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ABSTRACT 

 

We suggest an alternative mathematical model for the massless neutrino. Consider an elastic 

continuum in 3-dimensional Euclidean space and assume that points of this continuum can 

experience no displacements, only rotations. This framework is a special case of the so-called 

Cosserat theory of elasticity. Rotations of points of the continuum are described by attaching to 

each point an orthonormal basis which gives a field of orthonormal bases called the coframe. As 

the dynamical variables (unknowns) of our theory we choose a coframe and a density. We write 

down a potential energy which is conformally invariant and then incorporate time in the 

standard Newtonian way, by subtracting kinetic energy. Finally, we rewrite the resulting 

nonlinear variational problem in terms of an unknown spinor field. We look for quasi-stationary 

solutions, i.e. solutions that harmonically oscillate in time. We prove that in the quasi-stationary 

setting our model is equivalent to a pair of massless Dirac equations. The crucial element of the 

proof is the observation that our Lagrangian admits a factorization. 

 

 

1. INTRODUCTION 

 

The massless Dirac equation is a system of two homogeneous linear complex partial differential 

equations for two complex unknowns. The unknowns (components of a spinor) are functions of 

time and the three spatial coordinates. This equation is the accepted mathematical model for the 

massless neutrino. 

The geometric interpretation of the massless Dirac equation is rather complicated. It relies on the 

use of notions such as 

• spinor, 

• Pauli matrices, 

• covariant derivative (note that formula (5) for the covariant derivative of a spinor field is 
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quite tricky). 

 

There is also a logical problem with the massless Dirac equation in that it predicts the existence 

of four essentially different types of plane wave solutions which are called left-handed neutrino, 

right-handed neutrino, left-handed antineutrino and right-handed antineutrino. Only left-handed 

neutrinos and right-handed antineutrinos are observed experimentally. 

The purpose of this paper is to formulate an alternative mathematical model for the massless 

neutrino, a model which is geometrically much simpler. The advantage of our approach is that it 

does not require the use of spinors, Pauli matrices or covariant differentiation. The only 

geometric concepts we use are those of a 

• metric, 

• differential form, 

• wedge product, 

• exterior derivative. 

 

Our model also overcomes the logical problem mentioned in the previous paragraph in that it 

predicts the existence of only two essentially different types of plane wave solutions. These 

correspond to clockwise and anticlockwise rotations of the coframe. 

 

The paper has the following structure. In Section 2 and conventions we introduce our notation 

and in Section 3 we formulate the massless Dirac equation. In Section 4 we formulate our 

mathematical model. In Section Relativistic we rewrite our Lagrangian in relativistic form; we 

do this to show that our Lagrangian looks simpler in relativistic notation, though we do not 

pursue the relativistic approach consistently in the current paper. In Section Choosing a common 

language we translate our model into the language of spinors. In Section Quasi-stationary case 

we prove Theorem main theorem which is the main result of the paper: this theorem establishes 

that in the quasi-stationary case (prescribed oscillation in time with frequency ) our 

mathematical model is equivalent to a pair of massless Dirac equations. The crucial element of 

the proof of Theorem main theorem is the observation that our Lagrangian admits a factorization; 

this factorizations is the subject of Lemma 2. Section Plane wave solutions deals with plane 

wave solutions. The concluding discussion is contained in Section Discussion. 

 

 

2.  NOTATION AND CONVENTIONS 

 

We work on a 3-manifold  M   equipped with prescribed negative (i.e. with signature   ) 

metric  g  . We choose negative metric on the 3-manifold  M   in order to facilitate the 

subsequent extension (see Section Relativistic) to a Lorentzian metric  

1 0
(1 )

0
g

g α β
=  

 

 of signature    on the 4-manifold  R M . We denote time by  x
0

  and local coordinates 

on  M   by  x  ,  1,2,3 . 

     

σ σ= =

α β β α α βσ σ σ σ δ α β+ = =
ασ σ α= =

R

β β γ
α α β α α γξ ξ σ σ σ ξ∇ = ∂ + ∂ + Γ

R

α
ασ σ ξ± ∂ + ∇ =



•
•
•
•

M

g M

α β
=

R M

M
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All constructions presented in the paper are local so we do not make a priori assumptions on the 

geometric structure of  M,g  . 

Our notation follows [Pasic and D. Vassiliev,  (2005); D. Vassiliev,  (2007), Burnett and 

Vassiliev, (2009); Elie Cartan and Albert Einstein, 1979]. In particular, in line with the traditions 

of particle physics, we use Greek letters to denote tensor (holonomic) indices. The only 

difference with references  [Pasic and D. Vassiliev,  (2005); D. Vassiliev,  (2007), Burnett and 

Vassiliev, (2009); Elie Cartan and Albert Einstein, 1979] is that, by default, we assume tensor 

indices to run through the values 1, 2, 3 rather than 0, 1, 2, 3. The index 0 will be treated 

separately. 

Details of our spinor notation are given in Appendix A of [Pasic and D. Vassiliev,  (2005)]. We 

choose the zeroth Pauli matrix to be the identity matrix, 

 

0 0
1 0

( 2 )
0 1

a b

a b
σ σ= =  

 The defining relations for the three remaining Pauli matrices are  

2 , , 1, 2 , 3 , (3 )c b c b c

aab ab
gα β β α α βσ σ σ σ δ α β+ = =  

0 0 , 1, 2 , 3 . ( 4 )a b

a b

ασ σ α= =  

 We assume that all our Pauli matrices do not depend on time  x
0

 . Formulae (2)--(4) mean that 

we are effectively working on the 4-manifold  R M  equipped with Lorentzian metric (1). 

By    we denote the covariant derivative on the 3-manifold  M   with respect to the Levi-Civita 

connection. It acts on a vector field and a spinor field as
v : v v

 and  

1
: ( ) (5 )

4

a a ac b

b c b c

β β γ
α α β α α γξ ξ σ σ σ ξ∇ = ∂ + ∂ + Γ  

respectively, where  : / x   and  

: 1
2

g g g g
 

are the Christoffel symbols. We also denote 0 : / x0 .
 

 

We identify differential forms with covariant antisymmetric tensors. Given a pair of real 

covariant antisymmetric tensors  P   and  Q   of rank  r   we define their dot product as 

P Q : 1
r!

P 1 r Q 1 r g 1 1 g r r .
.  We also define 

P 2 : P P.
 

 

 

3. THE DIRAC EQUATION 

 

The following system of two complex linear partial differential equations on  R M  for two 

complex unknowns is known as the massless Dirac equation:  
0

0( ) 0 . (6 )a

ab ab
i α

ασ σ ξ± ∂ + ∇ =  

 Here    is a spinor field which plays the role of dynamical variable (unknown quantity) and is a 
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function of time  x
0 R   and local coordinates  x1 ,x2 ,x3

  on the 3-manifold  M  . Summation 

in (6) is carried out over  1,2,3 . The two choices of sign in (6) give two versions of the 

massless Dirac equation which differ by time reversal. Thus, we have a pair of massless Dirac 

equations. 

The corresponding Lagrangian density is  

0 0

0 0( ) : ( )
2

( ) | det | . (7 )

[

]

b a a b

ab ab

b a a b

ab ab

i
L

gα α
α α

ξ ξ σ ξ ξ σ ξ

ξ σ ξ ξ σ ξ

± = ± ∂ − ∂

+ ∇ − ∇

Dir

 

 

Note that the massless Dirac equation and Lagrangian are often called Weyl equation and 

Lagrangian respectively. 

 

 

4.  OUR MODEL 

 

A coframe  is a triplet of real covector fields  
j T M ,  j 1,2,3 , satisfying the constraint  

1 1 2 2 3 3 . (8 )g ϑ ϑ ϑ ϑ ϑ ϑ= − ⊗ − ⊗ − ⊗  

For the sake of clarity we repeat formula (8) giving the tensor indices explicitly: 

g 1 1 2 2 3 3 .
.  We assume our coframe to be right-handed, i.e. we assume 

that  det
j

0
. 

Formula (8) means that the coframe is a field of orthonormal bases. Of course, at every point of 

the 3-manifold  M   the choice of coframe is not unique: there are 3 real degrees of freedom in 

choosing the coframe and any pair of coframes is related by an orthogonal transformation. 

As dynamical variables in our model we choose a coframe    and a positive density  . These 

live on the 3-manifold  M   and are functions of local coordinates  x1 ,x2 ,x3
  as well as of time  

x0 R
 

At a physical level choosing the coframe as an unknown quantity means that we view our 3-

manifold  M   as an elastic continuum and allow every point of this continuum to rotate, assuming 

that rotations of different points are totally independent. These rotations are described 

mathematically by attaching to each point a coframe (= orthonormal basis). The approach in which 

the coframe plays the role of a dynamical variable is known as teleparallelism (= absolute 

parallelism = fernparallelismus). This is a subject promoted by A. Einstein and E. Cartan 

[Unzicker and Case, 2005; Sauer, 2006]. The idea of rotating points may seem exotic, however it 

has long been accepted in continuum mechanics within the so-called Cosserat theory of elasticity 

[Cosserat and Cosserat, 2006]. The Cosserat theory of elasticity has been in existence since 1909 

and appears under various names in modern applied mathematics literature such as oriented

medium, asymmetric elasticity, micropolar elasticity, micromorphic elasticity, moment elasticity 

etc. Cosserat elasticity is closely related to the theory of ferromagnetic materials and the theory of 

liquid crystals. As to teleparallelism, it is, effectively, a special case of Cosserat elasticity: here the 

assumption is that the elastic continuum experiences no displacements, only rotations. It is 

interesting to note that when Cartan started developing what eventually became modern 

ϑ ϑ ϑ ϑ ϑ ϑ= − ∧ + ∧ + ∧

ϑ ϑ

→

α β α β

ρ= −

ρ ρ

ϑ ρ=

ϑ ϑ ϑ ϑ ϑ ϑ ϑ= ∧ ∂ + ∧ ∂ + ∧ ∂



R M

α α
α α

ξ ξ σ ξ ξ σ ξ

ξ σ ξ ξ σ ξ

± = ± ∂ − ∂

+ ∇ − ∇

j M j

ϑ ϑ ϑ ϑ ϑ ϑ= − ⊗ − ⊗ − ⊗

t

M

M

R

M
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differential geometry he acknowledged that he drew inspiration from the `beautiful' work of the 

Cosserat brothers [Ball, 2007; Cartan, (1922); Hehl and Obukhov, (2007); Burnett, Chervova and 

Vassiliev, (2008); Berestetskii, Lifshitz and Pitaevskii, 1982; Streater and Wightman, 2000].  

We define the 3-form  

1 1 2 2 3 31
: ( ) (9)

3
T d d dϑ ϑ ϑ ϑ ϑ ϑ= − ∧ + ∧ + ∧ax  

where d  denotes the exterior derivative. This 3-form is called axial torsion of the teleparallel 

connection. An explanation of the geometric meaning of the latter phrase as well as a detailed 

exposition of the application of torsion in field theory and the history of the subject can be found 

in [12]. For our purposes the 3-form (9) is simply a measure of deformations generated by 

rotations of points of the 3-manifold  M  . 

Note that the 3-form (9) has the remarkable property of conformal covariance: if we rescale our 

coframe as  

(1 0 )j h jeϑ ϑ  

where  

:h M →  

 is an arbitrary scalar function, then our metric is scaled as  
2 (11)hg e gα β α β  

and our 3-form is scaled as  
2 (1 2 )hT e Tax ax  

without the derivatives of  h  appearing. 

We take the potential energy of our continuum to be  
2

0 1 2 3( ) : . (13)
M

P x T dx dx dxρ= − ax  

We put a minus sign in the RHS of (13) because the metric on our 3-manifold  M   is negative, 

see beginning of Section Notation and conventions. As a result, our potential energy is 

nonnegative, as it should be. 

It is easy to see that the potential energy (13) is conformally invariant: it does not change if we 

rescale our coframe as (10) and our density as  
2 . (1 4 )heρ ρ  

This follows from formulae (12), (11) and 
Tax 2 1

3!
Tax Tax g g g

. 

Thus, the guiding principle in our choice of potential energy (13) is conformal invariance. 

We take the kinetic energy of our continuum to be  
0 2 1 2 3( ) : ? ? (15)

M
K x dx dx dxϑ ρ=  

 where    is the 2-form  

1 1 2 2 3 3

0 0 0

1
: ( ). (16)

3
ϑ ϑ ϑ ϑ ϑ ϑ ϑ= ∧ ∂ + ∧ ∂ + ∧ ∂  

 

 

 

 Unlike (13), we did not put a minus sign in the RHS of (15): this is because we are now squaring 

a 2-form rather than a 3-form (the number 2 is even whereas the number 3 is odd). As a result, 
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our kinetic energy is nonnegative, as it should be. 

It is easy to see that the 2-form (16) is, up to a constant factor, the Hodge dual of angular 

velocity, so (15) is the standard expression for the kinetic energy of a homogeneous isotropic 

Cosserat continuum. One should think of a collection of identical infinitesimal rotating solid 

balls distributed with density   . We think in terms of balls rather than ellipsoids because of the 

isotropy, i.e. we do not have preferred axes of rotation. 

We now combine the potential energy (13) and kinetic energy (15) to form the action (variational 

functional) of our dynamic problem:  
0 0 0 0 1 2 3: ( ( ) ( )) ( , ) (17)

M
S K x P x dx L dx dx dx dxϑ ρ

×
= − =  

 where  
2 2

( , ) : ( ) (18)L Tϑ ρ ϑ ρ= + ax  

 is our Lagrangian density. Note that this Lagrangian density is conformally invariant in the 

Lorentzian sense. The latter means that we rescale time simultaneously with the rescaling of the 

3-dimensional coframe. 

Our field equations (Euler--Lagrange equations) are obtained by varying the action (17) with 

respect to the coframe    and density   . Varying with respect to the density    is easy: this 

gives the field equation  
2 Tax 2 0

which is equivalent to  
L , 0.

 Varying 

with respect to the coframe    is more difficult because we have to maintain the metric 

constraint (8); recall that the metric is assumed to be prescribed (fixed). 

We do not write down the field equations for the Lagrangian density  L ,   explicitly. We 

note only that they are highly nonlinear and do not appear to bear any resemblance to the linear 

Dirac equation (6). 

 

5.  Relativistic representation of our Lagrangian 

In this section we work on the 4-dimensional manifold 
R M

 equipped with Lorentzian 

metric (Lorentzian metric). This manifold is an extension of the original 3-manifold  M  . We use 

bold type for extended quantities. 

We extend our coframe as 

 0
1

, (19)
0

α
α

ϑ =  

1
, 1, 2, 3 (20)j

j
jα

α

ϑ
ϑ

= =  

 where the bold tensor index    runs through the values 0, 1, 2, 3, whereas its non-bold 

counterpart  runs through the values 1, 2, 3. In particular, the 0  in formula (Relativistic 

equation 1) stands for a column of three zeros. 

The extended metric (1) is expressed via the extended coframe (19), (20) as  
0 0 1 1 2 2 3 3 (21)g ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ= ⊗ − ⊗ − ⊗ − ⊗  

(compare with (constraint for coframe)). The extended axial torsion is 

ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ
=

= ∧ − ∧ − ∧ − ∧

R

ϑ ϑ= ∧ +

ξ σ ξ=

ρ =

α αϑ ϑ ξ σ ε σ ξ−+ = −

α αϑ ξ σ ξ−=

ε ε ε ε= = = =
−

ϑ ρ ρ=



ϑ ρ
×

= − =

ϑ ρ ϑ ρ= +

R

M

α
α

ϑ =

α
α

ϑ
ϑ

= =

ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ= ⊗ − ⊗ − ⊗ − ⊗
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0 0 1 1 2 2 3 3

0

1
(20)

3

axT d d d dϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ
=

= ∧ − ∧ − ∧ − ∧  

where  d   denotes the exterior derivative on  R M . Formula (Relativistic equation 4) can be 

rewritten as  

0 (21)ax axT Tϑ ϑ= ∧ +  

with    and  Tax
  defined by (16) and (9) respectively. Squaring (23) we get  

Tax 2 2 Tax 2

which implies that our Lagrangian density (Our model equation 6) 

can be rewritten as 

 

 

 

The point of the arguments presented in this section was to show that if one accepts the 

relativistic point of view then our Lagrangian density (18) takes the especially simple form (24). 

A consistent pursuit of the relativistic approach would require the variation of all four elements 

of the extended coframe which we do not do in the current paper. Instead, we assume that the 

zeroth element of the extended coframe is specified by formula (19). 

 

 

6. CHOOSING A COMMON LANGUAGE 

 

In order to compare the two models described in Sections The Dirac equation and Our model we 

need to choose a common mathematical language. We choose the language of spinors. Namely, 

we express the coframe and density via a spinor field  
a
  according to formulae  

0 , (25)a b

ab
s ξ σ ξ=  

| det | , (26)s gρ =  

1 2 1 0( ) , (27)a bc d

dcab
i sα αϑ ϑ ξ σ ε σ ξ−+ = −  

3 1 (27)a b

ab
sα αϑ ξ σ ξ−=  

 where  

0 1
. (29)

1 0

ab ab

ab ab
ε ε ε ε= = = =

−
 

 Note that throughout this paper we assume that the density    does not vanish. This is 

equivalent to the assumption that the spinor field  
a
  does not vanish. 

Formulae (25)--(29) are effectively a special case of those from Section 5 of [rome], the only 

difference being that now the two spinors in the bispinor are not independent but related as 

b
0

ab
a

. This is hardly surprising as in the current paper we work in a non-relativistic 3-

dimensional setting so we do not really need bispinors. We also do not really need to distinguish 

between dotted and undotted spinor indices but we retained this distinction in order to facilitate 

comparison with [Burnett, Chervova and Vassiliev, 2008]. 

Formulae (25)--(29) establish a one-to-two correspondence between a coframe    and a 

2

( , ) . (2 4 )L ϑ ρ ρ= T
ax
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(positive) density    on the one hand and a nonvanishing spinor field  
a
  on the other. The 

correspondence is one-to-two because for given    and    the above formulae define  
a
  

uniquely up to choice of sign. This is in agreement with the generally accepted view (see, for 

example, Section 19 in [Berestetskii, Lifshitz and Pitaevskii, 1982] or Section 3.5 in [Streater 

and Wightman, 2000]) that the sign of a spinor does not have a physical meaning. 

 

 Remark 1 Formulae (25)--(29) look somewhat unnatural in that they are assign a special 

meaning to the element  
3

  of our coframe. This can be overcome by allowing rigid rotations of 

the coframe, i.e. linear transformations 
j O j

k
k

where 
O j

k j,k 1,2,3
, is a constant 

orthogonal matrix with determinant  1  . Note that such transformations are totally unrelated to 

coordinate transformations. It is well know that axial torsion is invariant under rigid rotations of 

the coframe, hence our model described in Section Our model is invariant under rigid rotations 

of the coframe. In particular, it is natural to view coframes which differ by a rigid rotation as 

equivalent. 

7.  QUASI-STATIONARY CASE 

 

For both models, the traditional one (described in Section The Dirac equation) and our model 

(described in Section Our model), we shall now seek solutions of the form  
00 1 2 3 1 2 3( , , , ) ( , , ) (30)a i x ax x x x e x x xωξ ζ−=  

where 
0

 is a fixed real number. We shall call solutions of the type (Quasi-stationary case 

equation 1) quasi-stationary. In seeking quasi-stationary solutions what we are doing is 

separating out the time variable x0
, as is done when reducing, say, the wave equation to the 

Helmholtz equation. 

Substituting (30) into (7) we get  

0( ) ( ) | det | .(31)
2

b a a b a b

ab ab ab

i
L gα α

α αζ ζ σ ζ ζ σ ζ ωζ σ ζ± = ∇ − ∇ ±
Dir

 

   Substituting (30) into (25)--(29) and the latter into (16) we get  

4
3

1 2

 

Hence, 

2 16
9

2

 and formula (16) becomes  

2
216

( ) (32)
9

L Tζ ω ρ= +ax  

where  
0 | det | . (33)a b

ab
gρ ζ σ ζ=  

Note that our 3-dimensional metric is negative (see beginning of Section Notation and 

conventions), so
Tax 2 0

and the Lagrangian density (32) may vanish. In fact, as we shall see 

from the proof of Theorem 1 in the end of this section, it has to vanish on solutions of our field 

equations. 

In order to compare the Lagrangian densities (31) and (32) we need an explicit formula for 

α α
α αρ ξ σ ξ ξ σ ξ∗ = ∇ − ∇

αβγ
αβγε∗ =

α α α αασ ϑ ϑ ϑ ϑ= = + +

= =
−

−

ξ =±

R



a

a

ωξ ζ−=

α α
α αζ ζ σ ζ ζ σ ζ ωζ σ ζ± = ∇ − ∇ ±

ζ ω ρ= +

ρ ζ σ ζ=
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Tax

 in terms of the spinor field. This formula is given in the following 

 Lemma 1   We have

2
( ) ( ) | det | (34)

3

b a a b

ab ab

i
T gα α

α αρ ξ σ ξ ξ σ ξ∗ = ∇ − ∇ax

where

1
: | det | ( ) (35)

3!
T g T αβγ

αβγε∗ =ax ax

is the Hodge dual of 
Tax , 123 : 1.

Proof  Observe that time does not appear in the formula (9) for axial torsion (summation is 

carried out over  1,2,3 ). Hence the result we are proving should hold for spinor fields    

with arbitrary dependence on time and not only for quasi-stationary ones. As the expression in 

the RHS of (34) is an invariant we can also temporarily (for the duration of the proof of Lemma 

lemma 1) suspend our convention (Section Notation and conventions) that our Pauli matrices do 

not depend on time. 

In order to simplify calculations we observe that we have freedom in our choice of Pauli 

matrices. It is sufficient to prove formula (34) for one particular choice of Pauli matrices, hence 

it is natural to choose Pauli matrices in a way that makes calculations as simple as possible. Note 

that this trick is not new: it was, for example, extensively used [Streater and A. S. Wightman, 

2000]. 

       We choose Pauli matrices  
1 2 3

1 2 3
(36)j

ab jab ab ab ab
s s s sα α α αασ ϑ ϑ ϑ ϑ= = + +  

 where  

1

2

3

0 1

1 0

0
: . (37)

0

1 0

0 1

ab

jab ab

ab

s
i

s s
i

s

= =
−

−

 

 Let us stress that in the statement of Lemma lemma 1 Pauli matrices are not assumed to be 

related in any way to the coframe . We are just choosing the particular Pauli matrices (36), (37) 

to simplify calculations in our proof. 

Substituting (36), (37) into (27), (28) we see that the system (25)--(29) can be easily resolved for  

 : solutions are spinors with  
2 0

 and  
1

  which is nonzero and real. Thus, we have 

(38)
0

h

a eξ =±  

where 
h : M R

 is a scalar function. Formula (38) may seem strange: we are proving Lemma 

lemma 1 for a general nonvanishing spinor field    but ended up with formula (38) which is 

very specific. However, there is no contradiction here because we chose Pauli matrices specially 
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adapted to the coframe and, hence, specially adapted to the corresponding spinor field. 

Formulae (5) and (38) imply  

 

i
2

d
ad

a i
2

d
ad h a i

8
d

ad
aƛ

bƛ bƛ
b

ie2h

8 a1
aƛ

1ƛ 1ƛ
is
8 a1

aƛ
1ƛ

 

where 
s a 0

ab
b e2h

 is the scalar (25) and the dots denote purely imaginary terms. We 

now write down the spinor summation indices explicitly:  

i
2

d
ad

a is
8 11

11
11 11

12
12

21
21

11 21
22

12  
Finally, substituting explicit formulae (36), (37) for our Pauli matrices and using the dots to 

absorb all purely imaginary terms we get  

 

i
2

d
ad

a is
8

3 3 3 3 1 i 2 1 i 2

1 i 2 1 i 2 3 1 i 2 3 1 i 2

is
8

i 3 1 2 i 3 2 1 i 1 2 3

i 2 1 3 i 1 3 2 i 2 3 1

s
8

3 1 2 3 2 1 1 2 3

2 1 3 1 3 2 2 3 1

s
8

1 2 d 3 3 1 d 2 2 3 d 1

 
Hence,  

1 2 3 3 1 2 2 3 1

( )
2

[( ) ( ) ( ) ].(39)
4

b a a b

ab ab

i

s
d d d

α α
α αξ σ ξ ξ σ ξ

ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ

∇ − ∇

= ∧ ⋅ + ∧ ⋅ + ∧ ⋅
 

 

Axial torsion is defined by formula (9) whereas  

|detg| 1 2 3

 
 

 

 

 

so formula (35) can be rewritten as  

ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ

∗ = ⋅ ∧ ∧ =− ∧ + ∧ + ∧ ⋅ ∧ ∧

= ∧ ⋅ + ∧ ⋅ + ∧ ⋅

ζ ζωζ
ζ ζ

+ −

+ −= −
−

ζ ζ+ −≠



ƛ
ƛ ƛ

ƛ
ƛ ƛ

ƛ
ƛ

α α
α αξ σ ξ ξ σ ξ

ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ

∇ − ∇

= ∧ ⋅ + ∧ ⋅ + ∧ ⋅

Chervova, & Vassiliev,  J. of the Association of Arab Univ.  for Basic and Applied Science, Vol. 7, 2009, 25-42 

 

 35

1 2 3 1 1 2 2 3 3 1 2 3

1 2 3 3 1 2 2 3 1

1
( ) ( ) ( )

3

1
[( ) ( ) ( ) ].(40)

3

T T d d d

d d d

ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ

∗ = ⋅ ∧ ∧ =− ∧ + ∧ + ∧ ⋅ ∧ ∧

= ∧ ⋅ + ∧ ⋅ + ∧ ⋅

ax ax

 

Here we used the fact that because of the negativity of our metric (see (8)) we have  

j 2 1, j 1,2,3.
 

      Formulae (40), (39) and (26) imply (34).  

  

      We are now in a position to establish the relationship between the Lagrangian densities (31) 

and (32). 

    Lemma 2 In the quasi-stationary case (30) our Lagrangian density (32) factorises as  

( ) ( )32
( ) . (41)

9 ( ) ( )

L L
L

L L

ζ ζωζ
ζ ζ

+ −

+ −= −
−

Dir Dir

Dir Dir

Let us emphasise once again that throughout this paper we assume that the density    does not 

vanish. In view of formulae (31), (33), in the quasi-stationary case this assumption can be 

equivalently rewritten as  

( ) ( ) (42)L Lζ ζ+ −≠
Dir Dir

 

 so the denominator in (41) is nonzero. 

    Proof of Lemma lemma 2 In the quasi-stationary case (30) formula (34) takes the form  

Tax 2i
3

b
ab

a a
ab

b |detg|
 

because the factor 
e i x 0

cancels out. Hence (recall that our metric is negative)  

Tax 2 16

9 2

i
2

b
ab

a a
ab

b |detg|
2

.

 
Substituting this into (32) we get  

L 16
9

i
2

b
ab

a a
ab

b |detg|
2

2 2 .
 

Formulae (43), (31) and (33) imply (41).  

  

        The following theorem is the main result of our paper. 

 Theorem 1  In the quasi-stationary case (30) a spinor field    is a solution of the field 

equations for the Lagrangian density L   if and only if this spinor field is a solution of the 

field equations for the Lagrangian density
LDir

or the field equations for the Lagrangian density 
LDir .

Proof  Observe that the Dirac Lagrangian densities
LDir defined by formula (31) possess the 

property of scaling covariance:  
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LDir eh e2hLDir  

where 
h : M R

is an arbitrary scalar function. We claim that the statement of the theorem 

follows from (41) and (44). The proof presented below is an abstract one and does not depend on 

the physical nature of the dynamical variable , the only requirement being that it is an element 

of a vector space so that scaling makes sense. 
Note that formulae (41) and (44) imply that the Lagrangian density L possesses the property of 
scaling covariance, so all three of our Lagrangian densities, L, L

+
Dir and L

-
Dir, and, have this 

property. Note also that if ζ is a solution of the field equation for some Lagrangian density L 
possessing the property of scaling covariance then. ( ) 0.ζ =L  Indeed, let us perform a scaling 
variation of our dynamical variable  

(45)hζ ζ ζ+  

where 
h : M R

is an arbitrary small scalar function with compact support.  

Then 
0 L 2 hL

which holds for arbitrary  h  only if  
L 0.

 

In the remainder of the proof the variations of are arbitrary and not necessarily of the scaling 

type (45). 

Suppose that    is a solution of the field equation for the Lagrangian density  LDir  

 [The case when    is a solution of the field equation for the Lagrangian density LDir  

 is handled similarly.]  Then  
LDir 0

and, in view of (42),  
LDir 0

. Varying   , we 

get  

L 32
9

LDir

LDir LDir

LDir LDir

LDir

LDir LDir

32
9

LDir
32

9
LDir

 
so  

3 2
( ) ( ) . ( 4 6 )

9
L L

ωδ ζ δ ζ+=
Dir

 

We assumed that   is a solution of the field equation for the Lagrangian density 

LDirso LDir 0
and formula (46) implies that 

L 0.
.  As the latter is true for 

an arbitrary variation of    this means that   is a solution of the field equation for the 

Lagrangian density  L. 

Suppose that is a solution of the field equation for the Lagrangian density L. Then  L 0  

and formula (41) implies that either 
LDir 0orLDir 0;

 note that in view of (42) we cannot 

have simultaneously 
LDir 0

 and LDir 0.  Assume for definiteness that  

LDir 0
. [The case when 

LDir 0
 is handled similarly.] Varying    and repeating 

the argument from the previous paragraph we arrive at (formula for variation of our action). We 

assumed that    is a solution of the field equation for the Lagrangian density  L  so 

α

σ
σ σ

σ
= =

−

−

+

ωδξ δζ−=

R

ωξ ζ− + ⋅=



R

ζ
ζ =

ζ ζ ζ+

R

L L
h L

ωδ ζ δ ζ+=

L

L
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1

2

3

0 1

1 0

0
: ( 4 8 )

0

1 0

0 1

ab

ab ab

ab

i

iα

σ
σ σ

σ
= =

−

−

L 0
and formula (formula for variation of our action) implies that 

LDir 0
. As 

the latter is true for an arbitrary variation of    this means that    is a solution of the field 

equation for the Lagrangian density .L+
Dir

 

The proof of Theorem main theorem presented above may appear to be non-rigorous but it can 

be easily recast in terms of explicitly written field equations. 

Theorem main theorem establishes that in the quasi-stationary case our model reduces to a pair 

of massless Dirac equations (6). There is, however, a small logical flaw in this statement. The 

full time-dependent field equations for our model (as well as for the massless Dirac model) are 

obtained by varying the spinor field    by a    with arbitrary dependence on time whereas in 

the proof of Theorem main theorem we have effectively varied the spinor field    maintaining 

quasi-stationarity, i.e. we took  
00 1 2 3 1 2 3( , , , ) ( , , ) (47)a i x ax x x x e x x xωδξ δζ−=  

 (compare with (30)). Note that the    in the above formula does not depend on time. If we 

now modify (47) so that    depends on time this will generate an extra term in the field 

equations, one with the time derivative. It turns out that this extra term with the time derivative 

vanishes. For the sake of brevity we do not present the corresponding calculation. 

 

 

8. PLANE WAVE SOLUTIONS 

Suppose that 
M R3

 is Euclidean 3-space equipped with Cartesian coordinates  

x x1 ,x2 ,x3
  and metric 

g diag 1, 1, 1 .
Let us choose constant Pauli matrices  

(compare with (36), (37)) and seek solutions of the form  

 

 

 

 

 

 

 

 

 

 

 
00 1 2 3 ( )( , , , ) (49)a i x k x ax x x x e ωξ ζ− + ⋅=  

 

(compare with (30)) where  0   is a real number,  k k1 ,k2 ,k3   is a real constant covector 

and  0   is a (complex) constant spinor. We shall call solutions of the type (49) plane wave. 

In seeking plane wave solutions what we are doing is separating out all the variables, namely, the 

time variable  x
0

 and the spatial variables  x x1 ,x2 ,x3
 . 

    We look at the field equations of our model described in Section 4. These field equations are 
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highly nonlinear so it is not a priori clear that one can seek solutions in the form of plane waves. 

However, plane wave solutions are a special case of quasi-stationary solutions and the latter were 

analysed in Section 7. We know (Theorem main theorem) that in the quasi-stationary case our 

model reduces to a pair of Dirac equations (6). Substituting (2), (48) and (49) into (6) we get  
1

3 1 2

2
1 2 3

0. (50)
k k ik

k ik k

ω ζ
ω ζ

± − − −
=

− + ± +
 

The determinant of the matrix in the LHS of (50) is 
2 k1

2 k2
2 k3

2

 so this system has a 

nontrivial solution    if and only if  
k1

2 k2
2 k3

2 2

. Our model is invariant under 

rotations of the Cartesian coordinate system (orthogonal transformations of the coordinate 

system which preserve orientation), so, without loss of generality, we can assume that  

0

0 . (51)k α

ω
=

±
 

Substituting (51) into (50) we conclude that, up to scaling by a nonzero complex factor, we have  

1
. (52 )

0

aζ =  

Combining formulae (49), (51) and (52) we conclude that for each real  0   our model 

admits, up to a rotation of the coordinate system and rescaling, two plane wave solutions and that 

these plane wave solutions are given by the explicit formula  

0 3( )
1

. (53)
0

a i x xe ωξ − ±=  

Let us now rewrite the plane wave solutions (53) in terms of our original dynamical variables, 

coframe    and density   . Substituting (2), (48) and (53) into (25)--(29) we get  1   and  
0 3 0 3

1 0 3 2 0 3 3

cos2 ( ) sin2 ( ) 0

sin2 ( ) , cos2 ( ) , 0 .

0 0 1

x x x x

x x x xα α α

ω ω
ϑ ω ϑ ω ϑ

± ±
= − ± = ± =  

Note that scaling of the spinor    by a nonzero complex factor is equivalent to scaling of the 

density    by a positive real factor and time shift 
x0 x0 const

 

    We will now establish how many different (ones that cannot be continuously transformed into 

one another) plane wave solutions we have. To this end, we rewrite formula (54) in the form  
0 3 0 3

1 0 3 2 0 3 3

cos2| | ( ) sin2| | ( ) 0

sin2| | ( ) , cos2| | ( ) , 0 (54)

0 0 1

x bx a x bx

a x bx x bxα α α

ω ω
ϑ ω ϑ ω ϑ

+ +
= − + = + =  

 where a and b can, independently, take values 1 . It may seem that we have a total of 4 

different plane wave solutions. Recall, however (see Remark 1), that we can perform rigid 

rotations of the coframe and that we have agreed to view coframes that differ by a rigid rotation 

as equivalent. Let us perform a rotation of the coordinate system  

−

•



ω ζ
ω ζ

± − − −
=

− + ± +

α

ω
=

±

ζ =

ωξ − ±=

α α α

ω ω
ϑ ω ϑ ω ϑ

± ±
= − ± = ± =

α α α

ω ω
ϑ ω ϑ ω ϑ

+ +
= − + = + =
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1 2

2 1

3 3

(55)

x x

x x

x x−
 

 simultaneously with a rotation of the coframe  

1

2

3

2

1

3

.

 
 It is easy to see that the above transformations turn a solution of the form (55) into a solution of 

this form again only with  

a a, b b.
 

 Thus, the numbers  a   and  b   on their own do not characterise different plane wave solutions. 

Different plane wave solutions are characterised by the number  c : ab   which can take two 

values,  1   and  1  . 

The bottom line is that we have two essentially different types of plane wave solutions. These 

can be written, for example, as  

1

cos2| | x0 x3

sin2| | x0 x3

0

, 2

sin2| | x0 x3

cos2| | x0 x3

0

, 3

0

0

1

.

 
The plane wave solutions (56) describe travelling waves of rotations. Both waves travel with the 

same velocity in the negative x
3
-direction. The difference between the two solutions is in the 

direction of rotation of the coframe: if we fix x
3
and look at the evolution of (56) as a function of 

time x
0
 then one solution describes a clockwise rotation whereas the other solution describes an 

anticlockwise rotation. We identify one of the solutions (56) with a left-handed neutrino and the 

other with a right-handed antineutrino. 

 

 

9  DISCUSSION 

 

As explained in Section Our model, our mathematical model is a special case of the theory of 

teleparallelism which in turn is a special case of Cosserat elasticity. 

The differences between our mathematical model formulated in Section 4 and mathematical 

models commonly used in teleparallelism are as follows: 

 

• We assume the metric to be prescribed (fixed) whereas in teleparallelism it is traditional to 

view the metric as a dynamical variable. In other words, in works on teleparallelism it is 

customary to view (8) not as a constraint but as a definition of the metric and, consequently, 

to vary the coframe without any constraints at all. This is not surprising as most, if not all, 

authors who contributed to teleparallelism came to the subject from General Relativity. 
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• We choose a very particular Lagrangian density (18) containing only one irreducible piece 

of torsion (axial) whereas in teleparallelism it is traditional to choose a more general 

Lagrangian containing all three pieces (tensor, trace and axial), see formula (26) in [12]. In 

choosing our particular Lagrangian density (18) we were guided by the principle of 

conformal invariance. 

 

The main result of our paper is Theorem main theorem which establishes that in the quasi-

stationary case (prescribed oscillation in time with frequency ) our mathematical model is 

equivalent to a pair of massless Dirac equations (Dirac equation). 

This leaves us with two issues. 

 

• What can be said about the general case, when the the spinor field    is an arbitrary 

function of all spacetime coordinates  x0 ,x1 ,x2 ,x3
  and is not necessarily of the form 

(30)? 

• What can be said about the relativistic version of our model described in Section 5? 

 

The two issues are, of course, related: both arise because in formulating our basic model in 

Section 4 we adopted the Newtonian approach which specifies the time coordinate  x0
  

(``absolute time''). 

We plan to tackle issue A by means of perturbation theory. Namely, assuming the metric to be 

flat (as in Section Plane wave solutions), we start with a plane wave (Plane wave solutions 

equation 2) and then seek the unknown spinor field    in the form  
00 1 2 3 ( ) 0 1 2 3( , , , ) ( , , , ) (57)a i x k x ax x x x e x x x xωξ ζ− + ⋅=  

 where    is a slowly varying spinor field. Here ``slowly varying'' means that second derivatives 

of    can be neglected compared to the first. Our conjecture is that the application of a formal 

perturbation argument will yield a massless Dirac equation for the spinor field   . 

We plan to tackle issue B by means of perturbation theory as well. The relativistic version of our 

model has 3 extra field equations corresponding to the 3 extra dynamical degrees of freedom 

(Lorentz boosts in 3 directions). Our conjecture is that if we take a solution of the nonrelativistic 

problem which is a perturbation of a plane wave (as in the previous paragraph) then, at a 

perturbative level, this solution will automatically satisfy the 3 extra field equations. In other 

words, we conjecture that our nonrelativistic model possesses relativistic invariance at the 

perturbative level. 

The detailed analysis of the two issues flagged up above will be the subject of a separate paper. 
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 ΐΣΎμϣ έΎσ· ϪϴϠϋ ϖϠτϳ ΔϳΪϣΎόΗ ΓΪϋΎϗ ΍Ϋ ϼ˱ϘΣ ϲτόΗ ϲϟΎΘϟΎΑ ϲΘϟ΍ϭ ΔϳΪϣΎόΗ ΓΪϋΎϘΑ ΔτϘϧ Ϟϛ Ϟλϭ ϖϳήσ

Coframe  . ΔϴϜϴϣΎϨϳΪϟ΍ Ε΍ήϴόΘϤϟ΍ ϥ΃ ΚϴΣϭ)ΔϟϮϬΠϣ (ΔϓΎΜϜϟ΍ϭ ΐΣΎμϤϟ΍ έΎσϹ· άΧ΄ϧ ΎϨϧΈϓ ΎϨΘϳήψϧ ϲϓ .

ϪΒη ϝϮϠΤϟ΍ έΎΒΘϋϻ΍ ϲϓ άΧϷ΍ ϊϣ Ύ˱ϴϠϜη ΓήϴϐΘϣ ήϴϏ ΎϨϫ ΔϳΪϬΠϟ΍ ΔϗΎτϟ΍ϭ- ΏάΑάΘΗ ϲΘϟ΍ ϝϮϠΤϟ΍ ϱ΃ ˬΓήϘΘδϤϟ΍
Ϧϣΰϟ΍ ϲϓ Ύ˱ϴϘϓ΍ϮΗ  .ϪΒη ϊοϮϟ΍ ϥ΃ ϦϫήΒϧ ΎϤϛ-Ϝϣ ΎϨΟΫϮϤϧ΃ ϲϓ ήϘΘδϤϟ΍ ˬΔϠΘϜϟ΍ ΔϤϳΪϋ ϙ΍ήϳϭ ΕϻΩΎόϣ ϰϟ· Ύ˱ΌϓΎ

Ϟϣ΍Ϯόϟ΍ ϞϴϠΤΘϟ ΢ϤδΗ ΔϴϤϳΩΎϛϷ΍ ϥΎϫήΒϟ΍ ϲϓ ϢγΎΤϟ΍ ήμϨόϟ΍ ϥ΃ϭ.  

′
′= = >

− = − + +∏


