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ABSTRACT 

Here we present some mathematical and computational tools for the numerical analysis of 

SQUID rings. Much of this text is taken from my own thesis based on work done by many others 

and as such this does not comprise original research (although this collated form of the 

information has not, to the best of our knowledge, been published in this form elsewhere). 

Instead this paper is intended as a quick start guide for those interested in numerical modelling 

of SQUID ring based systems. 

 

 

INTRODUCTION 

 

The (flux mode) Hamiltonian for the SQUID ring in an external magnetic field  x  , is given by  
22

0

( ) 2
cos (1)

2 2 2

cx
IQ

H
C e

πΦ − Φ Φ= + −
Λ Φ

 

 where the magnetic flux threading the ring,   , and the total charge across the weak link  Q   

take on the roles of conjugate variables for the system with the imposed commutation relation  

,Q i  . Here  x   is the external applied magnetic flux and incorporates the drive term for 

the ring. Here  C  ,  Ic  , and  L  are, respectively, the external flux bias, capacitance and critical 

current of the weak link and the inductance of the ring. We will define  
Ic

2e  . Finally,  

0 h/2e  is the flux quantum. We have assumed here that the microwave field that is 

introduced to the system can be modeled in the way that it couples to the external flux as a 

purely classical field. For later connivance we separate this into two components according to  

x t x stat dynamic t   where  x stat   is the static magnetic flux bias and the time dependent 

microwave field is given by  dynamic t  . It is immediately evident that while the first two terms 

of this Hamiltonian present no problems for numerical analysis -- being the driven simple 

harmonic oscillator -- the cosine term is somewhat harder to work with. It is in dealing with this 

term that this paper is focused. As this paper is approached very much a tutorial style references 

will not be given throughout instead the reader is refereed to two key works in this field (and 

references therein), namely (Bossche, Brouers, Spiller, Clark, Prance, and Diggins,1995; 

Diggins, Ralph, Everitt, Prance, Prance, Whiteman, Widom, and  Srivastava,1998).  
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DISCUSSION 

 

Here we discuss the method that we use to computationally solve the time independent 

Schrdinger equation (TISE) and time dependent Schrdinger equation (TDSE) for the  

SQUID. This comprises of several stages, firstly we outline the method used to solve the TISE 

for the SQUID as the instantaneous eigenvectors for the Hamiltonian (1) orm an ideal basis for 

expanding the solutions to the TDSE, we then proceed to express the TDSE as a set of first order 

coupled ordinary differential equations, so that standard methods (such as Runge Kutta) for 

initial value problems can be applied. Finally we discuss the computation of the expectation 

values of the observables for energy and screening current. 

 

 

A.  THE TISE 

 

If we consider the Hamiltonian (1) we notice that if we translate the co-ordinate    by  x  , the 

external flux term would appear in the Josephson current term, so that we are left with a 

Hamiltonian that consists of a simple harmonic oscillator term and a non-trivial perturbation due 

to the Josephson junction. The unitary transform needed to do this is given by  

( )
( ) exp (2)x t Q

V t i
Φ= −  

 Then the translation is performed on the Hamiltonian in the usual way to obtain  
2 2

?

0

2 ( ( ))
( ) ( ) ( ) cos (3)

2 2

x tQ
V t H t V t

C

πν Φ + ΦΦ= + −
Λ Φ

 

Solving the eigenvalue problem for a Hamiltonian of this form is achieved by using the simple 

harmonic oscillator sates (denoted here by   |n   and   |m  ) as a basis for expanding the 

eigenfunctions and computing the Heisenberg matrix representation of the Hamiltonian in this 

basis. Eigenvectors and eigenvalues may then simply be found using standard numerical 

techniques. In order to compute these matrix elements we first note:  

2 2 2 2

0 0

2 ( ( )) 2 ( ( ))
cos cos (4).

2 2 2 2

x xt tQ Q
n m n m n m

C C

π πν νΦ+Φ Φ+ΦΦ Φ+ − = + −
Λ Φ Λ Φ

 

 We then expand the cosine term to obtain:  

0 0 0 0 0

2 ( ( )) 2 ( ) 2 ( )2 2
cos cos cos sin sin (5).x x xt t t

n m n m n m
π π ππ πΦ+Φ Φ ΦΦ Φ= −

Φ Φ Φ Φ Φ
 

The problem now reduces to computing   n cos 2

0
m   and   n sin 2

0
m  . While this 

may seem initially complicated the solution is found simply by using the power series expansion 

of  sin  and  cos  . For finite values of  n  and  m  these matrix elements are quite straight forward 

to compute. Below we show and example Java method for computing   n cos 2

0
m   (we 

leave the other term for the reader to derive). This method takes in a scaling factor (allowing the 

use of different, natural, units) and an array of  ln n   and results are placed in the object 

NCM. 

 

í

í í í í
í

í í

í

∂= −
∂

πν Φ + ΦΦ ∂= + − − Φ
Λ Φ ∂



x

Φ= −

πν Φ + ΦΦ= + −
Λ Φ

π πν νΦ+Φ Φ+ΦΦ Φ+ − = + −
Λ Φ Λ Φ

π π ππ πΦ+Φ Φ ΦΦ Φ= −
Φ Φ Φ Φ Φ

n n m
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private void ncm(double f,double GammLn[])    

double  sum , temp1 , temp2 ; 

i n t n , nmax , i , j , row , column ; 

f o r ( row =0; row<d i m e n s i o n ; row++)  { 

f o r ( column =0; column<d i m e n s i o n ; column++)  { 

sum = 0 . 0 ; 

nmax=(( row<column ) ? row : column ) ; 

f o r   ( n =0; n<=nmax;++n )   { 

i =row+column í2 n ; 

i f ( ( ( i >>1<<1)  ==  i )   | |    i ==0)  { 

j= i / 2 ; 

temp1=Math . pow ( f , i )   2 . 0 ; 

temp1 =Math . e x p ( 0 . 5  GammLn [ row ] + 0 . 5  GammLn [ 

column ] 

íGammLn [ n] íGammLn [ rowín] íGammLn [ 

columnín ] ) ; 

temp2 = ( ( ( j >>1<<1)== j ) ? 1 . 0 : í 1 . 0 ) ;   //  í1ˆ j 

sum+=temp1   temp2 / 2 . 0 ; 

} 

} 

NCM. s e t ( row , column , sum Math . e x p (í f   f / 2 . 0 ) ) ; 

} 

} 

} 

   

 

Hence, computing the matrix element of the ring Hamiltonian is readily broken down into 

relatively straightforward tasks. We note that the eigenvectors of the Hamiltonian form a very 

efficient basis for solving the TDSE. However, when we consider the TDSE in that has been 

translated in this way we obtain and extra term in the Hamiltonian. Hence the effective 

Hamiltonian is given by  

? †( ) ( ) ( ) ( ) ( ) (6)V t H t V t i V t V t
t

∂= −
∂

H  

 which yields a time dependent Hamiltonian effective of the form.  
2 2

0

2 ( ( ))
cos ( ). (7)

2 2

x
x

tQ
Q t

C t

πν Φ + ΦΦ ∂= + − − Φ
Λ Φ ∂

H  

 

B. The TDSE 

 

The choice of a basis with which to find the solutions of the time dependent Schrödinger 

equation is of great importance -- an inefficient choice of basis would increase computational 

time dramatically. In the time independent case we chose the eigenstates of the simple harmonic 

oscillator basis, as this is very effective for small values of    because the Josephson current 

acts as a perturbation on what is essentially a simple harmonic oscillator Hamiltonian. When the 

external field is time dependent however it becomes sensible to use a time dependent co-moving 
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basis, i.e. solutions of the Schrödinger equation at that point in time can be represented using 

relatively few basis sates that are the instantaneous eigenvectors of equation (3). 

As this operator (3) is Hermitian we know that it's eigenvalues are real and moreover if the 

eigenvalues are non-degenerate (which they are) the eigenvectors of this operator form a 

complete orthogonal basis set. Moreover we are freely allowed to normalise these eigenvectors 

to obtain a orthonormal basis that spans the whole function space. we will represent these states 

by  |   

We wish to solve the equation  

( ) ( ) (8)t i t
t

ψ ψ∂Η =
∂

 

We do this by representing  |   as a series expansion of the instantaneous eigenstates of (3). 

That is we will reduce the complexity of finding solutions to the time dependent Schrödinger 

equation by representing them in terms of an efficient basis set. we already know how to 

construct this basis as it is an identical problem to the eigen problem of the time independent 

Schrödinger equation. Consequently is is simple to reduce  to a a set of first order differential 

equations for the coefficients of the basis sates that can be found computationally using standard 

methods such as Runge Kutta integration. Representing  | t   as a linear combination of the 

states  | t   yields  

0

( ) ( ) ( ) (9 )t b t tκ
κ

ψ κ
∞

=

=  

  where the b t   are unknown. By direct substitution from 7 we get an equation of the form     

{ }†

0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) (10)x k

k k

V t H t V t Q t b t i b t t
t t

κκ κ
∞ ∞

= =

∂ ∂− Φ =
∂ ∂

   

  now we use the fact that we are using eigenstates of the operator  VHV   as basis states and we 

project on the left by another eigenstate of V HV  and use the orthonormality of these 

eigenstates to obtain      

0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) (11)x

k k

b E t t Q t i b t b t t t
t t t

λ λ λ κλ κ λ κ
∞ ∞

= =

∂ ∂ ∂− Φ = +
∂ ∂ ∂

 

where E t  is the eigenvalue corresponding to the eigenvector | t   of the operator  V HV  at 

time  t  and the arrow is used to denote upon which state the time derivative operator acts. Now 

recall that we get the states  | t  from solving the eigenvalue equation for  V HV  using an 

expansion in terms of eigenvectors  |n   of the simple harmonic oscillator, that is  

,

0

( ) (1 2 )n

n

t v nκκ
∞

=

=  

note that the coefficients  v ,n   are purely real. The charge operator  Q   (in analogy to the 

momentum operator) has the following expectation value with the simple harmonic oscillator 

states  |n    

( )0
, 1 , 11 (1 3)

2
m n m n

C
m Q n i n n

ω δ δ+ −= + −  

  where  1/ C  . Now we can consider the  t |Q | t   term in equation (11) using this 

κ λ κ κ κ κ
ωλ κ

∞ ∞ ∞

+ −
= = =

= = + −

κ
κ κ λ κ κλ κ

∞ ∞ ∞ ∞

= = = =

∂∂Φ∂ ∂ ∂= = =
∂ ∂ ∂ ∂ ∂Φ

L

( ) κ
λ κ λ κ κα

ϕ

∞

+ −
=

∂
= + − −

∂

ωα =
Φ

λ λ λ κ
κ

λ κ λ κ
∞

=

∂ ∂ ∂= − Φ +
∂ ∂ ∂

κ
λ λ λ κ λ

κ
λ κ

∞ ∞

= =

∂∂Φ∂ = − + +
∂ ∂ ∂Φ

λ λ λ κ λ κ
κ

ϕ ϕ
∞

=

∂∂ = − +
∂ ∂



ψ ψ∂Η =
∂

κ
κ

ψ κ
∞

=

=

{ }κκ κ
∞ ∞

= =

∂ ∂− Φ =
∂ ∂

V

λ λ λ κλ κ λ κ
∞ ∞

= =

∂ ∂ ∂− Φ = +
∂ ∂ ∂

V

t

V

κκ
∞

=

=

n Q

( )ω δ δ+ −= + −
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relation and the eigenstate expansion given in equation (12)      

0
, , , , 1 , 1 ,

0 0 0

( ) ( ) 1 (14)
2

m n m m m m

m n m

C
t Q t v v m Q n i v v m v v mκ λ κ κ κ κ

ωλ κ
∞ ∞ ∞

+ −
= = =

= = + −   

In order to get all the terms in this equation in a form we can handle we expand the last term in 

equation (11) in terms of simple harmonic oscillator  states.    

,

, , , , ,

0 0 0 0

( ) ( ) (15)
mx

m n m m m

m n m m x

v
t t v v m n v v v

t t t t

κ
κ κ λ κ κλ κ

∞ ∞ ∞ ∞

= = = =

∂∂Φ∂ ∂ ∂= = =
∂ ∂ ∂ ∂ ∂Φ

 

In the last part of this equation we have expressed the time derivative of the  v ,m   term in terms 

of the external flux as this proves to be convenient for computational purposes, in that  x t   

can be expressed analytically and  v ,m / x t   is just a simple division in the code. 

Expressing the magnetic flux in terms of  0   using the notation  / 0  . Now for 

convenience we define a lookup table function  L   that contains all the elements that we can get 

from the previous TISE calculation.  

( ) ,

, , , 1 , 1

0

1 (1 6 )
( )

m

m m m

m x

v
v v m v m

t

κ
λ κ λ κ κα

ϕ

∞

+ −
=

∂
= + − −

∂
L  

  where  

0

0

1
(1 7 )

2

Cωα =
Φ

 

  rearranging equation (11) we get  

0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (18)xi b t b E t b t t t Q t i t t
t t t

λ λ λ κ
κ

λ κ λ κ
∞

=

∂ ∂ ∂= − Φ +
∂ ∂ ∂

 

  so that  

,

,

0 0

( )
( ) ( ) ( ) ( ) ( ) (19)

mx
m

m x

vti i
b t b E t b t t Q t i v

t t

κ
λ λ λ κ λ

κ
λ κ

∞ ∞

= =

∂∂Φ∂ = − + +
∂ ∂ ∂Φ

 

  which we can express in the more compact and useful form  

,

0

( )
( ) ( ) ( ) ( ( ) ) ( 2 0 )x

x

ti
b t b E t b t t

t t
λ λ λ κ λ κ

κ

ϕ ϕ
∞

=

∂∂ = − +
∂ ∂

L  

The solution to the problem is now reduced to finding the coefficients  b   in equation (20). This 

is just a set of first order coupled differential equations. Because we have to solve these 

equations numerically we must take only a finite number of coefficients in all the expansion 

given. In equations (9) and (16) typical limits are approximately the first 30 terms and we 

typically use 4 eigenstates of the ring Hamiltonian in equation (20). Note that the choice of the 

number of simple harmonic oscillator states used to solve the rings eigenproblem is key to the 

calculations as it sets the number of simple harmonic oscillator states used in setting up the 

instantaneous eigenstates that we use as a basis. As we have deliberately chosen this basis 

because it is very efficient. Hence, any error will propagate though the rest of the computation. 
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C. EXPECTATION VALUES OF OBSERVABLES 

 

1. We are mainly interested in the expectation value of two observables, firstly the energy as this 

is essential to understanding the physics of the system, and secondly the screening current, 

because it is though the screening current that we model the interaction of the SQUID with the 

classical measurement device (the tank circuit) [Bossche, et al (1995); Clark et al (1998).]the 

expectation value of the energy is simply  

† 2

0

| | | | | ( ) | ( ( )) (21)xH H V H V b t E tκ κ
κ

ψ ψ
∞

=

= Ψ Ψ = = Φ  

  as seen in the pervious chapter, the screening current operator is defined to be  

( )
( 2 2 )x

s

x

tH
I

Φ − Φ∂= − =
∂ Φ Λ

 

  and this has an expectation value given by  

†( ) ( ) 1
(23)x x

s

t t
I V Vψ ψ ψ ψΦ − Φ Φ − Φ= Ψ Ψ = = Φ

Λ Λ Λ
 

but in the algorithm we use to solve the TDSE we expand    in terms of the instantaneous 

energy eigenstates of the operator  V HV  which in turn is expanded in terms of simple harmonic 

oscillator basis states, i.e.  

,

0 0 0

( ) (2 4 )nb t b v nκ κ κ
κ κ κ

ψ κ
∞ ∞ ∞

= = =

= =  

  from this an the fact that  

( )0
, 1 , 1| | ( 1) (2 5)

2
m n m nm n n n

ω δ δ+ −
ΛΦ = + +  

  we obtain  

( )0
, , 1 , , 1

0 0 0

1 (26)
2

s n n n n

n

I b b n v v nv vλ κ λ κ λ κ
λ κ

ω ∞ ∞ ∞
∗

+ −
= = =

= + +
Λ

 

  We have now expressed the energy and screening current operators in terms of quantities that 

we obtain trough solving the time dependent Schrödinger equation for the system. 

 

 

CONCLUDING REMARKS : 

 

In this paper we have set out a number of tips and tricks on dealing with the numerical analysis 

of simple SQUID rings. We have presented sufficient information to allow the reader to begin to 

tackle both time independent and time dependent problems. We hope that it will be of use to any 

reader wishing to start working in this area. 

 

 

 

 

 

 

al )1998(



κ κ
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ψ ψ
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Φ − Φ∂= − =
∂ Φ Λ
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Λ Λ Λ

V

κ κ κ
κ κ κ
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∞ ∞ ∞
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   ΚѧѧΤΒϟ΍ ήϫϮѧѧΟ ϰѧѧϠϋ ϱϮѧѧΘΤϳ ϻ ϲϟΎѧѧΘϟΎΑ ΍άѧѧϫϭ ˬϦϳήѧѧΧϵ΍ Ξ΋ΎѧѧΘϧ ξѧѧόΑ)  ϩάѧѧϫ ϥ΃ ϲѧѧϤϠϋ ΪѧѧΣ ϰѧѧϠϋϭ

   ΪόΑ ήθϨΗ Ϣϟ ΕΎϣϮϠόϤϟ΍ (              ϟ΍ ϲѧϓ ϥϮѧϴϏήϳ ϦϳάѧϠϟ Δόϳήѧγ ΔΤϤϟ ΔϗέϮϟ΍ ϡΪϘΗ ϚϟΫ Ϧϋ Ύ˱οϮϋϭ  ΔѧΟάϤϨ

        ϲ΋ΎѧΑήϬϜϟ΍ έΎѧϴΘϠϟ ϞϴѧλϮΘϟ΍ ΔϘ΋Ύϓ Ω΍ϮϤϠϟ ΔϳΩΪόϟ΍  .              ˯ΪѧΒϠϟ ϦϴΜΣΎѧΒϠϟ ϢϋΪѧϛ ΔѧϗέϮϟ΍ ϩάѧϫ ϡΪѧϘϧ ϑϮѧγϭ

 ϊϳήδϟ΍ ωϮοϮϣ ϰϓήϟ΍ ΔΟάϤϨϟ΍΍ ϰϠϋ ΔϴϨΒϤϟ΍ϭ ΔϴοΎϳϞϴλϮΘϟ΍ ΔϘ΋Ύϓ Ω΍ϮϤϟϰΑήϬϜϟ΍ έΎϴΘϠϟ . 
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