
ϲδϟΪϧϷ΍ϭ ϲΑήϐϤϟ΍ ϲοΎϳήϟ΍ ΪϴϠϘΘϟ΍ ϲϓ ΔΑΎΤΘϤϟ΍ Ω΍ΪϋϷ΍

Eastham M. S.P. J. of the Association of Arab Univ.  for Basic and Applied Science, Vol. 7, 2009, 1-10

 1

Geometrically Induced Spectrum of the Schrödinger Operator 
 

Michael S.P. Eastham 

 

Computer Science Department, Cardiff University Cardiff CF24 3XF, U.K. 

 

 

 

ABSTRACT 

 

New and recent results concerning the spectrum of the operator with a boundary condition on a 

given curve in the  x,y  plane are presented. The geometry of the curve influences the nature 

of the spectrum, and the situations discussed are (i) there is a spectral interval c2 /4, ,   (ii) 

there are discrete eigenvalues in , c2 /4 .   The aim is to present material which avoids some 

of the technicalities in the literature. 

 

 

  INTRODUTION 

 

The setting for our topic is the plane  R
2

, and we have a given piecewise smooth curve (or set of 

curves)    extending to infinity in R
2

  . We consider the Schrödinger operator 

 

(1)H = − ∆  

on a suitable domain  D H   of functions f which satisfy the boundary condition on   : 

 

1 2

( 2 )
f f

q f o n
n n

∂ ∂+ = − Γ
∂ ∂

 

Here  n1   and  n2   are the normals on the two sides of    in the directions away from   , and q  

is a given real-valued function on   . For  D H   we can take 

 
2 (2) 2

0( ) ( ) ( ) ( ),D H C R nC R BC= −Γ ∩  

where the subscript zero denotes compact support. 

Using a Green's Theorem, we can check that H is a symmetric operator in the Hilbert space  

L2 R2  . That is,  Hf,g f,Hg f,g D H   with the inner-product  f,g
R2

fg dx.  

[Brown B. M,. 2008, 2008b and 2009].  

Associated with symmetric operators are certain real numbers λ which are called spectral points 

(the most familiar being eigenvalues). The set of all spectral points is called the spectrum  H   

of  H , and it is the nature of this set which is the subject of this paper. 

 

The spectrum  H   comprises those numbers λ  for which there is a sequence  fn D H   

(Wey l sequence) such that 
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( )1 0 ( ) (3)n nf and H I f nλ= − → → ∞  

 The spectrum can be divided into two parts 

H d H U e H
 

as follows. 

The discrete spectrum  e H   consists of the eigenvalues, i.e., numbers λ  such that the equation 

 

( ) ( ( ) ) ( 4 )H f f f f D Hλ= − ∆ = ∈  

has a solution  f 0  . Here  fn f   for all  n . 

The essential spectrum  e H  , which is typically formed by one or more  .-intervals. It is 

invariant under certain perturbations of the original problem. There is the possibility of 

eigenvalues being embedded in  e H  , but this is not our concern here. 

The spectral points are important because they are the basis for the "eigenfunction expansion" (or 

spectral representation) of an arbitrary given function in terms of H. Simple examples from other 

contexts are Fourier series  d m2 , e ,   Fourier integrals  d , e ,  . 

Specialists in Functional Analysis will recognize that this is about the Spectral Theorem for a 

self-adjoint extension of H. However, a specialist knowledge is not assumed in this account.) For 

our problem with (1.1)+(BC), the nature of  H  depends on the geometry of   , and there is a 

recent extensive survey paper (Exner,2008  ). Many of the results in (Exner, 2008  ) require 

complicated and technical proofs, but I want to show here that there are some things which can 

be understood rather more simply. 

 

 

 STAR GRAPHS  

 

A star graph    consists of a finite set of infinite rays which start from a point 0 (the origin). 

There are two basic spectral results (Exner and Ichinose, 2001),( Exner and Ncova, 2003) for the 

standard case  q x c , where  c 0  is a constant. 

 

Theorem 2.1 Let   be an infinite straight line. Then 

 

e c2 /4,
 

 and  d .   

Theorem 2.2 For any other star graph  , 

 

e c2 /4,
 

and  d ,   i.e., there exist eigenvalues below  c2 /4.   

Example 2.3   is the coordinate axes: 4 rays at right angles. Then the eigenfunction 

 

λ− ∆ Ψ = Ψ

Ψ + − Ψ − = − Ψ

µ′′ + = ± =

+ = ≠ ′ + − ′ − = − ± =

= =



( )λ= − → → ∞

e λ

λ= − ∆ = ∈

n f n

e

e

d e d e

c

d

d
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x exp 1
2

c |x| |y|
 

satisfies   

 
and (BC) 

when  
1

2
c2 .   Thus we have an eigenvalue below  c2 /4   . 

Proof of Theorem 2.1 (In the spirit of Weyl and Titchmarsh where we consider an eigenvalue  

problem in a large square and examine the behavior of the eigenvales as the square expands to 

the whole of  R2
 .) The aim here is to explain the appearance of the number  c2 /4  . Consider 

the eigenvalue problem 

 

( 2 .1) (5 )λ− ∆ Ψ = Ψ  

in the square  T,T x T,T   with  y 0  . Now (BC) is 

 

( , 0 ) ( , 0 ) ( , 0) (6)y yx x c xΨ + − Ψ − = − Ψ  

on  y 0  . 

Following Weyl and Titchmarsh, we impose Dirichlet boundary conditions on the sides of the 

square: 

 

0 on x T,y T
 

 

and we shall let  T  . 

Now (2.1)-(2.2) is a separable eigenvalue problem which we solve with 

 

x f x g y , V.
 

Then   

0 , ( ) 0 (7 )f f f Tµ′′ + = ± =  

 

 

" 0( 0), (0 ) (0 ) (0), ( ) 0 (8)g Vg y g g cg g T+ = ≠ ′ + − ′ − = − ± =  

 Here (2.3) is the elementary S.H.M. problem with   -eigenvalues 

 

N
2T

2 N 1,2, . . . . .
 

and these become dense in  0.   as  T  . For (2.4) we have the eigenvalue equation 

 

2
tan ( ) ( ) . (9 )

w T
w w

T c V
= =  

  When  v>0, w is real. For large  T , the solutions of (2.5) are then  M /T 2
  ( M 1,2, . . .  

), again becoming dense in  0,   as  T   . So far, we have    giving   -
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eigenvalues filling up [0,  ) as T   . 

But there is another solution of (2.5) when     0  . Putting  w iz , (2.5) becomes 

tanh z 2z /Tc.
 

Thus there is a single large solution z* with tanh z*    1, i.e. z* =  
1

2  Tc - € . Thus 

 

w /T iz /T i 1
2

c /T .
 

giving   

1
4

c2 .
 

Hence    fills up [- 
1

4  c 
2

 ,  ) with spectral points as T  .  

  

 

 EXISTENCE OF EIGENVALUES.  

 

The main feature of Theorem 2.2 is that  d   if    is anything other than a straight line, and 

this raises a number of interesting questions about the nature of  d  . The proof of Theorem 2.2 

in (Exner and Ichinose,2001),( Exner and  Ncova,2003) is very technical, but there is the 

possibility of a simpler approach using the variational expression 

 

2 2

2 2 2
( ) ( ) /( ) (3.1) (10)

R R

V f f dx c f ds f dx
Γ

= ∇ −  

The general spectral result which we use is that the least spectral point    of H satisfies  

V f   for all f for which  V f   is defined. Hence, if we can identify a function  f0   such that 

 

2

0

1
( ) , (1 1)

4
V f c< −  

then we must have a point  A0   in  od H   with the estimate 

 

0 0( ) (1 2 )V fλ ≤  

Note: (3.3) is most familiar in the context of the mini-max or Rayleigh-Ritz theory for estimating 

eigenvalues. Our first results depend on the number. N of rays in  . 

 

 

 PROPOSITION  

 

If P has  N 4   rays, then od 4 0. 

Proof. In (3.1) and (3.2), we choose  f0 x exp ar  , where a is a parameter to be chosen and  

r |x| . Then 

V f0 a2 Nac/ a 1
4

Nc/ 2 1
4

Nc/ 2 .
 

λ ≤ ≤ −



z

d

d

Γ

= ∇ −

f f

< −

λ ≤
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Now choose  a
1

2
Nc/   to minimize  V f0  . Then 

 

V f0 Nc/ 2 1
2

c2
 

if  N i.e;N 4  . 

 

Note:  N 4   gives  0 4 c/ 2 0.405 c2
 . In Example 2.3 we have  0

1

2
c2

  for 

the symmetric graph. We can improve on Proposition 3.1 by choosing an f0 which is more 

sympathetic to the geometry of    (which we now denote by  N   to indicate the N rays). We 

are guided by two examples [Eastham P.M.S.. 1966 and 1967]. 

     (i) For the symmetric  4  in Example 2.3, the level curves of    are  |x| |y| const   
giving a contour map consisting of squares with vertices on the axes. 

     (ii) For the symmetric 6 , (Exner and Ncova, 2003) derive computationally a corresponding 

diagram in which again each level curve is furthest from the origin at points on the rays. 

Thus we now consider 

 

f0 x exp arg ,
 

where  g 6   has its minimum value (say 1 ) on the rays  6 Q ofFN  . Proceeding as in Prop. 

3.1 with a choice of a, we obtain 

 
2 2

0 , 0 1 2( ) / (13)N V f N c I Iλ ≤ ≤ −  

where 

I1 2

0

2

g 2 /g2d ,

 
 

I2

0

2

1/g2d .

 
In a typical sector of PN, we define 

 

g 1 p 1/2 1 2p 1
2

t
1

2

 

symmetric about the bisector, where  t i   and  p 0   is a parameter. This choice of g is 

such that 

     (i) it has its minimum value 1 on the rays 

     (ii) the integrals  I1   and  I2   can be evaluated. 

When this is done, a good choice of p in (3.4) is  p /2N  , and then (3.4) gives the following 

result  (Brown, Eastham and Wood). 

Theorem  3.2. For any configuration of  N  , 
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0,N 2c2N2 N2 2 2 / 2 2N2 2 4N2 5 2 .
 

For N = 3, 4, 5, 6,10, the multiples of -c 
2

  here are  0.273  , 0.457,0.689,0.970,2.594 . 

These are all  
1

4   and show that  d      for  N 3  . For  N 2  , however, the multiple is 

only 0.134 (<  
1

4  ), and so we have not obtained  0,2
1

4
c2

  

4. The case N = 2. This case presents a number of difficulties (and opportunities) of its own. The 

general result in Theorem 2.2 is that  d      for  0 a 180° , where    is the angle 

between the two rays. To get a simple proof using (3.1), we again want an f 0   such that (3.2) 

holds. With a quite different type of f 0   from that in section 3, (Exner and Ncova,2003) 

achieved this for the small range 

 

0 a 5.3 .
 

Then (Brown, Eastham and Wood.,2008)   improved this (with a different f0) to 

 

0 5 3 .1 . (1 4 )a< < °  

 

This leads on to a number of open questions. 

Question 1. Can an f0 be defined to give  V f0
1

4
c2 i.e. d   for    in a larger range 0 

<    <  1   than (4.1)? 

Question 2. What is the nature of the lowest eigenf unction  0  ? 

Question 3. Let n 0 n M   be the discrete eigenvalues of   (  ). We know that M( 

 )    as    0 (Exner and Ichinose, 2001). But what are the values of    where M(  ) 

increases by unity? 

Question 4. Conjecture (Exner ,2008). For small   ':= 180° -   , 

 

0
1
4

c2 k 4 o 5 .
 

 

Question 5. Is  d   when  2   consists of two non-straight curves enclosing a corner? 

Question 6. Conjecture (Exner ,2008) For a given N,  0,N   is maximized when  N   is 

symmetric. 

5. Asymptotically straight    and  e  . Moving away from star graphs now, there is another 

class of graphs P for which again 

 

 

 

Thus (Exner and Ichinose,2001) introduced a rather technical set of conditions on    which 

include the idea of "asymptotic straightness" (a.s.) - an example of which is that the curvature 

 

21
[ , ) (1 5 )

4
e cσ = − ∞

λ∆ + → → ∞



d

d

< < °

n

d

N N

e

σ = − ∞
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|k s | const. s
 

for some 5/4   as s (arc length)    . Here we give a simpler proof of a related result to 

(5.1) using a different idea of a.s. and a suitable Weyl sequence  fn   in (1.2). 

Our idea of asymptotic straightness is simply that    should lie close to arbitrarily long disjoint 

line segments as    recedes to infinity. The segments can lie arbitrarily in  R2
  but, for 

convenience, we take them to lie along the x-axis. Thus there are disjoint intervals 

 

Im cm am ,cm am
 

 

on the x-axis with  cm am   and  am   and, in each  Im  ,    has the equation  

y F x   with 

 

F r x 0 x , 0 r 3 .
 

The most general a.s.    which is covered by our methods is obtained by rotating and translating 

each  Im   (and the portion of    near to it) to a position elsewhere in the plane. Thus,    has 

long, nearly straight, segments far away.) 

In our theorems, we can allow a non-constant q in (BC), and we write 

 

Q x q x,F x Q q on P
 

Theorem 5.1 (Brown, Eastham and Wood.,2008) As  x   through the I m   let 

 

Q x c c 0 ,Q x 0,Q" x 0.
 

Then   

e
1
4

c 2 , .
 

Note:    rather than = as in (5.1), but our    is more general with conditions imposed only in 

the  Im  . 

Proof. We use the method of Wey1 sequences and show that there is a sequence {f m  }  D(H) 

such that  fm   = 1 and, as in (1.2), 

 

( ) 0( ) (16)ml f mλ∆ + → → ∞  

for  
1

4
c2

 . We define f m  , supported in the large square  Sm : Imx am ,am ,  by 

 

fm x bmhm x cm hm y exp U x |y F x | iV x .
 

Here  bm  is the normalization factor making  fm 1  , and 
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hm t 1 |t| am 1 , 0 |t| am .
 

Also, U and V are real-valued with  U 0  . The function  U  is chosen to make fm satisfy (BC), 

and thus 

 
1
2

1
( 2) (17 )

2
U Q l F

−′= +  

A calculation gives  b~ 4am /c 1/2 m  . Then, omitting details of the calculation, we have 

 

 
2 2( ) ( ) (18)m m ml f U V f Eλ λ′∆ + = − + +  

 where  ||Em || 0 m   (using the conditions imposed in the theorem). By (5.3),  U~1/2c   (m 

large), and hence 

 

l fm 1/4c2 V 2 fm Em .
 

Then  V x 1/4c2 1

2
x  gives 

 

( ) 0 (1 9 )m ml f Eλ∆ + = →  

as required. Hence        e  , and V is real-valued if  
1

4
c2

 . Theorem 5.2 (Brown,  

Eastham and Wood, 2009) As x    through the E m  , let 

 

Q x ,
Im

1/Q x dx
 

and  Q ,QQ",Q2F ,QF"   all tend to zero. Then  ,  . 

Proof. In (5.4), we now choose V =  U2
 . Since U    as x   , V' is real-valued 

when m is large enough, for any    in (-  ,  ). Hence again (5.5) holds under the conditions 

stated here. 

Examples 5.3. (i)  Q x xa x 1  ,  F x const. x b
 , where 

0 a 1,b max 0,2a l .
 

 

     (ii)  q qm   (const.) in  Im   with  qm ,am /qm   

We note that Theorems 5.1 and 5.2 are reminiscent of those in (Eastham, 1966 and 1967) for the 

Schrodinger operator  W  with conditions on the potential W. 

     Question 7. Is H essentially self-adjoint under the conditions of Theorem 5.2? 

     Question 8. Is the range  0 a 1  best possible in Example 5.3 (i)? 

 

 

 

 

 



U

−′= +

m

λ λ′∆ + = − + +
m c

λ∆ + = →

e

m

a b

m m m m m

W
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ϡϮϠϋ Ϣδϗ ΏϮγΎΤϟ΍ )ήΗϮϴΒϤϜϟ΍( ΓΪΤΘϤϟ΍ ΔϜϠϤϤϟ΍ ˬ ϑΩέΎϛ ΔόϣΎΟ ˬ  

 

 

 

  

  

ΓΪϳΪΠϟ΍ϭ ΔΜϳΪΤϟ΍ Ξ΋ΎΘϨϟ΍ ξόΑ νήϋ ϢΗ ΚΤΒϟ΍ ΍άϫ ϰϓ  ΔϘϠόΘϤϟ΍ϟΔϳΪΣ ρϭήη ΩϮΟϭ ϰϓ Ε΍ήΛΆϤϟ΍ ϒϴτ ϰϠϋ 

ϯϮΘδϤϟ΍ ϰϓ ϰτόϣ ϰϨΤϨϣ) x,y (.  ϥ΃ ΪΟϭϭΔόϴΒσ  ϰϨΤϨϤϟ΍ ΔγΪϨϫ  ϒϴτϟ΍ ϰϠϋ ήΛΆΗ ˬ ωΎοϭϻ΍ ΖθϗϮϧϭ
 ϞΜϣ ρϭήη ΩϮΟϭ Ϟχ ϲϓ)1 ( ΓήΘϔϟ΍ ϰϓ ΙΎόϧ΍ ΩϮΟϭ c2 /4, , ) 2 ( ΓήΘϔϟ΍ ϰϓ ΔϠμϔϨϣ ΓΰϴϤϣ Ϣϴϗ ΩϮΟϭ

2[ , / 4)c−∞ − ˬ  ϢϳΪϘΗ Ϯϫ ϚϟΫ Ϧϣ ϑΪϬϟ΍ϭ ΔϤϬϤϟ΍ Ξ΋ΎΘϨϟ΍ ξόΑ ξόΑ ΐϨΠΗϭ ϞϛΎθϤϟ΍ ΙϮΤΒϟ΍ ϲϓ ΔϴϨϔϟ΍
 ΔϘΑΎδϟ΍.  


