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Abstract: Intrusion Detection Systems (IDS) play an important role in network security, protecting systems and infrastructures from 

malicious attacks. With the emerging of novel threats and offensive mechanisms, IDS require updates in order to efficiently detect 

new menaces. In this paper we propose an anomaly-based detection model designed for particular application protocols, exploited by 

emerging menaces known as Slow Denial of Service (DoS) Attacks. We define parameters characterizing network traffic and we 

describe in detail how to extrapolate them from a network traffic capture. We motivate the need of packet inspection in certain 

contexts in order to retrieve correct data. We analyze and describe how the proposed model behaves on two real scenarios involving 

legitimate and malicious activities, respectively. Thanks to our model, a detection framework for attacks working at the application 

layer of the communication protocol stack is provided, allowing and facilitating the execution of detection algorithms. Indeed, 

though the adoption of such framework, the design of efficient detection systems is simplified and designers work is reduced, 

allowing them a faster deploy of efficient detection algorithms. The aim of this paper is to provide an effective framework for 

application DoS attacks detection. 
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1. INTRODUCTION 

In the last century, communication has evolved and 
Internet became the most relevant communication 
medium. As today Internet-connected computer systems 
play a vital role in modern society, they are often subject 
to intrusions and attacks. Therefore, Internet has to be 
kept a safe place, providing an appropriate security layer 
to its users. Intrusion detection techniques are executed to 
identify malicious activities targeting a specific network 
or host. 

Intrusion Detection Systems (IDS) can be categorized 
into anomaly detection and misuse detection: while 
anomaly detection systems, such as IDES [1], flag as 
anomalous each activity that significantly deviates from 
normal usage profile, misuse detection systems, such as 
IDIOT [2] or STAT [3], profile well-known menaces 
extrapolating attack signatures characterizing an intrusion. 

Currently, building an effective IDS is no easy task. 
An anomaly-based approach may use intuition and 
experience to identify statistical measures [4], while a 
misuse approach first analyzes and categorizes attacks and 
vulnerabilities, thus defining specific rules and patterns to 

identify a running threat. Once the signature of a 
particular menace is obtained, a potential execution of the 
same attack could successfully be detected. Nevertheless, 
since such signature based approach cannot detect novel 
attacks, it should not be considered a complete solution. 

In this paper, we propose a novel representation model 
for application-layer attacks, focusing on denial of service 
(DoS) threats. We will particularly refer to Slow DoS 
Attacks (SDAs) [5], [6], also known as application DoS or 
low-rate DoS attacks, which represent an emerging 
category of denial of service attacks. Examples of such 
threats are the Shrew [7], Slowloris [8], Apache Range 
Headers [9], the recent HTTP.sys PoC (MS15-034) [10], 
Slow Read [11], and SlowDroid [12] attacks. It is 
important to highlight that, although we will contextualize 
the model for analyzing SDAs to HTTP servers, it is 
designed to potentially detect application layer attacks in 
general. Indeed, the proposed system extracts accurately 
selected features able to characterize application layer 
threats. This extraction could generally be adopted for any 
application-layer protocol working over the TCP transport 
protocol and based on the so called request-response (or 
request-reply) [13] communication mechanism (i.e., 
HTTP, SSH, SMTP, etc.). The proposed system is 
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intended to be a fundamental component of an IDS. It is 
indeed designed to be extended and integrated with a wide 
range of detection algorithms, applying specific 
approaches to the data extracted through our system. 

The rest of the paper is organized as follows: Sect. 2 

presents the related work on the topic. Sect. 3 justifies the 

need of a detection framework for application-layer 

threats, and Sect. 4 describes in detail our proposed 

model. Sect. 5 reports the tests we have executed and 

describe the obtained results, while Sect. 6 reports an 

example of application of our detection framework. 

Finally, Sect. 7 concludes the paper. 

2. RELATED WORK 

The idea of an intrusion detection framework is not 
new. In [14], a data mining framework for adaptively 
building intrusion detection models is provided. Other 
works are instead focused on designing a Collaborative 
Intrusion Detection System (CIDS) framework. In this 
context, [15] represents a first attempt to categorize CIDS 
systems. While systems such as DIDS [16], DShield [15], 
or NSTAT [17] present centralized CIDS systems, in [18] 
[19] a hierarchical approach is used. Instead, [20] and [21] 
propose CIDS systems based on a fully distributed 
approach. 

Other works are instead focused on designing a 
framework for detecting attacks targeting particular 
networks. Special interest is given to wireless systems: 
[22] introduces an IDS framework for cluster-based 
wireless sensor networks, while [23] aims at protecting 
wireless sensor networks from routing attacks. [24] 
proposes a distributed IDS framework for MANETs based 
on cooperation among nodes, while [25] introduces a 
layered intrusion detection framework for ad-hoc 
networks. [26] integrates a layered intrusion detection 
framework with neural network algorithms to design an 
IDS system. [27] combines data mining classification with 
clustering fundamentals to design a hybrid intrusion 
detection framework. 

In order to design an intrusion detection framework 
for anomaly detection, a proper identification of important 
features is needed. Although [28] tries to identify those 
features, the choice of important parameter is still an open 
challenge in the field. In [29] a statistical intrusion 
detection framework known as SID is proposed, 
identifying a set of flow based parameters (duration, 
protocol, service, source port number, and source byte) 
used during the detection process. The model proposed in 
this paper identifies traffic features working at the 
application layer extracting parameters from connections 
established with the victim. In this context, [30] focuses 
on data at the application layer, analyzing information 
stored in daemons log files. Although this approach may 
reveal anomalies working at application layer, it is not 
designed to efficiently protect from slow DoS attacks. 
Indeed, for example, under a slow DoS attack (i.e. 

slowloris), server logs may not reveal anomalies, since the 
attacker’s behavior is apparently legitimate. In addition, 
since logs records may be stored only once (malicious) 
connections are closed (i.e. identification of a malformed 
request), such approaches fail in on-line timely protection. 
Conversely, the proposed method can be applied for on-
line detection of running threats. 

In [31] it is presented instead an application layer 
attacks detection system based on re-distributing clients 
requests on multiple virtual servers. This load-balancing 
approach, among with the introduction of a network proxy 
or a network accelerator, is known to counter some 
specific application threats [32]. Similar protection 
approaches, such as mod-security or reqtimeout modules 
of Apache, are able to mitigate specific slow DoS threats. 
Nevertheless, as demonstrated in [32], these techniques 
are not designed to protect from distributed threats. 
Instead, the proposed system implicitly considers 
distributed attack perpetrated by many coordinated 
nodes/bots. The approach followed by [33], [34] is instead 
based on dynamically changing the port number of the 
server through a random port hopping approach. We 
believe that such approach should be considered invasive 
for the server, while we prefer adopting a technique which 
can be deployed even on a network node such as a 
firewall. In [35] a mechanism for protecting web servers 
from application DoS attacks is proposed, focusing on a 
whitelist-based admission control and busy period-based 
attack flow detection. [36] proposes instead a detection 
system to counter the LoRDAS attack, exploring different 
approaches to defend against this threat and suggesting 
approaches based on Random Service Time (RST), 
Random Time Queue Blocking (RTQB), Improved 
Random Time Queue Blocking (IRTQB) and Random 
Answer Instant (RAI). [37] introduces a low-rate DoS 
attacks intrusion detection system making use of signal 
processing based models applied on spectral energy 
distribution probability. The system is based on analyzing 
incoming network traffic on the server. Nevertheless, 
since some low-rate threats induce the server to an 
anomalous behavior [5], the system is not able to properly 
identify such threats. The approach adopted in [37] is 
based on analyzing packets timing arrival. [38] proposes a 
detection system specific for SQL injection attacks, based 
on the analysis of repetition of characters. Similarly to 
[37], the proposed system is based on the extraction of 
various data relative to the captured packets. 

The anomaly detection model we introduce in this 
paper is based on the extraction of specific metrics able to 
characterize (distributed or not) application layer 
menaces. The metrics definition and extraction phase is a 
fundamental and crucial activity researchers have to 
accomplish in order to design an efficient intrusion 
detection system. Focusing on the extraction of relevant 
data for application DoS attacks detection, the proposed 
system staves researchers off the need of such activity, 
opening to a wide range of implementations, integrating 
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algorithms belonging to different research areas. In virtue 
of this, the proposed system should be considered a 
fundamental tool for the cybersecurity research field. 

3. THE NEED FOR A DETECTION MODEL 

Our goal is to design a representation model based on 
parameters able to characterize network anomalies related 
to an exploitation of the application layer. Since 
application layer attacks such as slow DoS threats are 
becoming very common, an efficient detection system 
able to identify them is needed. Although the menaces 
work at the application layer of the communication 
protocol stack, the identified extrapolated parameters refer 
to lower layers as well. For instance, at lower layers it is 
possible to retrieve information related to higher layers, 
such as the application layer payload size of the packet, 
analyzed at the transport layer. 

Analyzing the available detection and mitigation 
methodologies for network attacks, a protection system 
may involve hardware or software components. While 
applying a hardware protection (such as a load balancer, a 
network proxy, or a hardware accelerator [32]) could 
successfully mitigate some categories of attacks, it can be 
considered a workaround rather than a good solution. 
Indeed, since such hardware appliances have not been 
designed for this purpose, their resources would be 
allocated for this additional activity. Moreover, such 
approaches usually do not provide a built-in functionality 
aimed at detecting a working attack on the network. 

Instead, if we consider the HTTP protocol, which is 
particularly exploited by network attacks such as SDAs, 
current software protections systems are organized as 
software modules. Although there are several different 
modules available, their functioning is based on two basic 
principles: (i) limit the maximum number of simultaneous 
connections coming from a particular client, and (ii) apply 
specific server-side timeouts [32], [39]. Even if such 
solutions represent some sort of mitigation techniques, 
[32] shows the inefficacy of the available modules in 
protecting from particular attacks such as, e.g., distributed 
attacks. 

If we analyze the design process for building an IDS, 
three core activities are involved: 

1. first of all, a behavior is observed, usually on the 
server host or on the server’s network path. Based 
on this observation, a network traffic 
representation phase is accomplished to select 
specific parameters to extrapolate, in order to 
identify potential network anomalies 

2. subsequently, an analysis algorithm is applied to 
the extrapolated data, by using approaches and 
metrics deriving from different research fields 
such as machine learning, neural network, 
statistics, game theory, etc. 

3. finally, a characterization phase is accomplished, 
by defining a proper threshold distinguishing a 
legitimate situation from an anomalous one. Also 
in this case, different research areas may be 
involved. 

Our proposed model belongs to the first category of 
activities and it provides a representation framework 
specific for DoS attacks working at the application layer. 
Since we believe that a component-based implementation 
of an IDS is fundamental, our proposed model not only 
provides important parameters able to identify application 
DoS attacks, but it also simplifies researchers’ work, 
allowing them to use an already defined representation 
system. 

4. THE PROPOSED MODEL 

Our model is specific to request-response protocols 
acting at the application layer and making use of the TCP 
transport protocol. At this layer, the protocol is based on 
messages exchange between two entities, commonly 
known as client and server. Moreover, we assume that for 
each message sent by the client there is always one and 
only one reply message sent by the server. Known 
examples of request-reply protocols are HTTP, FTP, or 
SSH. 

A. Connections on Request-Response Protocols 

After the connection between client and server has 

been established, the client sends a request to the server. 

The request is interpreted by the server in order to 

generate a response to send back to the client. After the 

first request-response exchange, two possible events could 

characterize the connection: (i) the connection is closed or 

(ii) the connection is kept alive (persistent connection 

[40]), in order to reduce the connection overhead for any 

additional request-response between the same 

client/server pair. 

B. The Extracted Parameters 

Since each connection potentially is persistent, a first 
extrapolated parameter is the      parameter, reporting 

for each connection the number of requests included in 
each connection stream. 

We define as connection slot the portion of a 
connection which refers to the time passing between the 
start of a request and the end of the relative response on 
the same stream. According to Fig. 1, let us define 
                  the connection start identified by the 3-

way-handshake completion,            the starting time of 

a request,          the ending time of a request,             

the starting time of a response, and           the ending 

time of a response. From these values we can extrapolate 
data relatively to the time passed before sending the first 
request (      ), the duration of a request (    ), the 

duration of a response (      ), and the time passed 

between the end of a request and the start of the relative 
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response (       ). While the        parameter is 

associated with a single connection, other parameters are 
related to each connection slot, which also includes the 
time passed between the end of the response and the start 
of the next request of the same stream (     ). In addition, 
since connections slots are part of a connection, each 
connection is uniquely identified by the     value (in our 
case, a sequential integer value), and each connection slot 
is associated with the     connection it belongs, plus the 
slot index    on the connection. 

 

Figure 1. TCP Connection Stream for a Request-Response Protocol 

Based Connection 

 

Fixing a connection stream, let us define      the 

connection slot index on the stream. According to Fig. 1 

(where    ), which depicts a scheme of the parameters, 

we define: 

                 
                   

  
(1) 

             
            

  (2) 

                  
          

  (3) 

               
             

  (4) 

                
             

  (5) 

Moreover, relatively to a single connection slot, the 
model also provides the following parameters: 

      to identify the request size, in bytes 

      to identify the amount of TCP packets that 

compose a request 

       to identify the response size, in bytes 

       to identify the amount of TCP packets that 

compose a response 

In particular, let us note that      and       values 

depend on the data-link layer protocol adopted. 
From these parameters we build two tables. Selected 

parameters are indeed grouped in two categories: from 
one side, we analyze each connection, extrapolating the 
triple (i)    , (ii)     , (iii)       . These data are part of 

the Connections Table. From the other side, we analyze 
each slot composing a connection, extrapolating the 
following data: (i)    , (ii)   , (iii)     , (iv)       , (v) 

     , (vi)      , (vii)     , (viii)      , (ix)     , (x) 

     . These data are part of the Connections Slots Table. 

By choosing these parameters, we are able to 
extrapolate behavioral features for application layer 
attacks. For instance, it is known that Slow DoS Attacks 
like Slowloris [8] split HTTP requests by sending request 
packets delayed during the time, thus being typically 
characterized by high      values. Instead, the Apache 

Range Headers [9] attack makes the        parameter 

assumes high values, since requests sent to the server need 
particularly intensive calculations to produce an 
appropriate response. Similarly, Slow Read attack [11] 
simulates a tiny reception buffer to slow down the 
responses of the server, thus being characterized by high 
      and       values. Relatively to the       parameter, 

it is instead exploited by the Slow Next attack [41]. 

Our model provides us the ability to retrieve 

composed parameters. For instance, the amount of bytes 

per second sent during a request/response may be defined 

as reported in Eq. 6. 

     
 

    

    

       
 

     

     

 
(6) 

Similarly, the ratios representing the amount of 

packets per second sent during a request/response are 

reported in Eq. 7. 

     
 

    

    

      
 

    

    

 
(7) 

It is also possible to obtain the average size per packet, 

as reported in Eq. 8. 

     
 

    

    

       
 

     

     

 
(8) 

C. Model Assumptions 

In order to properly define a detection model, we have 
to define the model behavior at limit cases. In particular, 
we make the following assumptions: 

 a connection which does not start with a request is 
ignored until a request is found on the same 
connection; this may happen when traffic capture 
operation begins after a full request has been sent 
and the relative response is captured; 
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 due to the nature of elements like network, 
communication medium, or response production 
times, traffic measurements always provide: 

                 (9) 

D. Messages Overlapping on the Same Connection 

Stream 

If we focus on the       parameter for a single TCP 
connection stream, in case         a connections slots 
overlapping occurs. Moreover, in this case connection 
persistence is adopted and connections may include more 
than a single request. For example, in Fig. 2, the request 
next to the current one on the same connection stream is 
(even partially) received before the full response to the 
current request is sent. 

 

Figure 2. TCP Connection Stream in case of         

 

Although in Fig. 2 no overlapping is shown between 

           and          , since         
               

 , 

overlappings may occur. In particular, relatively to a 
single TCP connection, an overlapping occurs when Eq. 
10 is satisfied. 

              

    (          
             

 

         
 )             

 

          
 

         
   

(10) 

For instance, this kind of overlapping may occur in the 
HTTP protocol: considering a single TCP connection 
stream, a client requests to the server a particular resource 
such as a web page. After the page content is received and 
parsed by the client, a set of resources bounded to the 
same hosting server (i.e. pictures, scripts, or stylesheets) 
may be found in the page. In order to correctly show the 
web page such additional resources have to be obtained, 
hence additional requests have to be sent to the server. In 
case a persistent connection (HTTP 1.1) is used, a series 
of subsequent requests is usually sent to the server 
through the already established TCP connection

1
. In this 

                                                           
1 Actually, some browsers use multiple connections in order to speed up 
displaying 

case, the requests sent from the client and next to the first 
one may be overlapped to the receiving of the responses 
to the previous requests. 

Our model is based on the concept that each 
connection is composed by a sequence of requests and 
responses. This fact is not always true; as described 
above, in case of messages overlapping at the application 
layer some connections may adopt a full-duplex 
communication thus resulting in a simultaneous 
communication between client and server. The model has 
therefore to adapt itself to correctly identify the start/end 
of a request/response. 

In this context, although a first implementation may 
identify changes in the packets direction for a common 
connection stream, such solution may generate inaccurate 
data. Indeed, although in this case packet inspection at the 
application level is not needed, if message overlapping 
occurs improper data would be generated, due to the 
(possible) frequent change of direction relative to two 
different and overlapping messages on the same channel. 
Therefore, in order to carefully extrapolate connection 
slots data an external protocol-dependent module may be 
needed. 

E. HTTP Model Implementation 

After defining the model, we implemented a software 

component to extrapolate the selected representation 

features. Our intent is to analyze traffic data, such as a 

PCAP packet capture file, representing the rough network 

packets on a network/host relatively to a time interval. 

The analyzed rough data are only relative to the packets 

directed to the application layer. From such packets it is 

possible to rebuild and extrapolate a list of (captured) 

connection streams. This choice allows us to easily 

retrieve needed capture files by sniffing the network on 

the server needing protection. Nevertheless, some issues 

are related to such approach: due to network traffic dump 

limits, a request (or similarly a response) composed by a 

single packet leads to: 

                           (11) 

since capture files associate a packet to a specific 
reception time. For instance, this fact may occur in case of 
a single packet including the entire request payload. 
Although this issue may be considered an important 
limitation, a more accurate retrieval is not relevant in this 
context, since our model focuses on attacks targeting the 
application layer, while in case of a single packet 
composing the request (or similarly for a response), we 
expect potentially long      values for attacks targeting 

lower layers. In addition, a more accurate data retrieval 
would operate on the protected server (for instance by 
operating at the kernel level, by intercepting sent and 
received messages), thus excluding a central node 
analyzing an entire subnetwork. 
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Another important consideration is relative to packets 

payload. In particular, the inspection of the messages 

directed to the application layer is needed for protocols 

allowing message overlapping (see Sect. 4.D). Indeed, in 

this case an analysis of the payload is needed in order to 

identify the starting/ending times of a request/response on 

a mixed stream. For instance, in case of the HTTP 

protocol the end of requests is identified by analyzing 

packets payloads and looking for the \r\n\r\n string. 

Instead, the Content-Length value sent by the server 

in the response header is needed to identify the response 

end. Conversely, in case messages overlapping is not 

supported by the protocol, inspection is not needed, and it 

is possible to identify requests/responses times by 

analyzing the direction flow of the packets. Although the 

packet inspection requirement is a limitation of the 

proposed approach, gaining access to the server needing 

protection should not be a problem, hence messages 

decryption should be possible (i.e. making use of private 

encryption keys). 

F. Model Architecture 

Figure 3 shows that the first step of the model 

extrapolates the observed data. For instance, in our 

implementation these data are represented as rough 

network traffic (a PCAP packet capture file). For retrieval 

operations, traffic has been filtered on packets directed to 

the application layers, except for the retrieval of the        

parameter, requiring the 3-way-handshake packets. Then 

the data extrapolation phase is accomplished by applying 

payload inspection, if needed, in order to manage 

messages/connection slots overlapping possibly occurring 

on the same connection stream. Two separate tables are 

generated: the Connections Table, including a connection 

identifier, the number of requests found in the stream, and 

the associated        value, for each connection 

establishment captured; and the Connections Slots Table, 

where each row refers to single connection slot on the 

stream and includes the parameters defined in Sect. 4.B. 

These tables represent the output of the proposed model 

and are taken in input from a detection algorithm which 

makes use of statistical approaches to identify traffic 

anomalies. 

Moreover, due to the definition of the      parameter 

we always have a number of requests/connection slots 

greater than or equal to the number of captured 

connections. This is because every connection always 

includes at least one connection slot. Therefore, since 

each connection slot is associated with a single record of 

the Connections Slots Table, the number of records 

composing this table is equal to the sum of the values 

composing the Connections Table, whose values are 

strictly greater than  . 

 
Figure 3. The Proposed Model Architecture 

 

5. TESTS AND RESULTS 

We have used our proposed model in a real 
environment (considering the HTTP protocol), executing 
tests with the purpose of showing the model’s 
potentialities. Tests involved the capture of network 
traffic on an Apache HTTP server without any specific 
protection module running on it. 

Two different scenarios have been analyzed: in the 
former all the traffic directed to the server is legitimate; in 
the latter only malicious packets are received by the 
server, generated by a Slowloris [8] attack. Since this 
attack works by establishing a large amount of 
connections with the victim and making pending and 
potentially endless requests, we expect in this case to 
obtain different values, especially for the      parameter. 

In order to show the whole obtained tables generated 
by our proposed model, we have limited the number of 
requests accomplished during the tests. In particular, in 
the legitimate scenario a web page has been requested for 
               times during the capture, disabling 

client-side caching and using Google Chrome web 
browser. The requested page contains two additional 
resources located on the same server: a CSS stylesheet 
and a JPEG picture. We captured traffic relative the 
            page openings. 

Instead, in the Slowloris attack scenario no specific 
resource is actually requested to the server: indeed, 
requests are never parsed by the server since the string 
identifying the end of the request is never sent by the 
malicious client. In this case we have limited the 
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connections number to                           and 

we have applied a Wait Timeout of        seconds 
[6]. Network traffic has been captured for         
seconds. Although the limits used during our tests may 
represent not harmful situations, our intent is to show the 
results of the proposed method instead of comparing a 
legitimate situation with several clients to a fully working 
attack situation. 

A. Legitimate Traffic Analysis 

In this case we expect to capture             persistent 

connections in total, thus a Connections Table composed 
by    records. In practice, as reported in Fig. 4, we 
noticed that more than             connections are 

established: we observed a total of    established 
connections and not all of them exactly include   
requests/connection slots, which represents the expected 
value, since pages are composed by the HTML content, 
the CSS stylesheet, and the JPEG picture. In particular, 
deeply analyzing the network traffic we discovered that 
connection with       is relative to the web page 
favicon, automatically requested by Google Chrome 
browser, even if not specified in the HTML content. 

Moreover, although they are not displayed in sequence 
(since order is not relevant in our context), connections 
with       and        refer to the same web page 
show. In particular, the latter is relative to HTML web 
page and CSS stylesheet requests, while the former is 
relative to the JPEG picture request. This behavior is due 
to the web browser used during the tests. In particular, the 
browser may open more than one connection for showing 
the same web page for performance optimization, by 
separating typically large-sized resources (such as images, 
video, or audio ones) from small sized ones (such as page 
contents, stylesheets, or scripts). 

Figure 4 also reports results relatively to the 
Connection Slots Table built from the captured traffic. In 
this case the Connections Slots Table is composed of    
connection slots. In particular, three requests are 
accomplished at any page showing, thus making in total 
                 requests (plus the favicon request 

automatically issued by the browser). 

 

C
id

 N
req

 
start

 

1 3 0.00094 

2 1 0.00093 
3 3 0.00075 

4 3 0.00093 

5 3 0.00098 
6 3 0.00092 

7 1 0.00116 

8 3 0.00090 
9 3 0.00254 

10 2 0.00097 

11 3 0.00076 
12 3 0.00092 

Connections Table 

C
id

 S
i
 

req
 

delay
 

resp
 

next
 s

req
 p

req
 s

resp
 p

resp
 

1 1 0.00000 0.00075 0.00000 0.02675 400 1 816 1 
1 2 0.00000 0.00052 0.00000 0.00337 419 1 432 1 

1 3 0.00000 0.00034 0.00816  418 1 52169 38 

2 1 0.00000 0.00045 0.00542  418 1 52170 38 

3 1 0.00000 0.00091 0.00000 0.03586 400 1 816 1 

3 2 0.00000 0.00054 0.00000 0.00298 419 1 432 1 
3 3 0.00000 0.00034 0.00570  418 1 52169 38 

4 1 0.00000 0.00076 0.00000 0.02707 400 1 816 1 

4 2 0.00000 0.00053 0.00000 0.00237 419 1 432 1 
4 3 0.00000 0.00033 0.00826  418 1 52169 38 

5 1 0.00000 0.00074 0.00000 0.06189 400 1 816 1 

5 2 0.00000 0.00056 0.00000 0.00152 419 1 432 1 
5 3 0.00000 0.00034 0.00559  418 1 52169 38 

6 1 0.00000 0.00073 0.00000 0.05575 400 1 816 1 

6 2 0.00000 0.00055 0.00000 0.00175 419 1 432 1 
6 3 0.00000 0.00034 0.00565  418 1 52169 38 

7 1 0.00000 0.00067 0.00000  316 1 506 1 

8 1 0.00000 0.00090 0.00000 0.02832 400 1 816 1 
8 2 0.00000 0.00054 0.00000 0.00268 419 1 432 1 

8 3 0.00000 0.00034 0.00709  418 1 52169 38 

9 1 0.00000 0.00074 0.00000 0.04879 400 1 816 1 
9 2 0.00000 0.00056 0.00000 0.00275 419 1 432 1 

9 3 0.00000 0.00035 0.00681  418 1 52169 38 

10 1 0.00000 0.00074 0.00000 1.47218 400 1 816 1 
10 2 0.00000 0.00055 0.00000  419 1 432 1 

11 1 0.00000 0.00072 0.00000 0.02797 400 1 816 1 

11 2 0.00000 0.00054 0.00000 0.00355 419 1 432 1 
11 3 0.00000 0.00034 0.00599  418 1 52169 38 

12 1 0.00000 0.00077 0.00000 0.03167 400 1 816 1 

12 2 0.00000 0.00054 0.00000 0.00217 419 1 432 1 

12 3 0.00000 0.00042 0.00671  418 1 52169 38 

Connections Slots Table 

Figure 4. Results Obtained for Legitimate Traffic 

 

Some of the       values reported in the table assume 

null values. Indeed, this happens when no requests next to 

the current one are observed. Moreover, from the 

Connections Slots Table we can observe that each request 

is composed by a single packet. Indeed, requests payload 

is usually shorter than the maximum length of the payload 

included in a network packet
2

. Responses are also 

composed by a single packet except in the picture case, 

whose response is composed by    fragments due to the 

                                                           
2 This size is variable and it depends from the Maximum Transmission 

Unit (MTU) of the data-link layer, which assumes for instance the value 

of      in case of an Ethernet connection. 
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large image size. In fact, the HTML page is sized     

Bytes, the JPEG picture is sized       Bytes, and the 

stylesheet is sized    Bytes. By analyzing the responses 

size, these values are never found, since each response 

also include protocol header information, such as the 

Content-Length value or the HTTP response code. 

Nevertheless, from the Connections Slots Table in Fig. 4 

we can easily associate response sizes to the requested 

resources: HTML web page related response is sized     

Bytes, CSS stylesheet related response is sized     Bytes, 

favicon related error response is sized     Bytes, and 

JPEG picture related response is sized       Bytes. 

B. Malicious Traffic Analysis 

In this case we expect exactly            connections 
in the Connections Table. As reported in Fig. 5, this fact is 
confirmed in practice. 

From the Connections Table we also see that a single 
request/connection slot is included in each connection. 
Indeed, since no response comes from the server, captured 
traffic only includes requests. Moreover, similarly to the 
      null results obtained in the legitimate case tests 
reported above, in this case we always have null values 
for the       ,      ,      ,      , and       parameters. 

Analyzing        results for the attack we also notice that 
connections are almost always characterized by extremely 
similar values

3
. These facts confirm the potentialities of 

the proposed method to detect attacks targeting the 
application layer. Figure 5 also confirms our expectations 
on the Connections Slots Table cardinality, composed in 
this case by               records. Moreover the      

parameter assumes in this case an extremely high value 
compared to the legitimate case, as expected. In particular, 
this parameter always assumes a value near to       
    seconds. Due to additional times such as connection 
establishment,      value is strictly greater than      . 

This may represent a strange value, since we may expect a 
value near         seconds. In practice, if we consider 
a single connection/record, since capture has been 
interrupted after exactly     seconds, the last captured 
packet is registered at about                 
seconds. Therefore, since we always have values strictly 
greater than      , the next sending phase would occur at 
          , thus not being registered by the capture. 

                                                           
3 Note that displayed values are rounded to five decimals. 
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1 1 0.00030 
2 1 0.00030 

3 1 0.00307 

4 1 0.00030 
5 1 0.00030 

6 1 0.00030 

7 1 0.00030 
8 1 0.00030 

9 1 0.00030 

10 1 0.00030 

Connections Table 

C
id

 S
i
 

req
 

delay
 

resp
 

next
 s

req
 p

req
 s

resp
 p

resp
 

1 1 540.01366    309 11   
2 1 540.01046    309 11   
3 1 540.01486    309 11   
4 1 540.01286    309 11   
5 1 540.00911    309 11   
6 1 540.01156    309 11   
7 1 540.01109    309 11   
8 1 540.01429    309 11   
9 1 540.00979    309 11   

10 1 540.01220    309 11   

Connections Slots Table 

Figure 5. Results for Slowloris Traffic 

 

Another interesting result to notice is the      value. 

In this case, relatively to each connection/request, we may 

expect a value equal to 
 

   
         . In practice, due 

to the     considerations made above, the last packet is 
never sent exactly at the last captured instant at time  , 

but later. Because of this, we may expect      
 

   
 

  . 

Instead, by analyzing the results, during the capture 
time the attack sends    packets. This is because the 
Slowloris attack tool works in two phases [6]: in the first 
phase the initial part of the request is sent normally; 
subsequently, a repeated phase is accomplished by 
sending an additional payload string to the server, thus 
making use of the Wait Timeout, waiting for its 
expiration, and repeating this phase again. The obtained 
results are compliant to this behavior: relatively to the 
same connection, captured traffic includes a first packet 
containing the initial part of the request followed by a 
packet including the additional payload. Then, for the first 
time, the Wait Timeout is used. Therefore, we have two 
initial packets sequentially sent just after the connection 
has been established, followed by a repeated and endless 
slow packet sending. 

Particularly, if we consider time interval            
we analyze that   packets are sent by the attacker, while   
packets are sent in time interval             , and so 
on. In general, considering time interval             , 

with   
 

   
,     

      packets are sent. Hence, due 

to previous assumptions, since the first timeout expiration 
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actually never occurs at    , but later, we have      
    

 , thus confirming the obtained results. 

6. POSSIBLE MODEL APPLICATION 

The purpose of our proposed model is intrusion 
detection. In order to provide a complete overview of the 
introduced model we will now report an example of a 
possible application for detecting different Slow DoS 
Attacks. We have focused on three Slow DoS Attacks 
that, in our opinion, currently represent the most serious 
threats, namely: Slowloris [8], SlowDroid [12], and Slow 
Read [11]. 

We analyzed the behavior on an Apache2 web server 
by targeting it with the three attacks for a duration of     
seconds. The server configuration is the same of tests 
reported in Sect. 5, but in this case the attacks are now 
executed to yield a DoS on the victim; this was obtained 
by establishing and keeping the minimum amount of 
connections needed to cause a DoS. Attacks results have 
been compared to a legitimate situation including    
minutes of network traffic related to different clients 
communicating with the victim’s web server. 

A. Data Analysis 

By adopting the proposed model we have been able to 
extrapolate information potentially capable of detecting 
the executed threats. We have chosen to focus on   
parameters. Indeed, although the proposed framework 
provides the ability to retrieve several parameters, for 
performance reasons, by accurately choosing and 
extrapolating only selected metrics, IDS performance are 
enhanced. Starting from the retrieved information, for 
each attack we analyzed results for   parameters, 
obtaining average and variance values. Results are shown 
in Table I. We have observed that for all the Slow DoS 
Attacks the required connections amount is successfully 
established (and maintained) with the server, thus 
achieving the primary goal of these threat. Notice that the 
success of the attacks is not relevant for our purpose, since 
our aim is to detect the attacks execution independently of 
their effectiveness. 

TABLE I.  OBTAINED RESULTS APPLYING THE PROPOSED MODEL 

TO DIFFERENT ATTACKS TARGETING AN APACHE 2.2.22 WEB SERVER 

 LEGITIMATE SLOWLORIS SLOWDROID SLOW READ 

       
                                  

                                  

     
                                      

                                    

       
                       

                       

      
                      

                      

      
                

                

 

Obtained        values are similar for all traffic 
conditions: indeed, the analyzed threats work by sending 
the first request (or part of the request) a few instants after 
a connection has been established. Analyzing results for 
the attacks it is clear that both Slowloris and SlowDroid 
may be detected by analyzing the      parameter, while 

Slow Read may reveal an anomaly relative to the        

parameter. 

B. Legitimate Traffic Characterization 

The above displayed table shows that attack results are 
different from legitimate results. Nevertheless, in order to 
properly identify an anomaly on the network a clear 
separation between legitimate and potentially anomalous 
traffic is needed. 

It is indeed fundamental to establish a threshold 
beneath which two network scenarios can be considered 
semantically equivalent. A possible approach starts from 
results shown in Table I and defines legitimate traffic 
thresholds for the   parameters using the 3-sigma rule 
(also known as 68-95-99.7 rule) [42]. In statistics, this 
rule is used to identify the percentage of values which 
present characteristics similar to the mean value in a 
normal distribution with a width of one. In the empirical 
sciences field, the rule expresses a conventional heuristic 
that almost all the values are taken to lie within three 
standard deviations of the mean. In particular, assuming a 
Gaussian distribution of   parameters associated with 
legitimate traffics, all traffics associated to values 
              are flagged as anomalous. This 
approach normally provides a confidence level equal to 
     . 
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In accordance to Table I, since      “left” 
thresholds always provide negative values, except for the 
      parameters, that can assume negative values, we 
only consider in general      as threshold, thus 
obtaining the following values:         for        
parameter,         for      parameter,         for 

       parameter,         for       parameter, and 

         (relatively to the left threshold) and         
(relatively to the right threshold) for       parameter. 

Even if it was unexpected, the        threshold allows 
us to identify Slow Read as an anomaly, while the other 
attacks cannot be distinguished from legitimate traffic 
from this point of view. Nevertheless, by adopting the 
     threshold, both Slowloris and SlowDroid are 

detected from the system and flagged as anomalies. 

The introduced detection system is therefore able to 
identify and detect all considered Slow DoS Attacks. In 
case a mixed traffic would be considered, including both 
legitimate and attack data, it should be clear that the 
success of the detection depends on the connections ratio 
relative to the attack, over the total amount of connections 
captured. Nevertheless, in order to perpetrate a successful 
attack, a large number of connections is usually 
established [5]. In addition, obtained results clearly show 
that the order of magnitude relative to legitimate and 
anomalous traffic is very different. Therefore, the 
proposed system should be considered an important tool 
to efficiently detect application layer attacks. Although a 
simple algorithm has been reported, the aim of the paper 
is not to introduce a novel Intrusion Detection System, but 
to provide instead a representation method able to 
extrapolate features characterizing application layer 
attacks. 

7. CONCLUSIONS AND FUTURE WORK 

We defined and provided an innovative model aimed 
at detecting attacks targeting the application layer of the 
victim and working over the TCP transport protocol. An 
accurate selection and extrapolation of characteristic 
parameters is defined in the paper. 

Thanks to our proposed model, it is possible to start 
from the introduced metrics (or a subset of them) and 
apply a particular intrusion detection method or algorithm, 
thus avoiding the characteristic features selection phase 
that researchers usually have to accomplish before 
applying their analysis algorithms. As a consequence, this 
approach provides a simplified and direct way to deploy 
an Intrusion Detection System. Moreover, since our 
model provides the ability to easily retrieve those 
parameters, testing of novel algorithms and consequently 
mitigation of such threats should be facilitated and 
accelerated. 

Possible applications for our model may involve 
several research branches. For instance, it could apply to 
the extracted data of a statistical based intrusion detection 

or a machine learning study, trying to detect an anomaly 
through properties belonging to these specific fields. The 
model provides an infrastructure to researchers who want 
to design, adapt and adopt a particular algorithm for 
application layer menaces detection. In particular, by 
integrating our model with statistical analysis techniques 
it is possible to detect (even still unknown) network 
attacks acting at the application layer of the 
communication protocol stack. Therefore, the proposed 
work should be considered a fundamental resource for the 
research community, providing them an infrastructure 
able to identify and retrieve information characterizing 
network attacks acting at the application layer over the 
TCP protocol (i.e. Slowloris, SlowDroid, etc.), for a faster 
and more accurate deploying of the detection tool. 

In order to show how the model behaves in a real 
scenario, we have accomplished accurate tests analyzing, 
describing, and comparing a legitimate situation and a 
malicious one, reporting and explaining in detail the 
obtained results and how data change in these two 
different scenarios. In this way, we have provided a real 
sample of the output generated by our tool and proved that 
it can be applied to different contexts, highlighting the 
potentialities of the proposed model to detect network 
attacks. 

In order to provide an example of adoption of the 
proposed model we have also reported a simple intrusion 
detection system making use of our model to identify 
different attacks working at the application layer (e.g. 
slow denial of service, SQL injection attacks, etc.) 
targeting web servers. Since the model is not bounded to a 
specific detection algorithm or to a specific threshold 
definition, it is possible to integrate our work for defining 
novel detection systems, using approaches coming from 
different research areas (i.e., machine learning, statistics, 
neural networks, spectral analysis, game theory, etc.). 

Although the proposed approach requires an 

observation of the protected server, a more accurate 

extrapolation of the selected features may be applied on 

the server itself, by analyzing sent and received data at the 

kernel level, rather than at the network level. Therefore, 

further work on the topic may involve more accurate 

retrieval operations and appropriate comparisons with the 

current approach. 
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