, $\pi^{d} \underset{A_{11}}{\approx}$ (since $\left.d \notin L\right) \Rightarrow$

 $\beta \Rightarrow \pi^{d} \in A(\beta) \& \pi^{d} \notin \underset{\#}{\#}$. Then the solution set of $x^{d} \in A(\beta)$ in A_{11} is $A(\stackrel{\#}{\beta})$.

Definition 1.36. Let $\beta \in[13]$ of S_{13}, where $\beta=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right.$, $\left.a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}, a_{12}, a_{13}\right)$. We define classes $[13]^{ \pm}$of A_{13} by: $A(\beta)=[13]^{+}=\left\{\mu \in[13] \mu=t \beta t^{-1} ;\right.$ for some $\left.t \in A_{13}\right\}$ and $A\left(\beta^{\#}\right)=[13]^{-}=\left\{\mu \in[13] \mid \mu=t \beta^{\#} t^{-1} ;\right.$ for some $\left.t \in A_{13}\right\}$.

$$
\text { where } \beta^{\#}=\left(a_{1}, a_{3}, a_{5}, a_{7}, a_{9}, a_{11}, a_{13}, a_{2}, a_{4}, a_{6}, a_{8}, a_{10}, a_{12}\right)
$$

Remark 1.37. (i) Let $\beta \in[13]$ of S_{13} where, $\beta_{1}=\left(a_{1}, a_{2}, a_{3}, a_{4}\right.$, $\left.a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}, a_{12}, a_{13}\right)$
$\beta_{1}=\left(a_{1}, a_{3}, a_{5}, a_{7}, a_{9}, a_{11}, a_{13}, a_{2}, a_{4}, a_{6}, a_{8}, a_{10}, a_{12}\right)$
$\beta_{2}=\left(a_{1}, a_{4}, a_{7}, a_{10}, a_{13}, a_{3}, a_{6}, a_{9}, a_{12}, a_{2}, a_{5}, a_{8}, a_{11}\right)$
$\beta_{3}=\left(a_{1}, a_{5}, a_{9}, a_{13}, a_{4}, a_{8}, a_{12}, a_{3}, a_{7}, a_{11}, a_{2}, a_{6}, a_{10}\right)$
$\beta_{4}=\left(a_{1}, a_{6}, a_{11}, a_{3}, a_{8}, a_{13}, a_{5}, a_{10}, a_{2}, a_{7}, a_{12}, a_{4}, a_{9}\right)$
$\beta_{5}=\left(a_{1}, a_{7}, a_{13}, a_{6}, a_{12}, a_{5}, a_{11}, a_{4}, a_{10}, a_{3}, a_{9}, a_{2}, a_{8}\right)$
and d is a positive integer number we have:

(1)	$\beta^{d}=\beta \Longleftrightarrow d \equiv 1(\bmod 13)$
(2)	$\beta^{d}=\beta_{1} \Longleftrightarrow d \equiv 2(\bmod 13)$
(3)	$\beta^{d}=\beta_{2} \Longleftrightarrow d \equiv 3(\bmod 13)$
(4)	$\beta^{d}=\beta_{3} \Longleftrightarrow d \equiv 4(\bmod 13)$
(5)	$\beta^{d}=\beta_{4} \Longleftrightarrow d \equiv 5(\bmod 13)$
(6)	$\beta^{d}=\beta_{5} \Longleftrightarrow d \equiv 6(\bmod 13)$
(7)	$\beta^{d}=\beta_{5}^{-1} \Longleftrightarrow d \equiv 7(\bmod 13)$
(8)	$\beta^{d}=\beta_{4}^{-1} \Longleftrightarrow d \equiv 8(\bmod 13)$
(9)	$\beta^{d}=\beta_{3}^{-1} \Longleftrightarrow d \equiv 9(\bmod 13)$
(10)	$\beta^{d}=\beta_{2}^{-1} \Longleftrightarrow d \equiv 10(\bmod 13)$
(11)	$\beta^{d}=\beta_{1}^{-1}$
(12)	$\beta^{d}=\beta^{-1} \Longleftrightarrow d \equiv 11(\bmod 13)$

(ii) (1) $A(\beta)=A\left(\beta^{-1}\right), \quad A\left(\beta_{1}\right)=A\left(\beta_{1}^{-1}\right), \quad A\left(\beta_{2}\right)=A\left(\beta_{2}^{-1}\right)$, $A\left(\beta_{3}\right)=A\left(\beta_{3}^{-1}\right), A\left(\beta_{4}\right)=A\left(\beta_{4}^{-1}\right)$, and $A\left(\beta_{5}\right)=A\left(\beta_{5}^{-1}\right)[$ Since for each $\lambda=\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8}, b_{9}, b_{10}, b_{11}, b_{12}, b_{13}\right) \in$ $[13]^{\mp}$ in $A_{13}, \exists \mu=\left(b_{1}, b_{12}\right)\left(b_{2}, b_{11}\right)\left(b_{3}, b_{10}\right)\left(b_{4}, b_{9}\right)\left(b_{5}, b_{8}\right)$ $\left(b_{6}, b_{7}\right) \in A_{9}$ such that $\left.\mu \lambda \mu^{-1}=\lambda^{-1}\right]$.
(2) $A(\beta)=A\left(\beta_{2}\right)\left[\right.$ Since $\exists t=\left(a_{2}, a_{4}, a_{10}\right)\left(a_{6}, a_{3}, a_{7}\right)\left(a_{11}, a_{5}\right.$, $\left.a_{13}\right)\left(a_{8}, a_{9}, a_{12}\right) \in A_{13}$ such that $\left.t \beta t^{-1}=\beta_{2}\right]$.
(3) $A(\beta)=A\left(\beta_{3}\right)\left[\right.$ Since $\exists t=\left(a_{6}, a_{8}, a_{3}, a_{9}, a_{7}, a_{12}\right)\left(a_{10}, a_{11}\right.$, $\left.a_{2}, a_{5}, a_{4}, a_{13}\right) \in A_{13}$ such that $\left.t \beta t^{-1}=\beta_{3}\right]$.
(4) $A\left(\beta_{1}\right)=A\left(\beta_{4}\right) \quad\left[\right.$ Since $\quad \exists t=\left(a_{7}, a_{3}, a_{6}\right) \quad\left(a_{5}, a_{11}, a_{13}\right)$ $\left(a_{9}, a_{8}, a_{12}\right)\left(a_{4}, a_{2}, a_{10}\right) \in A_{13}$ such that $\left.t \beta_{1} t^{-1}=\beta_{4}\right]$.
(5) $A\left(\beta_{1}\right)=A\left(\beta_{5}\right) \quad\left[\right.$ Since $\quad \exists t=\left(a_{2}, a_{4}, a_{10}\right) \quad\left(a_{6}, a_{3}, a_{7}\right)$ $\left(a_{11}, a_{5}, a_{13}\right)\left(a_{8}, a_{9}, a_{12}\right) \in A_{13}$ such that $\left.t \beta_{1} t^{-1}=\beta_{5}\right]$.

Theorem 1.38. Let $L=\{m \in N m \equiv q(\bmod 13)$; for some $q=$ 1.3.4.9.10.12\}. If d is a positive integer number such that $\operatorname{gcd}(d, 13=1)$ and $\beta \in[13]$ of S_{13}, then the solutions of $x^{d} \in A(\beta)$ in A_{13} are:
(1) if $A(\beta)$ if $d \in L$.
(2) if $A(\beta)$ if $d \notin L$.

Proof. Since $\beta \in[13] \cap H \cap A_{13}$, [13] splits into two classes $A(\beta) \& A(\beta)$ of A_{13} and since $\operatorname{gcd}(d, 13)=1, d$, does not divide 13. Then by Taban (2007, lemma 3.2) we have $[13]=A(\beta) \cup A(\stackrel{\#}{\beta})$ is a solution set of $x^{d} \in[13]=A(\beta) \cup$ $A\left({ }^{\#}\right)$ in S_{13}. However, $A(\beta) \cap A\left({ }_{\beta}^{(\beta)}=\phi\right.$, so for each $\pi \in[13] \Rightarrow(\pi \in A(\beta) \& \pi \notin A(\stackrel{\#}{\beta}))$ or $\left(\pi \notin A(\beta) \& \pi \in A\left({ }_{\beta}^{(\beta)}\right)\right.$.
(1) Assume $d \in L$. If $\pi \in A(\beta)$, then we have $\pi \approx \beta$ (π conjugate to β in A_{13}). However, $\pi^{d} \approx \underset{A_{13}}{\approx} \pi$ (since $\left.d \in L\right) \Rightarrow$ $\pi^{d} \approx \underset{A_{13}}{\beta} \Rightarrow \pi^{d} \in A(\beta) \& \pi^{d} \notin A(\beta)$. If $\pi \in A\binom{\#}{\beta_{13}}$, we have $\left(\pi \underset{A_{13}}{\stackrel{A_{13}}{\approx}} \underset{\#}{\#}\right.$. But $\pi^{d} \approx \pi \quad$ (since $\quad(d \in L) \Rightarrow \pi^{d} \underset{A_{13}}{\approx}{ }_{\beta}^{\#} \Rightarrow$ $\pi^{d} \in A(\beta) \& \pi^{d} \notin A(\beta)$. Then the solution ${ }_{A_{13}}^{A_{13}}$ set of $x^{d} \in A(\beta)$ in A_{13} is $A(\beta)$.

$A\left({ }_{\beta}^{\#}\right) \& \pi^{d} \notin A(\beta)$. If $\pi \in A(\stackrel{\#}{\beta})$, so $(\pi \approx \stackrel{\#}{\beta}) \Rightarrow \stackrel{\#}{\pi} \approx \beta$. But $\pi^{d} \approx \frac{\#}{A_{13}}($ since $d \notin L) \Rightarrow \pi^{d} \approx \beta \Rightarrow \pi^{A_{13}} \in A(\beta) \& \pi_{\#}^{d d^{d}} \notin A(\beta)$.

Lemma 1.39. Let $A(\beta)$ be the conjugacy class of β in, A_{n}, $n>14$, and $\beta \in\left[k_{1}, k_{2}, \ldots, k_{l}\right] \cap H$, where $\left[k_{1}, k_{2}, \ldots, k_{l}\right] \in F_{n}$ is a class of S_{n}. If p is a prime number such that $\operatorname{gcd}\left(p, k_{i}\right)=1$, for each i, then the solutions of $x^{p} \in A(\beta)$ are:
(1) $\left[k_{1}, k_{2}, \ldots, k_{l}\right]^{-}$if $\beta^{p}=\left(\beta^{-1}\right.$ or $\left.\gamma\right)$, where γ is conjugate to β^{-1}.
(2) $\left[k_{1}, k_{2}, \ldots, k_{l}\right]^{+}$if $\beta^{p}=(\beta$ or $\gamma)$, where γ is conjugate to β.

Proof. $\beta \in A_{n} \cap H \cap\left[k_{1}, k_{2}, \ldots, k_{l}\right],\left[k_{1}, k_{2}, \ldots, k_{l}\right]$, splits into two classes $\left[k_{1}, k_{2}, \ldots, k_{l}\right]^{ \pm}$of $A_{n}, \quad\left[k_{1}, k_{2}, \ldots, k_{l}\right] \in F \Rightarrow$ $A(\beta)=\left[k_{1}, k_{2}, \ldots, k_{]}\right]^{+}$, and $A\left(\beta^{-1}\right)=\left[k_{1}, k_{2}, \ldots, k_{1}\right]^{-1}$. So, since $\operatorname{gcd}\left(p, k_{i}\right)=1$ for each i. Then by Taban (2007, lemma 2.8) we have for each $\lambda \in\left[k_{1}, k_{2}, \ldots, k_{l}\right] \Rightarrow \lambda^{p} \in\left[k_{1}, k_{2}, \ldots, k_{]}\right]$.
(1) Assume $\beta^{p}=\left(\beta^{-1}\right.$ or $\lambda=b \beta^{-1} b^{-1}$; for some $\left.b \in A_{n}\right)$, and let. $\lambda \in\left[k_{1}, k_{2}, \ldots, k_{]}\right]$. Then either $\lambda \in\left[k_{1}, k_{2}, \ldots\right.$, $\left.k_{l}\right]^{+}$or $\lambda \in\left[k_{1}, k_{2}, \ldots, k_{l}\right]^{-}$.

$$
\text { If } \lambda \in\left[k_{1}, k_{2}, \ldots, k_{l}\right]^{+}, \quad \exists t \in A_{n} \ni \lambda=t \beta t^{-1}
$$

$\lambda^{p}=t \beta^{p} t^{-1}=\left(\begin{array}{c}t \beta^{-1} t^{-1} \\ \text { or } \\ t b \beta^{-1}(t b)^{-1}\end{array}\right]$,
$\lambda^{p} \in\left[k_{1}, k_{2}, \ldots, k_{l}\right]^{-} \Rightarrow \lambda^{p} \notin\left[k_{1}, k_{2}, \ldots, k_{l}\right]^{+}=A(\beta)$,
If $\lambda \in\left[k_{1}, k_{2}, \ldots, k_{l}\right]^{-}, \quad \exists t \in A_{n} \ni \lambda=t \beta^{-1} t^{-1}$,
$\lambda^{p}=t \beta^{-p} t^{-1}=\left(\begin{array}{c}t \beta t^{-1} \\ \text { or } \\ t b \beta(t b)^{-1}\end{array}\right]$,
$\lambda^{p} \in\left[k_{1}, k_{2}, \ldots, k_{l}\right]^{+}=A(\beta)$.
Then the solution set of $x^{p} \in A(\beta)$ in A_{n} is $\left[k_{1}, k_{2}, \ldots, k_{1}\right]^{-}$.
(2) Assume $\beta^{p}=\left(\beta\right.$ or $\lambda=b \beta b^{-1}$ for some $\left.b \in A_{n}\right)$, and let $\lambda \in\left[k_{1}, k_{2}, \ldots, k_{l}\right]$. Then either $\lambda \in\left[k_{1}, k_{2}, \ldots, k_{l}\right]^{+}$or $\lambda \in\left[k_{1}, k_{2}, \ldots, k_{l}\right]^{-}$.

$$
\begin{aligned}
& \text { If } \lambda \in\left[k_{1}, k_{2}, \ldots, k_{1}\right]^{+}, \quad \exists t \in A_{n} \ni \lambda=t \beta t^{-1}, \\
& \lambda^{p}=t \beta^{p} t^{-1}=\left(\begin{array}{c}
t \beta t^{-1} \\
\text { or } \\
t b \beta(t b)^{-1}
\end{array}\right], \\
& \lambda^{p} \in\left[k_{1}, k_{2}, \ldots, k_{l}\right]^{+}=A(\beta) \Rightarrow \lambda^{p} \notin\left[k_{1}, k_{2}, \ldots, k_{l}\right]^{-},
\end{aligned}
$$

$$
\text { If } \lambda \in\left[k_{1}, k_{2}, \ldots, k_{l}\right]^{-}, \quad \exists t \in A_{n} \ni \lambda=t \beta^{-1} t^{-1}
$$

$$
\lambda^{p}=t \beta^{-p} t^{-1}=\left(\begin{array}{c}
t \beta^{-1} t^{-1} \\
\text { or } \\
t b \beta^{-1}(t b)^{-1}
\end{array}\right],
$$

$$
\lambda^{p} \in\left[k_{1}, k_{2}, \ldots, k_{l}\right]^{-} \Rightarrow \lambda^{p} \notin A(\beta)
$$

Then the solution set of $x^{p} \in A(\beta)$ in A_{n} is $\left[k_{1}, k_{2}, \ldots, k_{l}\right]^{+}$.

Example 1.40. Let $\beta=\mu \lambda$, where $\mu=\left(\begin{array}{ll}1 & 2345\end{array}\right)$ and $\lambda=(67$ 8910111213141516). Find the solutions of $x^{13} \in A(\beta)$ in A_{16}.

Solution:

since $n=16>14, \beta \in[5,11] \cap H,[5,11] \in F_{n}, \operatorname{gcd}(13,5)=$ $1, \operatorname{gcd}(13,11)=1$ and, $\exists \pi \in A_{16} \ni \pi \beta^{13} \pi^{-1}=\beta$ where $\beta^{13}=(1$ $4253)(681012141679111315)$ and $\pi=(3542)(7129$ $1315161114108)$. Then the solution set of $x^{13} \in A(\beta)$ in A_{16} is $[5,11]^{+}$.
Lemma 1.41. Let $A(\beta)$ be the conjugacy class of β in A_{n}, $n>14$, and, $\beta \in\left[k_{1}, k_{2}, \ldots, k_{l}\right] \cap H$ where $\left[k_{1}, k_{2}, \ldots, k_{l}\right] \in F_{n}$ is a class of. If p is a prime number such that $p \mid k_{i}$, for some i, then no solution of $x^{p} \in A(\beta)$ in A_{n}.
Proof. Since $\beta \in A_{n} \cap H \cap\left[k_{1}, k_{2}, \ldots, k_{]}\right],\left[k_{1}, k_{2}, \ldots, k_{1}\right]$, splits into two classes $\left[k_{1}, k_{2}, \ldots, k_{l}\right]^{ \pm}$of A_{n} and $\left[k_{1}, k_{2}, \ldots, k_{]}\right] \in F \Rightarrow$ $A(\beta)=\left[k_{1}, k_{2}, \ldots, k_{]}\right]$. Also, since, then by Taban (2007, lemma 3.1) we have no solution for $x^{p} \in\left[k_{i}\right]$ in S_{n}. Then no solution for in S_{n}. So no solution for $x^{p} \in A(\beta)$ in A_{n}.

Lemma 1.42. Let $A(\beta)$ be the conjugacy class of β in A_{n}, $n>14$, and $\beta \in\left[k_{1}, k_{2}, \ldots, k_{l}\right] \cap H$, where $\left[k_{1}, k_{2}, \ldots, k_{l}\right] \in F_{n}$ is a class of S_{n}, p is a prime number, m is a positive integer. If for some $(1 \leqslant i \leqslant l)$ such that $p \mid k_{i}$, then no solution of $x^{p^{m}} \in A(\beta)$ in A_{n}.

Proof. Since $\beta \in A_{n} \cap H \cap\left[k_{1}, k_{2}, \ldots, k_{1}\right],\left[k_{1}, k_{2}, \ldots, k_{l}\right]$ splits into two classes $\left[k_{1}, k_{2}, \ldots, k_{l}\right]^{ \pm}$of A_{n} and $\left[k_{1}, k_{2}, \ldots, k_{l}\right] \in F \Rightarrow$ $A(\beta)=\left[k_{1}, k_{2}, \ldots, k_{]}\right]^{+}$. Also, since $p \mid k_{i}$, then by Taban (2007, lemma 3.12) we have no solution for $x^{p^{m}} \in\left[k_{i}\right]$ in S_{n}. Then no solution for $x^{p^{m}} \in\left[k_{1}, k_{2}, \ldots, k_{l}\right]$ in S_{n}, so no solution for $x^{p^{\prime \prime}} \in A(\beta)$ in A_{n}.

The number of solution

If β is an even permutation and $\beta \in C^{\alpha}(\beta) \cap H$, where $C^{\alpha}(\beta)$ is a class of β in S_{n}, we have $C^{\alpha}(\beta)$ splits into two classes $C^{\alpha}(\beta)^{ \pm}$of equal order $\Rightarrow A(\beta)=C^{\alpha}(\beta)^{+}$or $C^{\alpha}(\beta)^{-}$, where $A(\beta)$ is a class of β in A_{n}. If $C^{\alpha}(\beta)^{+}$or $C^{\alpha}(\beta)^{-}$is a solution in A_{n} of any class equation in A_{n}, then the number of solutions is the number of all the elements that belong to the class $C^{\alpha}(\beta)^{+}$or $C^{\alpha}(\beta)^{-}$. However, $\left|C^{\alpha}(\beta)^{+}\right|=\left|C^{\alpha}(\beta)^{-}\right|=\frac{\left|C^{\alpha}(\beta)\right|}{2}$. So the number of the solutions for the class equation $x^{d} \stackrel{2}{=} \beta$ in A_{n} is only $\frac{n!}{2 z_{\alpha}}$.

Example 1.43. Find the solutions of $x^{p} \in A(234)$ in A_{4} and the number of the solutions
(i) if $p=13$.
(ii) if $p=17$.

Solution:

$\left.\begin{array}{c}n=4 \Rightarrow \beta=(2\end{array} \quad 3 \quad 4\right) \in[1,3] . \quad$ However,
$[1,3] \subset H \Rightarrow \beta \in[1,3] \cap H$. Now we show that:
(i) If $p=13$, then we have $\operatorname{gcd}(13,3)=1, \operatorname{gcd}(13,1)=1$, and $\left(\begin{array}{lll}2 & 3 & 4\end{array}\right)^{13}=\left(\begin{array}{lll}2 & 3 & 4\end{array}\right)$. Then by (1.12) the solution of $x^{13} \in A(234)$ in A_{4} is $[1,3]^{+}$and the number of the solution is $\frac{[1,3,3]}{2}=\frac{4!}{2 \times 3}=4$ permutations, where $[1,3]^{-}=\{(13$ 2), (2 34$\left.),\left(\begin{array}{ll}1 & 3\end{array}\right),\left(\begin{array}{ll}1 & 2\end{array}\right)\right\}$.
(ii) If $p=17$, then we have $\operatorname{gcd}(17,3)=1, \operatorname{gcd}(17,1)=1$, and $\left(\begin{array}{lll}2 & 3 & 4\end{array}\right)^{17}=\left(\begin{array}{lll}4 & 3 & 2\end{array}\right)=\left(\begin{array}{lll}2 & 3 & 4\end{array}\right)^{-1}$. Then by (1.12) the solution of $x^{17} \in \in A(234)$ in A_{4} is $[1,3]^{-}$and the number of the solution is $\frac{\| 1,3] \|}{2}=\frac{4!}{2 \times 3}=4$ permutations, where $[1,3]^{-}=\left\{\left(\begin{array}{lll}1 & 2 & 3\end{array}\right),\left(\begin{array}{lll}2 & 4 & 3\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array}\right),\left(\begin{array}{lll}1 & 4 & 2\end{array}\right)\right\}$.

Example 1.44. Find the solutions of $x^{15} \in A(\beta)$ in A_{7} and the number of the solutions where $\beta=(2413576)$.

Solution:

$n=7 \Rightarrow \beta=\left(\begin{array}{lllllll}2 & 4 & 1 & 3 & 5 & 7 & 6\end{array}\right) \in[7]$. However, $[7] \subset H \Rightarrow \beta \in[7] \cap H$. Assume $p=3$, and $q=5$, we have $\operatorname{gcd}(3,7)=1 \operatorname{gcd}(5,7)=1$, and $\beta^{15}=\beta$. Then by (1.15) the solution set of $x^{15} \in A(\beta)$ in A_{7} is [7] ${ }^{+}=A(\beta)$ and the number of the solutions is $\frac{71}{2 \times 7}=360$ permutations.

Example 1.45. Find the solutions of $x^{14} \in A((413)(26758))$ in A_{8} and the number of the solutions.

Solution:

$n=8 \Rightarrow \beta=\left(\begin{array}{lll}4 & 1 & 3\end{array}\right)(267758) \in[3,5]$. However, $[3,5] \subset$ $H \Rightarrow \beta \in[3,5] \cap H$. Let $p=14$, then we have $\operatorname{gcd}(11,3)=1$, $\operatorname{gcd}(11,5)=1, \quad$ and $\beta^{14}=(143)(85762)=\beta^{-1}$. Then by (1.12) the solution of $x^{14} \in A((413)(26758))$ in A_{8} is $[3,5]^{-}$and the number of the solution is $\frac{8!}{2 \times 3 \times 5 \times}=1344$ permutations.

2. Conclusions

By the Cayley's theorem: Every finite group G is isomorphic to a subgroup of the symmetric group S_{n}, for some $n \geqslant 1$. Then we can discuss these propositions. Let $x^{d}=g$ be class equation in finite group G and assume that $f: G \cong A_{n}$, for some $n \notin \theta$ and $f(g) \in H \cap C^{\alpha}$. The first question we are concerned with is: what is the possible value of d provided that there is no solution for $x^{d}=g$ in G ? The second question we are concerned with is: what is the possible value of d provided that there is a solution for $x^{d}=g$ in G ? and then we can find the solution and the number of the solution for $x^{d}=g$ in G by using Cayley's theorem and our theorems in this paper. In another direction, let G be a finite group, and $\pi_{i}(G)=\{g \in G \mid i$ the least positive integer number satisfying $\left.g^{i}=1\right\}$. If $\left|\pi_{i}(G)\right|=k_{i}$, then we write $\pi_{i}(G)=\left\{g_{i 1}, g_{i 2}, \ldots\right.$, $\left.g_{i k_{i}}\right\}$, and $\prod_{-1}=\left\{\pi_{i}(G)\right\}_{i \geqslant 1}$. For each $g \in G$ and $g_{i j} \in \pi_{i}(G)$ we have $\left(g g_{i j} g^{-1}\right)^{i}=1$. By the Cayley's theorem we can suppose that $\left(f: G \cong S_{n}\right)$ or ($f: G \cong A_{n}$). Also the questions can be summarized as follows:
(1) Is $\Pi=\left\{\pi_{i}(G)\right\}_{i \geqslant 1}$ collection set of conjugacy classes of G ?
(2) Is there some $i \geqslant 1$, such that $f^{-1}\left(C^{\alpha}\right)=\pi_{i}(G)$, for each C^{α} of A_{n}, where ($f: G \cong A_{n}$)?
(3) Is there some $i \geqslant 1$, such that $f^{-1}\left(C^{\alpha}\right)=\pi_{i}(G)$, for each C^{α} of S_{n}, where $\left(f: G \cong S_{n}\right)$?
(4) If ($G \cong S_{n}$) and $p(n)$ is the number of partitions of n, is $|\Pi|=p(n)$?
(5) If ($G \cong A_{n}$) and A_{n} has m ambivalent conjugacy classes. It is true that is also necessarily G has m ambivalent conjugacy classes?

References

Bump, D., 2004. Lie Groups (volume 225 of Graduate Texts in Mathematics). Springer-Verlag, New York.
Chigira, N., 1996. The solutions of $x^{d}=1$ in finite groups. Journal of Algebra 180, 653-661.
Frobenius, G.,1903. Uber einen Fundamentalsatz der Gruppentheorie. Berl. Sitz, pp. 987-991.
Ishihara, H., Ochiai, H., Takegahara, Y., Yoshida, T., 2001. pDivisibility of the number of solutions of $x^{p}=1$ in a symmetric group. Annals of Combinatorics 5, 197-210.
James, G.D., Kerber, A., 1984. The Representation Theory of the Symmetric Group. Addison-Wesley Publishing, Cambridge University press.

Rotman, J., 1995. An Introduction to the Theory of Group, fourth ed. Springer Verlag, New York.
Taban, S.A., 2007. The Equations in Symmetric Groups. Ph.D. Thesis, University of Basra, Iraq.
Takegahara, Y., 2002. A generating function for the number of homomrphisms from a finitely generated abelian group to an alternating group. Journal of Algebra 248, 554-574.
Zeindler, D., 2010. Permutation matrices and the moments of their characteristic polynomial. Electronic Journal of Probability 15 (34), 1092-1118.

[^0]: * Corresponding author.

 E-mail address: shuker.alsalem@gmail.com (S. Mahmood).

