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Abstract In this paper we find the solutions to the class equation xd = b in the alternating group

An (i.e. find the solutions set X = {x 2 AnŒxd 2 A(b)}) and find the number of these solutions ŒXŒ
for each b 2 H \ Ca and n R h, where H= {Ca of SnŒn> 1, with all parts ak of a different and

odd}. Ca is conjugacy class of Sn and form class Ca depends on the cycle partition a of its elements.

If (14 > n R h [ {9,11,13}) and b 2 H \ Ca in An, then Fn contains C
a, where Fn = {Ca of SnŒ the

number of parts ak of a with the property ak ” 3 (mod 4) is odd}. In this work we introduce several

theorems to solve the class equation xd = b in the alternating group An where b 2 H \ Ca and n R h
and we find the number of the solutions for n to be: (i) 14 > n R h, (ii) 14 > n R h and (n+ 1) R h,
(iii) 14 > n R h and Ca „ [1,3,7], (iv) n= 9,11,13, (v) n> 14.

ª 2011 University of Bahrain. Production and hosting by Elsevier B.V. All rights reserved.

1. Introduction

Themain purpose of this work is to solve and find the number of
solutions to the class equation xd = b in an alternating group,
where b ranges over the conjugacy classA(b) inAn and d is a po-

sitive integer. In this paper we solve the class equation xd = b in
An, where b 2 H \ Ca and n R h = {1,2,5,6,10,14} and we find
the number of solutions when H= {Ca of SnŒn > 1, with all

parts ak and a different and odd}. Ca is conjugacy class of Sn.
If k 2 Ca and k R H \ Ca, then Ca does not split into the two

classes Ca± of An. The Frobenius equation xd = c in finite
groups was introduced by Frobenius (1903), and studied by

many others, such as Ishihara et al. (2001), Takegahara
(2002), Chigira (1996), who dealt with some types of finite
groups, including finite cyclic groups, finite p-groups, and

Wreath products of finite groups. Choose any b 2 Sn and write
it as c1c2. . .cc(b). With ci disjoint cycles of length ai and c(b) are
the number of disjoint cycle factors including the 1-cycle of b.
Since disjoint cycles commute, we can assume that a1 P a2 P
� � �P ac(b) (Rotman, 1995). Therefore a = (a1,a2, . . . , ac(b)) is
a partition of n and it is call cycle type of b. Let Ca � Sn be the
set of all elements with cycle type a, then we can determine the

conjugate class of b 2 Sn by using cycle type of b, since each pair
of k and b in Sn are conjugate if they have the same cycle type
(Zeindler, 2010). Therefore, the number of conjugacy classes

of Sn is the number of partitions of n. However, this is not nec-
essarily true in an alternating group. Let b = (1 2 4) and k = (1
4 2) be two permutations inS4 that belong to the same conjugacy

class Ca = [1,3] in S4 (i.e. C
a(b) = Ca(k)). Since a(b) = (a1(b),

a2(b)) = (1,3) = (a1(k),a2(k)) = a(k), they have the same cycle
type, but k and b are not conjugate in A4. Let
b = (123)(456)(789) and k = (537)(169)(248) in S9 where
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they belong to the same conjugacy class Ca = [33] in S4 since

a(b) = (3,3,3) = a(k). But here k and b are conjugate in A9.
The first and second examples demonstrate that it is not neces-
sary for two permutations to have the same cycle structure in or-
der to be conjugate in An. In this work we discuss the conjugacy

classes in an alternating group and we denote conjugacy class of
b in An by A(b).

Definition 1.1. A partition a is a sequence of nonnegative

integers (a1,a2, . . .) with a1 P a2 P � � � and
P1

i¼1ai <1. The

length l(a) and the size ŒaŒ of a are defined as l(a) =Max{i 2
N;ai „ 0} and j a j¼

P1
i¼1ai. We set aJn = {a partition;

ŒaŒ = n} for n 2 N. An element of aJn is called a partition of
n (Zeindler, 2010).

Remark 1.2. We only write the non zero components of a par-

tition. Choose any b 2 Sn and write it as c1c2. . .cc(b). With ci
disjoint cycles of length ai and c(b) are the number of disjoint
cycle factors including the 1-cycle of b. Since disjoint cycles
commute, we can assume that a1 P a2 P . . . P ac(b). There-
fore a = (a1,a2, . . . ,ac(b)) is a partition of n and each ai is called
part of a (see Zeindler, 2010).

Definition 1.3. We call the partition a = a(b) = (a1(b),a2(b),
. . . ,ac(b)(b)) the cycle type of b (Zeindler, 2010).

Definition 1.4. Let a be a partition of n. We define Ca � Sn to
be the set of all elements with cycle type a (Zeindler, 2010).

Definition 1.5. Let b 2 Sn be given. We define cm ¼ cðnÞm ¼
cðnÞm ðbÞ to be the number of cycles of length m of b (Zeindler,
2010).

Lemma 1.6. Ca± of An are ambivalent if and only if the number
of parts ak of a with the property ak ” 3 (mod 4) is even (James

et al., 1984).

Remark 1.7

(1) The relationship between partitions and cm is as follows:

if b 2 Ca is given then cðnÞm ðbÞ ¼j fi : ai ¼ mg j (see Zein-
dler (2010)).

(2) The cardinality of each Ca can be found as follows:

j Ca j¼ n!
za

with za ¼
Qn

r¼1r
cr ðcrÞ! and cr ¼ cðnÞr ðbÞ ¼

j fi : ai ¼ rg j (see Bump (2004)).
(3) If x is a solution of xd = b, d is a positive integer, and y

is a conjugate to x, then y is a solution of xd = k, where
k is conjugate to b in an alternating group (or any finite
group). We call xd = b a class equation in An, where b
and x belong to conjugate classes in an alternating group
(see Taban (2007)).

Definition 1.8. Let b 2 Ca, where b is a permutation in an

alternating group. We define the A(b) conjugacy class of b in
An by:

AðbÞ ¼ fc 2 An j c ¼ tbt�1; for some t 2 Ang

¼
Ca; ðif b R HÞ
Caþ or Ca�; ðif b 2 HÞ

�

where H= {Ca of SnŒn > 1, with all parts ak of a different

and odd}.

Remark 1.9

(1) b 2 Ca \ HC \ An) A(b) = Ca, where HC is a comple-

ment set of H.
(2) b 2 Ca \ H) b 2 An and Ca splits into the two classes

Ca± of An.

(3) b 2 H ) AðbÞ ¼ Caþ if b 2 Caþ

Ca� if b 2 Ca�

�

(4) If n 2 h = {1,2,5,6,10,14}, then for each b 2 An we
have b conjugate to its inverse in Anðb�

An
b�1Þ.

Definition 1.10. Let Fn = {Ca of SnŒ the number of parts ak of
a with the property ak ” 3 (mod 4) is odd}. Then for each
b 2 H \ Ca \ Fn in Sn, we define Ca± of An by:

Caþ ¼ fk 2 An j k ¼ cbc�1; for some c 2 Ang ¼ AðbÞ
Ca� ¼ fk 2 An j k ¼ cb�1c�1; for some c 2 Ang ¼ Aðb�1Þ

Remark 1.11

(1) Suppose n R h & b 2 H \ Ca in An, then we have:
(i) If (n + 1) 2 h, then Ca „ [4] (since H \ [4] = /).
(ii) If (n+ 1) 2 h, and Ca „ [n], then b does not conju-

gate to its inverse in An.
(iii) If (n + 1) 2 h and Ca = [n], then n = (9 or 13),

and ðb�
An

b�1Þ. So we define Ca± by:
Ca+ = [n]+ = A(b) and Ca�= {[n] � A(b)} or

{A(b#); for some b# 2 [n] do not conjugate to b}.
(2) Suppose n 2 h and b 2 H \ Ca in An, where

Ca = [k1,k2, . . . ,kL] and ki „ 1, (1 6 i 6 L) then

we have:

ðiÞ b 2 H \ ½1; k1; k2; . . . ; kL� in Anþ1:

ðiiÞ ðb �
Anþ1

b�1Þ:

*Finally, based on (1) and (2), we consider for all (14 > n R h)
and b 2 H \ Ca in An, but b R H \ Ca \ Fn in An) Ca = [9] or
[13] or [1,3,7]. So we define [1,3,7]« by [1,3,7]+ = A(b)
and [1,3,7]�= A(b#), where b# 2 [1,3,7] does not conjugate

to b.

Theorem 1.12. Let A(b) be the conjugacy class of b in An,

b 2 [K,L] \ H and 14> n R h, where [K,L] is a class of Sn.
If p is a positive integer such that gcd (p,K) = 1 and gcd
(p,L) = 1, then the solutions of xp 2 A(b) in An are:

(1) [K,L]� if bp = (b�1 or c), where c is conjugate to b�1.
(2) [K,L]+ if bp = (b or c), where c is conjugate to b.

Proof. Since b 2 An \ [K,L] \ H, [K,L] splits into two classes
[K,L]± of An. However, 14 > n R h) [K,L] 2 Fn) A(b) =
[K,L]+ and A(b�1) = [K,L]�1. Also, since gcd(p,K) = 1,

p does not divide K, and since gcd(p,L) = 1, p does not divide
L. Then by Taban (2007, lemma 3.9) we have [K,L] as the solu-
tion set of xp 2 [K,L] in Sn.
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(1) Assume bp = (b�1 or c = bb�1b�1; for some b 2 An),

and let k 2 [K,L]. Then either k 2 [K,L]+, or k 2 [K,L]�.

If k 2 ½K; L�þ; 9t 2 An 3 k ¼ tbt�1; kp ¼ tbpt�1 ¼
tb�1t�1

or
tbb�1ðtbÞ�1

0

@

3

5; kp 2 ½K; L�� ) kp R ½K; L�þ ¼ AðbÞ.

If k 2 ½K; L��; 9t 2 An 3 k ¼ tb�1t�1; kp ¼ tb�pt�1 ¼
tbt�1

or
tbbðtbÞ�1

0

@

3

5; kp 2 ½K;L�þ ¼ AðbÞ.

Then the solution set of xp 2 A(b) in is [K,L]�.

(2) Assume bp = (b or c = bbb�1; for some b 2 An), and

let k 2 [K,L]. Then either k 2 [K,L]+ or k 2 [K,L]�.

If k 2 ½K; L�þ; 9t 2 An 3 k ¼ tbt�1; kp ¼ tbpt�1

¼
tbt�1

or
tbbðtbÞ�1

0

@

3

5; kp 2 ½K;L�þ ¼ AðbÞ ) kp R ½K;L�.

If k 2 ½K; L��; 9t 2 An 3 k ¼ tb�1t�1; kp ¼ tb�pt�1 ¼
tb�1t�1

or
tbb�1ðtbÞ�1

0

@

3

5; kp 2 ½K;L�� ) kp R AðbÞ.

Then the solution set of xp 2 A(b) in An is [K,L]
+.

Lemma 1.13. Let A(b) be the conjugacy class of b in An,
14> n R h & (n + 1) R h, and b 2 [n] \ H, where [n] is a class

of Sn. If p and q are two different prime numbers, pŒn and qŒn,
then there is no solution of xpq 2 A(b) in An.

Proof. Since b 2 An \ [n] \ H, [n] splits into two classes [n]± of
An. However, 14 > n R h & (n + 1) R h) [n] 2 Fn) A(b) =
[n]+, then by Taban (2007, lemma 3.9) there is no solution
of xpq 2 [n] in Sn. So there is no solution of xpq 2 A(b) in An.

Lemma 1.14. Let A(b) be the conjugacy class of b in An,
14> n R h & (n + 1) R h, and b 2 [n] \ H, where [n] is a class

of Sn. If p and q are two different prime numbers, pŒn and q does
not divide n, then there is no solution of xpq 2 A(b) in An.

Proof. Since b 2 An \ [n] \ H, [n] splits into two classes [n]± of
An. However, 14 > n R h & (n+ 1) R h) [n] 2 Fn)
A(b) = [n]+, then by Taban (2007, lemma 3.4) there is no
solution of xpq 2 [n] in Sn. So there is no solution of xpq 2 A(b)
in An.

Theorem 1.15. Let A(b) be the conjugacy class of b in An,
14> n R h & (n + 1) R h, and b 2 [n] \ H, where [n] is a class

of Sn. If p and q are different prime numbers such that gcd(p,n) = 1
and gcd(q,n) = 1, then the solutions of xpq 2 A(b) in An are:

(1) [n]� if bpq = (b�1 or c), where c is conjugate to b�1.
(2) [n]+ if bpq = (b or c), where c is conjugate to b.

Proof. Since b 2 An \ [n] \ H, [n] splits into two classes [n]± of

An. However, 14 > n R h& (n+1) R h) [n] 2 Fn) A(b) = [n]+

and A(b�1) = [n]�. Also, since, gcd(p,n) = 1, p does not divide

n, and gcd(q,n) = 1, q does not divide n. Then by Taban
(2007, lemma 3.4) we have [n] as the solution set of xpq 2 [n]
in Sn.

(1) Assume bpq = (b�1 or c = bb�1b�1; for some b 2 An),

and let k 2 [n]. Then either k 2 [n]+ or k 2 [n]�.

If k2½n�þ; 9t2An3k¼ tbt�1; kpq¼ tbpqt�1¼
tb�1t�1

or
tbb�1ðtbÞ�1

0

@

3

5;

kpq 2 ½n�� ) kpq R ½n�þ ¼ AðbÞ.
If k 2 ½n��; 9t 2 An 3 k ¼ tb�1t�1; kpq ¼ tb�pqt�1 ¼

tbt�1

or
tbbðtbÞ�1

�

0

@

3

5; kpq 2 ½n�þ ¼ AðbÞ. Then the solution set of

xpq 2 A(b) in An is [n]
�.

(2) Assume bpq = (b or c = bbb�1); for some b 2 An), and

let k 2 [n]. Then either k 2 [n]+ or k 2 [n]�.

If k2½n�þ; 9t2An3k¼ tbt�1; kpq¼ tbpqt�1¼
tbt�1

or
tbbðtbÞ�1

0

@

3

5;

kpq 2 ½n�þ ¼ AðbÞ ) kpq R ½n��.
If k 2 ½n��; 9t 2 An 3 k ¼ tb�1t�1; kpq ¼ tb�pqt�1 ¼

tb�1t�1

or
tbb�1ðtbÞ�1

0

@

3

5; kpq 2 ½n�� ) kpq R AðbÞ. Then the solu-

tion set of xpq 2 A(b) in An is [n]
+.

Lemma 1.16. Let A(b) be the conjugacy class of b in An,
14> n R h & (n + 1) R h, and b 2 [n] \ H, where [n] is a class
of Sn. If p is prime number such that pŒn, then there is no solution
of xp 2 A(b) in An.

Proof. Since b 2 An \ [K,L] \ H, [K,L] splits into two classes
½K;L�� of An. However, 14 > n R h) [K,L] 2 Fn)
A(b) = [K,L]+, then by Taban (2007, lemma 3.8) we have
there is no solution of xp 2 [K,L] in Sn. So there is no solution
of xp 2 A(b) in An.

Theorem 1.17. Let A(b) be the conjugacy class of b
in An, 14 > n R h, and b 2 [K,L] \ H where [K,L] is a class
of Sn. If pŒK and pŒL, then there is no solution of xp 2 A(b)
in An.

Proof. Since b 2 An \ [K,L] \ H, [K,L] splits into two classes

½K;L�� of An. However, 14 > n R h) [K,L] 2 Fn) A(b) =
[K,L]+, then by Taban (2007, lemma 3.8) we have there is
no solution of xp 2 [K,L] in Sn. So there is no solution of

xp 2 A(b) in An.

Theorem 1.18. Let A(b) be the conjugacy class of b in An,
b 2 [n] \ H, 14 > n R h & (n + 1) R h, where [n] is a class
of Sn. If p is a prime number such that gcd(n,p) = 1, then the

solutions of xp 2 A(b) in An are:

(1) [n]� if bP = (b�1 or c), where c is conjugate to b�1.
(2) [n]+ if bP = (b or c), where c is conjugate to b.
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Proof. Since b 2 An \ [n] \ H, [n] splits into two classes [n]± of

An. However, 14 > n R h & (n + 1) R h) [n] 2 Fn) A(b) =
[n]+ and A(b�1) = [n]�. Also, since gcd(n,p) = 1, p does not
divide n. Then by Taban (2007, lemma 3.2) we have

[n] = [n]+ [ [n]� as a solution of xp 2 [n] in Sn. But,
[n] = A(b) [ [n]�1 then the solution set of xp 2 A(b) in An is
either [n]� or [n]+.

(1) Assume bp = (b�1 or c = bb�1b�1; for some b 2 An),
and let k 2 [n]. Then either k 2 [n]+ or k 2 [n]�.

If k 2 ½n�þ; 9t 2 An 3 k¼ tbt�1;

kp ¼ tbpt�1 ¼
tb�1t�1

or

tbb�1ðtbÞ�1

0

B
@

3

7
5; kp 2 ½n�� ) kp R ½n�þ ¼ AðbÞ;

If k 2 ½n��; 9t 2 An 3 k ¼ tb�1t�1;

kp ¼ tb�pt�1 ¼
tbt�1

or

tbbðtbÞ�1

0

B
@

3

7
5; kp 2 ½n�þ ¼ AðbÞ:

Then the solution set of xp 2 A(b) in An is [n]
�.

(2) Assume bp = (b or c = bbb�1; for some b 2 An), and let
k 2 [n]. Then either k 2 [n]+ or k 2 [n]�.

If k2 ½n�þ; 9t2An 3 k¼ tbt�1;

kp ¼ tbpt�1 ¼
tbt�1

or

tbbðtbÞ�1

0

B
@

3

7
5; kp 2 ½n�þ ¼AðbÞ) kp R ½n��;

If k 2 ½n��; 9t 2 An 3 k ¼ tb�1t�1;

kp ¼ tb�pt�1 ¼
tb�1t�1

or

tbb�1ðtbÞ�1

0

B
@

3

7
5; kp 2 ½n�� ) kp R AðbÞ:

Then the solution set of xp 2 A(b) in An is [n]
+.

Example 1.19. Find the solutions of x5 2 A(1 3 2) in A3.

Solution:

Since (14 > 3 R h), (1 3 2) 2 [3] \ H, gcd(3,5) = 1, and (1 3

2)5 = (1 2 3) = (1 3 2)�1, then the solution of x5 2 A(1 3 2) in
A3 is [3]

�= {(1 2 3)}.

Lemma 1.20. Let A(b) be the conjugacy class of b in An, and

b 2 [n] \ H, where 14 > n R h & (n + 1) R h, and [n] is a class
of Sn. If pŒn, then there is no solution of xpm 2 A(b) in An.

Proof. Since b 2 An \ [n] \ H, [n] splits into two classes [n]± of
An. However, 14 > n R h & (n+ 1) R h) [n] 2 Fn) A(b) =
[n]+, then by Taban (2007, lemma 3.12) we have there is no
solution of xpm 2 ½n� in Sn. So there is no solution of
xpm 2 AðbÞ in An.

Lemma 1.21. Let A(b) be the conjugacy class of b in An, and

b 2 [n] \ H, where 14 > n R h & (n + 1) R h, and [n] is a class
of Sn. If p and q are different prime numbers, pŒn and qŒn then
there is no solution of xpmqd 2 AðbÞ in An.

Proof. Since b 2 An \ [n] \ H, [n] splits into two classes [n]± of

An. However, 14 > n R h & (n + 1) R h) [n] 2 Fn) A(b) =
[n]+, then by Taban (2007, lemma 3.14) we have there is no
solution of xpmqd 2 ½n� in Sn. So there is no solution of

xpmqd 2 Ab in An.

Lemma 1.22. Let A(b) be the conjugacy class of b in An, If p
and q are two different prime numbers such that pŒn, q does
not divide n, and b 2 [n] \ H where 14 > n R h &

(n + 1) R h, and [n] is a class of Sn, then there is no solution
of xpmqd 2 AðbÞ in An.

Proof. Sinceb 2 An \ [n] \ H, [n] splits into two classes [n]± of
An. However, 14 > n R h & (n + 1) R h) [n] 2 Fn) A(b) =
[n]+, then by Taban (2007, lemma 3.15) we have there is no
solution of xpmqd 2 ½n� in Sn. So there is no solution of
xpmqd 2 AðbÞ in An.

Lemma 1.23. Let A(b) be the conjugacy class of b in An,
14> n R h & (n + 1) R h, where [n] is a class of Sn. If p and
q are different prime numbers such that gcd(p,n) = 1 and gcd
(q,n) = 1, then the solutions of xpmqd 2 A(b) in An are:

(1) [n]� if bP mqd ¼ ðb�1 or c), where c is conjugate to b�1.
(2) [n]+ if bP mqd ¼ ðb or c), where c is conjugate to b.

Proof. b 2 An \ [n] \ H, [n] splits into two classes [n]± of An.
However, 14 > n R h & (n + 1) R h) [n] 2 Fn) A(b) = [n]+,

and since gcd(p,n) = 1, p does not divide n and gcd(q,n) =
1) q does not divide n. Then by Taban (2007, lemma 3.2)
we have [n] = [n]+ [ [n]� as a solution set of xpmqd 2 ½n� in
Sn. But, [n] = A(b) [ [n]� then the solution set of
xpmqd 2 AðbÞ in An is either [n]

� or [n]+.

(1) Assume bpmqd ¼ ðb�1 or c = bb�1b�1; for some b 2 An),

and let k 2 [n]. Then either k 2 [n]+ or k 2 [n]�.

If k 2 ½n�þ; 9t 2 An 3 k ¼ tbt�1;

kpmqd ¼ tbðp
mqdÞt�1 ¼

tb�1t�1

or

tbb�1ðtbÞ�1

0

B
@

3

7
5;

kpmqd 2 ½n�� ) kpmqd R ½n�þ ¼ AðbÞ;

If k 2 ½n��; 9t 2 An 3 k¼ tb�1t�1;

kpmqd ¼ tb�ðp
mqdÞt�1 ¼

tbt�1

or

tbbðtbÞ�1

0

B
@

3

7
5; kpmqd 2 ½n�þ ¼ AðbÞ:

Then the solution set of xpmqd 2 AðbÞ in An is [n]
�.

(2) Assume bpmqd ¼ ðb or c = bbb�1; for some b 2 An), and
let k 2 [n]. Then either k 2 [n]+ or k 2 [n]�.

If k 2 ½n�þ; 9t 2 An 3 k ¼ tbt�1;

kpmqd ¼ tbpmqd t�1 ¼
tbt�1

or

tbbðtbÞ�1

0

B
@

3

7
5;

kpmqd 2 ½n�þ ¼ AðbÞ ) kpmqd R ½n��;
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If k 2 ½n��; 9t 2 An 3 k ¼ tb�1t�1;

kpmqd ¼ tb�ðp
mqdÞt�1 ¼

tb�1t�1

or

tbb�1ðtbÞ�1

0

B
B
@

3

7
7
5;

kpmqd 2 ½n�� ) kpmqd R AðbÞ:

Then the solution set of xpmqd 2 AðbÞ in An is [n]
+.

Lemma 1.24. Let A(b) be the conjugacy class of b in An,
14> n R h & (n + 1) R h, and b 2 [n] \ H, where [n] is a class
of Sn. If p1,p2, . . . , pm are different prime numbers such that, pi,

Œn, "i = 1, . . . ,m, then there is no solution for
xp

d1
1
p
d2
2

...pdmm 2 AðbÞ in An.

Proof. Since b e An \ [n] \ H, [n] splits into two classes [n]± of

An. However, 14 > n R h & (n+ 1) R h) [n] e Fn) A(b) =
[n]+, then by Taban (2007, lemma 3.17) we have there is no

solution of xp
d1
1
p
d2
2

...pdmm �½n� in Sn. So there is no solution of

xp
d1
1
p
d2
2

...pdmm 2 AðbÞ in An.

Lemma 1.25. Let A(b) be the conjugacy class of b in An,
b e [n] \ H, and 14 > n R h & (n + 1) R h, where is [n] is a
class of Sn. If p1,p2, . . . , pm are different prime numbers and piŒn
for some i, then there is no solution for xp

d1
1
p
d2
2
���pdmm �AðbÞ in An.

Proof. Since b e An \ H, [n] splits into two classes of [n]± of
An. However, 14 > n R h & (n+ 1) R h) [n] e Fn) A(b) =
[n]+, then by Taban (2007, lemma 3.19) we have there is no
solution of xp

d1
1
p
d2 ...

2
Pdm
m �½n� in Sn. So there is no solution of

xp
d1
1
p
d2 ...

2
Pdm
m �AðbÞ in An.

Lemma 1.26. Let A(b) be the conjugacy class of b in An,

14> n R h, and b e [k1,k2, . . . , kl] \ H, where [k1,k2, . . . , kl] „
[1,3, 7] is a class of Sn. If p is a prime number such that
gcd(p,ki) = 1, for each i, then the solutions of xp e A(b)are:

(1) [k1,k2, . . . , kl]
� if bp = b�1 or c, where c is conjugate

to b�1.

(2) [k1,k2, . . . , kl]
+ if bp = b or c, where c is conjugate to b.

Proof. Since b e An \ H \ [k1,k2, . . . ,kl], [k1,k2, . . . ,kl] splits

into two classes [k1,k2, . . . ,kl]
± of An. However, 14 P n R h

and [k1,k2, . . . ,kl] „ [1,3,7]) [k1,k2, . . . ,kl] e F) A(b) = [k1,

k2, . . . ,kl]
+, and A(b�1) = [k1,k2, . . . ,kl]

�. Also, since

gcd(p,ki) = 1 for each k[k1,k2, . . . ,kl]) kp[k1,k2, . . . ,kl]. Then

by Taban (2007, lemma 2.8) we have for each

ke[k1,k2, . . . ,kl]) kp e [k1,k2, . . . ,kl].

(1) Assume bp = (b�1 or c = bb�1b�1; for some b 2 An),
and let k e [k1,k2, . . . ,kl]. Then either k e [k1,k2, . . . ,kl]

+

or k e [k1,k2, . . . ,kl]
�.

If k�½k1; k2; . . . ; kl�þ; 9t�An 3 k ¼ tbt�1;

kp ¼ tbpt�1 ¼
tb�1t�1

or

tbb�1ðtbÞ�1

0

B
@

3

7
5;

kp�½k1; k2; . . . ; k1�� ) kp R ½k1; k2; . . . ; k1�þ ¼ AðbÞ;

If k�½k1; k2; . . . ; kl��; 9t�An 3 k ¼ tb�1t�1;

kp ¼ tb�pt�1 ¼
tbt�1

or

tbbðtbÞ�1

0

B
@

3

7
5;

kp�½k1; k2; . . . ; k1�þ ¼ AðbÞ:

Then the solution set of xp e A(b) in An is [k1,k2, . . . ,k1]
�.

(2) Assume bp = (b or c = bbb�1 for some b e An), and let

k e [k1,k2, . . . ,k1]. Then either k e [k1,k2, . . . ,k1]
+ or

k e [k1,k2, . . . ,k1]
�.

If k�½k1; k2; . . . ; kl�þ; 9t�An 3 k ¼ tbt�1;

kp ¼ tbpt�1 ¼
tbt�1

or

tbbðtbÞ�1

0

B
@

3

7
5;

kp�½k1; k2; . . . ; k1�þ ¼ AðbÞ ) kp R ½k1; k2; . . . ; kl��;

If k�½k1; k2; . . . ; kl��; 9t�An 3 k ¼ tb�1t�1;

kp ¼ tb�pt�1 ¼
tb�1t�1

or

tbb�1ðtbÞ�1

0

B
B
@

3

7
7
5;

kp�½k1; k2; . . . ; k1�� ) kp R AðbÞ:

Then the solution set of xp e A(b) in An is
[k1,k2, . . . ,k1]

+.

Remark 1.27. If there is no solution for xp e [ki], for some
1 6 i 6 l then there exists no solution for xp e [k1,k2, . . . ,kl].

Lemma 1.28. Let A(b) be the conjugacy class of b in An,
14> n R h, and b e [k1,k2, . . . , kl] \ H, where [k1,k2, . . . , kl] „
[1,3,7] is a class of Sn. If p is a prime number such that pŒki,
for some i, then no solution of xp e A(b) in An.

Proof. Since b e An \ H \ [k1,k2, . . . ,kl], [k1,k2, . . . ,kl] splits

into two classes [k1,k2, . . . ,kl]
± of An. Since A(b) =

[k1,k2, . . . ,kl]
+ and pŒki, then by Taban (2007, lemma 3.1)

we have no solution for xp e [ki] in Sn. Then no solution for

xp e [k1,k2, . . . ,kl] in. So no solution for xp e A(b) in An.

Lemma 1.29. Let A(b) be the conjugacy class of b in An,
14> n R h, and b e [k1,k2, . . . , kl] \ H, where [k1,k2, . . . , kl] „
[1,3,7] is a class of Sn, P is a prime number, is a positive integer.

If for some 1 6 i 6 l such that pŒki, then we have no solution of
xpm�AbÞ in An.

Proof. Since b e An \ H \ [k1,k2, . . . ,kl], [k1,k2, . . . ,kl] splits

into two classes [k1,k2, . . . ,kl]
± of An. Since A(b) =

[k1,k2, . . . ,kl]
+ and pŒki, then by Taban (2007, lemma 3.12)

we have no solution for xpm�½ki� in Sn. So no solution for
xpm�½k1; k2; . . . ; kl� in Sn. Then no solution for xpm�AðbÞ in An.

Definition 1.30. Let b e [9] of S9, where b = (a1,a2,a3,a4,a5,
a6,a7,a8,a9). We define class [9]+ of A9 by A(b) = [9]+ =
{l e [9]Œl = tbt�1; for some t e A9}.
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Remark 1.31

(i) [9]�1 = [9] � A(b) = {l e [9]Œl „ tb t�1; for all t eA9}.

(ii) Let b e [9] of S9 where b ¼ ða1; a2; a3; a4; a5; a6; a7; a8; a9Þ;
�b ¼ ða1; a2; a3; a4; a5; a6; a7; a8Þ �b ¼ ða1; a5; a9; a4; a8; a3;

a7; a2; a6Þ and d is a positive integer we have:

(1) bd = b () d ” 1 (mod 9)

(2) bd ¼ �b () d � 2 (mod 9)

(3) bd ¼ �b () d � 4 (mod 9)

(4) bd ¼ �b�1 () d � 5 (mod 9)

(5) bd ¼ �b�1 () d � 7 (mod 9)

(6) bd = b�1 () d ” 8 (mod 9)

(iii) (1) AðbÞ ¼ Aðb�1Þ; Að�bÞ ¼ Að ��b�1Þ; Að��bÞ ¼ Aðb�1Þ
[Since for each k 2 [9]« in A9, where k = (b1,b2,

b3,b4,b5,b6,b7,b8,b9), $l = (b1,b8) (b2,b7)
(b3,b6) (b4,b5) 2 A9 such that lkl�1 = k�1].

(2) AðbÞ ¼ Að�bÞ since $t= (a3,a6) (a1,a5,a7,a8,a4,a2)
2 A9 such that tbt�1 ¼ �b.

(3) Aðb�1Þ ¼ Að��bÞ since $t= (a3,a9) (a1,a8,a7,a2,a4,
a5) 2 A9 such that t��bt�1 ¼ b�1.

Theorem 1.32. Let b 2 [9] of S9. If d is a positive integer such

that gcd(d,9) = 1, then the solutions of xd�A(b) in A9 are A(b).

Proof. Since b 2 [9] \ H \ A9, [9] splits into two classes A(b) &
[9]� of A9 and gcd(d, 9) = 1, then d does not divide 9. Then by
Taban (2007, lemma 3.2), the solution set of xd 2 [9] in S9

is [9]. For each k 2 [9] we have a 2 AðbÞ or a R AðbÞ. If,
a 2 AðbÞ we have k�

A9

bðk conjugate to b in A9Þ ) kd�
A9

bd.

How-ever, bd�
A9

b) kd�
A9

b) kd 2 AðbÞ. If a R AðbÞ, assume

kd 2 AðbÞ ) kd�
A9

b. But b�
A9

bd ) kd�
A9

bd ) k�
A9

b), (which

is a contradiction). Then the solution of in A9 is A(b).

Definition 1.33. Let b = ck 2 [1,3,7] of S11, where

c = (b1,b2,b3), k = (a1,a2,a3,a4,a5,a6,a7). We define classes
[1,3,7]± of A11 by:

A(b) = [1,3,7]+ = {l 2 [1,3,7]Œl = tbt�1; for some

t 2 A11} and Aðb
#

Þ ¼ ½1; 3; 7�� ¼ fl 2 ½1; 3; 7� j l ¼ t b
#

t�1; for

some t 2 A11g where b
#

¼ c�k and �k ¼ ða1; a4; a7; a3; a6; a2; a5Þ.

Remark 1.34

(i) Let b = ck 2 [1,3,7] of S11 where c = (b1,b2,b3),
k = (a1, a2, a3, a4, a5, a6,a7), �k¼ ða1;a4;a7;a3;a6;a2;a5Þ;
�k ¼ ða1; a3; a5; a7; a2; a4; a6Þ; and d is a positive integer
number. We have:

(1) bd = b () d ” 1 (mod 21)

(2) bd ¼ c�1�k() d � 2 (mod 21)

(3) bd ¼ c�k�1 () d � 4 (mod 21)

(4) bd ¼ c�1�k�1 () d � 5 (mod 21)

(5) bd = c�1k () d ” 8 (mod 21)

(6) bd ¼ c�k() d � 10 (mod 21)

(7) bd ¼ c�1�k�1 () d � 11 (mod 21)

(8) bd = ck�1 () d ” 13 (mod 21)

(9) bd ¼ c�k() d � 16 (mod 21)

(10) bd ¼ c�1�k() d � 17 (mod 21)

(11) bd ¼ c�k�1 () d � 19 (mod 21)

(12) bd = b�1 () d ” 20 (mod 21)

(ii) (1) AðbÞ ¼ Aðb�1Þ; Aðc�1�kÞ ¼ Aðc�k�1Þ; Aðc�k�1Þ ¼
Aðc�1�kÞ; Aðc�1�k�1Þ ¼ Aðc�kÞ; Aðc�1kÞ ¼ Aðck�1Þ; Aðc�kÞ ¼
Aðc�1�k�1Þ [Since for each b = ck 2 [1,3,7] in A11 where

c = (b1,b2,b3), k = (a1,a2,a3,a4,a5,a6,a7), $l = (b1,b3)
(a2,a7) (a3,a6) (a4,a5) 2 A11 such that lkl�1 = k�1].
(2) AðbÞ ¼ Aðc�1�kÞ [since $t= (b2,b3) (a1,a4,a5,a3,a7,
a6) 2 A11 such that tbt�1 ¼ c�1�k].
(3) AðbÞ ¼ Aðc�kÞ [since $ t = (a1,a3,a4) (a7,a6,a2) 2 A11

such that tbt�1 ¼ c�k].
(4) Aðc�k�1Þ ¼ Aðc�kÞ [since $t= (a1,a4,a2) (a3,a5,a6) 2
A11 such that tc�k�1t�1 ¼ c�k].
(5) Aðc�k�1Þ ¼ Aðck�1Þ [since $t= (a1,a6,a5) (a2,a3,a7) 2
A11 such that tck�1t�1 ¼ c�k�1].

Theorem 1.35. Let L ¼ fm 2 N j m � q (mod 21); for some
q ¼ 1; 4; 5; 16; 17; 20g. If d is a positive integer such that

gcd(d,3) = 1 & gcd(d,7) = 1 and b 2 [1,3,7] of S11, then
the solutions of xd 2 AðbÞ in A11 are:

(1) A(b) if d 2 L.

(2) Aðb
#

Þ if d R L.

Proof. Since b 2 [1,3,7] \ H \ A11, [1,3,7] splits into two clas-

ses A(b) & Aðb
#

Þ of A11, gcd(d, 3) = 1 and gcd(d, 7) = 1, then d

does not divide 3 and d does not divide 7. Then by Taban

(2007, lemma 2.8) we have ½1; 3; 7� ¼ AðbÞ [ Aðb
#

Þ as a solution

set of xd 2 ½1; 3; 7� ¼ AðbÞ [ Aðb
#

Þ in S11. However, AðbÞ\
Aðb

#

Þ ¼ /, so for each p 2 ½1; 3; 7� ) ðp 2 AðbÞ & p R Aðb
#

ÞÞ
or ðp 2 Aðb

#

Þ & p R AðbÞÞ.

(1) Assume d 2 L. If p 2 A(b), then we have ðp �
A11

bÞ p

conjugate to b in A11. However, pd �
A11

p (since

d 2 LÞ ) pd �
A11

b) pd 2 AðbÞ & pd R Aðb
#

Þ. If

p 2 Aðb
#

Þ, we have ðp �
A11

b
#

Þ. But pd �
A11

p (since

d 2 LÞ ) pd �
A11

b
#

) pd 2 Aðb
#

Þ & pd R AðbÞ. Then the

solution set of xd e A(b) in A11 is A(b).

(2) Assume d R L. If p 2 A(b), then we have

ðp �
A11

bÞ ) p
# �

A11

b
#

. However, pd �
A11

p
#

(since d R LÞ )

pd �
A11

b
#

) pd 2 Aðb
#

Þ & pd R AðbÞ. If p 2 Aðb
#

Þ )

ðp �
A11

b
#

Þ ) p
# �

A11

b
#

. But pd �
A11

p
#

(since d R LÞ )pd �
A11

b) pd 2 AðbÞ & pd R b
#

. Then the solution set of

xd 2 AðbÞ in A11 is Aðb
#

Þ.

Definition 1.36. Let b 2 [13] of S13, where b ¼ ða1; a2; a3; a4; a5;
a6; a7; a8; a9; a10; a11; a12; a13Þ. We define classes [13]± of A13 by:

A(b) = [13]+ = {l 2 [13]Œl = tbt�1; for some t 2 A13} and

Aðb#Þ ¼ ½13�� ¼ fl 2 ½13� j l ¼ tb#t�1; for some t 2 A13g:

where b# = (a1,a3,a5,a7,a9,a11,a13,a2,a4,a6,a8,a10,a12).

Remark 1.37. (i) Let b 2 [13] of S13 where, b1 = (a1,a2,a3,a4,

a5,a6,a7,a8,a9,a10,a11,a12,a13)
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b1 ¼ ða1; a3; a5; a7; a9; a11; a13; a2; a4; a6; a8; a10; a12Þ
b2 ¼ ða1; a4; a7; a10; a13; a3; a6; a9; a12; a2; a5; a8; a11Þ
b3 ¼ ða1; a5; a9; a13; a4; a8; a12; a3; a7; a11; a2; a6; a10Þ
b4 ¼ ða1; a6; a11; a3; a8; a13; a5; a10; a2; a7; a12; a4; a9Þ
b5 ¼ ða1; a7; a13; a6; a12; a5; a11; a4; a10; a3; a9; a2; a8Þ

and d is a positive integer number we have:

(1) bd = b () d ” 1 (mod 13)

(2) bd = b1 () d ” 2 (mod 13)

(3) bd = b2 () d ” 3 (mod 13)

(4) bd = b3 () d ” 4 (mod 13)

(5) bd = b4 () d ” 5 (mod 13)

(6) bd = b5 () d ” 6 (mod 13)

(7) bd ¼ b�15 () d � 7 (mod 13)

(8) bd ¼ b�14 () d � 8 (mod 13)

(9) bd ¼ b�13 () d � 9 (mod 13)

(10) bd ¼ b�12 () d � 10 (mod 13)

(11) bd ¼ b�11 () d � 11 (mod 13)

(12) bd = b�1 () d ” 12 (mod 13)

ðiiÞ ð1Þ AðbÞ ¼ Aðb�1Þ; Aðb1Þ ¼ Aðb�11 Þ; Aðb2Þ ¼ Aðb�12 Þ;
Aðb3Þ ¼ Aðb�13 Þ; Aðb4Þ ¼ Aðb�14 Þ, and Aðb5Þ ¼ Aðb�15 Þ [Since
for each k = (b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13) 2
[13]« in A13, $l = (b1,b12) (b2,b11) (b3,b10) (b4,b9) (b5,b8)

(b6,b7) 2 A9 such that lkl�1 = k�1].
(2) A(b) = A(b2) [Since $t = (a2,a4,a10) (a6,a3,a7) (a11,a5,

a13) (a8,a9,a12) 2 A13 such that tbt�1 = b2].
(3) A(b) = A(b3) [Since $t= (a6,a8,a3,a9,a7,a12) (a10,a11,

a2,a5,a4,a13) 2 A13 such that tbt�1 = b3].
(4) A(b1) = A(b4) [Since $t= (a7,a3,a6) (a5,a11,a13)

(a9,a8,a12) (a4,a2,a10) 2 A13 such that tb1t
�1 = b4].

(5) A(b1) = A(b5) [Since $t= (a2,a4,a10) (a6,a3,a7)
(a11,a5,a13) (a8,a9,a12) 2 A13 such that tb1t

�1 = b5].

Theorem 1.38. Let L = {m 2 NŒm„q(mod13); for some

q = 1.3.4.9.10.12}. If d is a positive integer number such that
gcd(d,13 = 1) and b 2 [13] of S13, then the solutions of
xd 2 A(b) in A13 are:

(1) if A(b) if d 2 L.

(2) if Aðb
#

Þ if d R L.

Proof. Since b 2 [13] \ H \ A13, [13] splits into two classes
AðbÞ & Aðb

#

Þ of A13 and since gcd(d, 13) = 1, d, does not
divide 13. Then by Taban (2007, lemma 3.2) we have

½13� ¼ AðbÞ [ Aðb
#

Þ is a solution set of xd 2 ½13� ¼ AðbÞ[
Aðb

#

Þ in S13. However, AðbÞ \ Aðb
#

Þ ¼ /, so for each

p 2 [13]) ðp 2 AðbÞ & p R Aðb
#

ÞÞ or ðp R AðbÞ & p 2 Aðb
#

ÞÞ.

(1) Assume d 2 L. If p 2 A(b), then we have p �
A13

b (p conju-

gate to b in A13). However, pd �
A13

p (since d 2 LÞ )
pd �

A13

b) pd 2 AðbÞ&pd R Aðb
#

Þ. If p 2 Aðb
#

Þ, we have

ðp �
A13

b
#

. But pd �
A13

p (since ðd 2 LÞ ) pd �
A13

b
#

)
pd 2 Aðb

#

Þ & pd R AðbÞ. Then the solution set of

xd 2 A(b) in A13 is A(b).
(2) Assume d R L, if p 2 A(b), then we have p �

A13

b) p
# �

A13

b
#

.

However, pd �
A13

p
#

(since d R L) ) pd �
A13

b
#

) pd 2

Aðb
#

Þ&pd R AðbÞ. If p 2 Aðb
#

Þ, so ðp �
A13

b
#

Þ ) p
# �

A13

b. But

pd �
A13

p
#
(since d R L) ) pd �

A13

b) pd 2 AðbÞ&pd R Aðb
#

Þ.
Then the solution set of xd 2 AðbÞ in A13 is Aðb

#

Þ.

Lemma 1.39. Let A(b) be the conjugacy class of b in, An,
n> 14, and b 2 [k1,k2, . . . , kl] \ H, where [k1,k2, . . . , kl] 2 Fn

is a class of Sn. If p is a prime number such that gcd(p,ki) = 1,
for each i, then the solutions of xp 2 A(b) are:

(1) [k1,k2, . . . , kl]
� if bp = (b�1 or c), where c is conjugate

to b�1.
(2) [k1,k2, . . . , kl]

+ if bp = (b or c), where c is conjugate
to b.

Proof. b 2 An \ H \ [k1,k2, . . . ,kl], [k1,k2, . . . ,kl], splits into

two classes [k1,k2, . . . ,kl]
± of An, [k1,k2, . . . ,kl] 2 F)

A(b) = [k1,k2, . . . ,kl]
+, and A(b�1) = [k1,k2, . . . ,kl]

�1. So,
since gcd(p,ki) = 1 for each i. Then by Taban (2007, lemma

2.8) we have for each k 2 [k1,k2, . . . ,kl]) kp 2 [k1,k2, . . . ,kl].

(1) Assume bp = (b�1 or k = bb�1b�1; for some b 2 An),
and let. k 2 [k1,k2, . . . ,kl]. Then either k 2 [k1,k2, . . . ,
kl]

+ or k 2 [k1,k2, . . . ,kl]
�.

If k 2 ½k1; k2; . . . ; kl�þ; 9t 2 An 3 k ¼ tbt�1;

kp ¼ tbpt�1 ¼
tb�1t�1

or

tbb�1ðtbÞ�1

0

B
@

3

7
5;

kp 2 ½k1; k2; . . . ; kl�� ) kp R ½k1; k2; . . . ; kl�þ ¼ AðbÞ;

If k 2 ½k1; k2; . . . ; kl��; 9t 2 An 3 k ¼ tb�1t�1;

kp ¼ tb�pt�1 ¼
tbt�1

or

tbbðtbÞ�1

0

B
@

3

7
5;

kp 2 ½k1; k2; . . . ; kl�þ ¼ AðbÞ:

Then the solution set of xp 2 A(b) in An is
[k1,k2, . . . ,kl]

�.

(2) Assume bp = (b ork = bbb�1 for some b 2 An), and let
k 2 [k1,k2, . . . ,kl]. Then either k 2 [k1,k2, . . . ,kl]

+ or
k 2 [k1,k2, . . . ,kl]

�.

If k 2 ½k1; k2; . . . ; kl�þ; 9t 2 An 3 k ¼ tbt�1;

kp ¼ tbpt�1 ¼
tbt�1

or

tbbðtbÞ�1

0

B
@

3

7
5;

kp 2 ½k1; k2; . . . ; kl�þ ¼ AðbÞ ) kp R ½k1; k2; . . . ; kl��;

If k 2 ½k1; k2; . . . ; kl��; 9t 2 An 3 k ¼ tb�1t�1;

kp ¼ tb�pt�1 ¼
tb�1t�1

or

tbb�1ðtbÞ�1

0

B
B
@

3

7
7
5;

kp 2 ½k1; k2; . . . ; kl�� ) kp R AðbÞ:

Then the solution set of xp 2 A(b) in An is [k1,k2, . . . ,kl]
+.
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Example 1.40. Let b = lk, where l = (1 2 3 4 5) and k = (6 7

8 9 10 11 12 13 14 15 16). Find the solutions of x13 2 A(b) in
A16.

Solution:

since n = 16 > 14, b 2 [5,11] \ H, [5,11] 2 Fn, gcd(13,5) =

1, gcd(13,11) = 1 and, $p 2 A16 ’ pb13p�1 = b where b13 = (1
4 2 5 3) (6 8 10 12 14 16 7 9 11 13 15) and p = (3 5 4 2) (7 12 9
13 15 16 11 14 10 8). Then the solution set of x13 2 A(b) in A16

is [5,11]+.

Lemma 1.41. Let A(b) be the conjugacy class of b in An,
n > 14, and, b 2 [k1,k2, . . . , kl] \ H where [k1,k2, . . . ,kl] 2 Fn

is a class of. If p is a prime number such that pŒki, for some i,
then no solution of xp 2 A(b) in An.

Proof. Since b 2 An \ H \ [k1,k2, . . . ,kl], [k1,k2, . . . ,kl], splits

into two classes [k1,k2, . . . ,kl]
± of An and [k1,k2, . . . ,kl] 2 F)

A(b) = [k1,k2, . . . ,kl]. Also, since, then by Taban (2007, lemma
3.1) we have no solution for xpe [ki] in Sn. Then no solution for

in Sn. So no solution for xp 2 A(b) in An.

Lemma 1.42. Let A(b) be the conjugacy class of b in An,

n > 14, and b 2 [k1,k2, . . . , kl] \ H, where [k1,k2, . . . ,kl] 2 Fn

is a class of Sn, p is a prime number, m is a positive integer. If
for some (1 6 i 6 l) such that pŒki, then no solution of

xpm 2 AðbÞ in An.

Proof. Since b 2 An \ H \ [k1,k2, . . .,kl], [k1,k2, . . . ,k1] splits
into two classes [k1,k2, . . . ,kl]

± of An and [k1,k2, . . . ,kl] 2 F)
A(b) = [k1,k2, . . . ,kl]

+. Also, since pŒki, then by Taban
(2007, lemma 3.12) we have no solution for xpm 2 ½ki� in Sn.

Then no solution for xpm 2 ½k1; k2; . . . ; kl� in Sn, so no solution
for xpm 2 AðbÞ in An.

The number of solution

If b is an even permutation and b 2 Ca(b) \ H, where Ca(b) is a
class of b in Sn, we have C

a(b) splits into two classes Ca(b)± of
equal order) A(b) = Ca(b)+ or Ca(b)�, where A(b) is a class

of b in An. If C
a(b)+ or Ca(b)� is a solution in An of any class

equation in An, then the number of solutions is the number of
all the elements that belong to the class Ca(b)+ or Ca(b)�.
However, j CaðbÞþ j¼j CaðbÞ� j¼ jC

aðbÞj
2

. So the number of the
solutions for the class equation xd = b in An is only

n!
2za
.

Example 1.43. Find the solutions of xp 2 Að234Þ in A4 and the
number of the solutions

(i) if p = 13.
(ii) if p = 17.

Solution:

n= 4) b = (2 3 4) 2 [1,3]. However,
[1,3] � H) b 2 [1,3] \ H. Now we show that:

(i) If p = 13, then we have gcd(13,3) = 1, gcd(13,1) = 1,

and (2 3 4)13 = (2 3 4). Then by (1.12) the solution of

x13 2 A(2 3 4) in A4 is [1,3]
+ and the number of the solu-

tion is j½1;3�j
2
¼ 4!

2�3 ¼ 4 permutations, where [1,3]�= {(1 3

2), (2 3 4), (1 4 3), (1 2 4)}.

(ii) If p = 17, then we have gcd(17,3) = 1, gcd(17,1) = 1,

and (2 3 4)17 = (4 3 2) = (2 3 4)�1. Then by (1.12) the

solution of x17 2 2 A(2 3 4) in A4 is [1,3]
� and the num-

ber of the solution is j½1;3�j
2
¼ 4!

2�3 ¼ 4 permutations, where

[1,3]�= {(1 2 3), (2 4 3), (1 3 4), (1 4 2)}.

Example 1.44. Find the solutions of x15 2 A(b) in A7 and the
number of the solutions where b = (2 4 1 3 5 7 6).

Solution:

n= 7) b = (2 4 1 3 5 7 6) 2 [7]. However,
[7] � H) b 2 [7] \ H. Assume p = 3, and q= 5, we have
gcd(3,7) = 1 gcd(5,7) = 1, and b15 = b. Then by (1.15) the

solution set of x15 2 A(b) in A7 is [7]
+ = AðbÞ and the number

of the solutions is 7!
2�7 ¼ 360 permutations.

Example 1.45. Find the solutions of x14 2 A((4 1 3) (2 6 7 5 8))
in A8 and the number of the solutions.

Solution:

n= 8) b = (4 1 3)(2 6 7 5 8) 2 [3,5]. However, [3,5] �
H) b 2 [3,5] \ H. Let p = 14, then we have gcd(11,3) = 1,

gcd(11,5) = 1, and b14 = (14 3)(857 6 2) = b�1. Then by

(1.12) the solution of x14 2 A((4 1 3)(2 6 7 5 8)) inA8 is [3,5]
� and

the number of the solution is 8!
2�3�5� ¼ 1344 permutations.

2. Conclusions

By the Cayley’s theorem: Every finite group G is isomorphic to
a subgroup of the symmetric group Sn, for some n P 1. Then
we can discuss these propositions. Let xd = g be class equa-

tion in finite group G and assume that f:G @ An, for some
n R h and f(g) 2 H \ Ca. The first question we are concerned
with is: what is the possible value of d provided that there is

no solution for xd = g in G? The second question we are con-
cerned with is: what is the possible value of d provided that
there is a solution for xd = g in G? and then we can find the

solution and the number of the solution for xd = g in G by
using Cayley’s theorem and our theorems in this paper.
In another direction, let G be a finite group, and

pi(G) = {g 2 GŒi the least positive integer number satisfying
gi = 1}. If Œpi(G)Œ = ki, then we write piðGÞ ¼ fgi1; gi2; . . . ;
gikig, and

Q
¼ fpiðGÞgiP1. For each g 2 G and gij 2 pi(G) we

have (ggijg
�1)i = 1. By the Cayley’s theorem we can suppose

that (f: G @ Sn) or (f: G @ An). Also the questions can be sum-
marized as follows:

(1) Is
Q
¼ fpiðGÞgiP1 collection set of conjugacy classes of

G?
(2) Is there some i P 1, such that f�1(Ca) = pi(G), for each

Caof An, where (f: G @ An)?
(3) Is there some i P 1, such that f�1(Ca) = pi(G), for each

Caof Sn, where (f : G @ Sn)?

(4) If (G @ Sn) and p(n) is the number of partitions of n, is
j
Q
j¼ pðnÞ?

(5) If (G @ An) and An has m ambivalent conjugacy classes.
It is true that is also necessarily G has m ambivalent con-

jugacy classes?
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