

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 5, No.1 (Jan-2016)

E-mail address: enrico.cambiaso@ieiit.cnr.it, gianluca.papaleo@ieiit.cnr.it, chiolag@acm.org, maurizio.aiello@ieiit.cnr.it

 http://journals.uob.edu.bh

A Network Traffic Representation Model for Detecting

Application Layer Attacks

Enrico Cambiaso

1,2
, Gianluca Papaleo

1
, Giovanni Chiola

2
, and Maurizio Aiello

1

1 CNR-IEIIT, National Research Council, via De Marini 6, 16149 Genoa, Italy

2DIBRIS, Università degli Studi di Genova, via Dodecaneso 35, 16146 Genoa, Italy

Received 1 Sep. 2015, Revised 23 Oct. 2015, Accepted 15 Nov. 2015, Published 1 Jan. 2016

Abstract: Intrusion Detection Systems (IDS) play an important role in network security, protecting systems and infrastructures from

malicious attacks. With the emerging of novel threats and offensive mechanisms, IDS require updates in order to efficiently detect

new menaces. In this paper we propose an anomaly-based detection model designed for particular application protocols, exploited by

emerging menaces known as Slow Denial of Service (DoS) Attacks. We define parameters characterizing network traffic and we

describe in detail how to extrapolate them from a network traffic capture. We motivate the need of packet inspection in certain

contexts in order to retrieve correct data. We analyze and describe how the proposed model behaves on two real scenarios involving

legitimate and malicious activities, respectively. Thanks to our model, a detection framework for attacks working at the application

layer of the communication protocol stack is provided, allowing and facilitating the execution of detection algorithms. Indeed,

though the adoption of such framework, the design of efficient detection systems is simplified and designers work is reduced,

allowing them a faster deploy of efficient detection algorithms. The aim of this paper is to provide an effective framework for

application DoS attacks detection.

Keywords: intrusion detection, anomaly detection, detection model, framework, lbr dos, slow dos attack

1. INTRODUCTION

In the last century, communication has evolved and
Internet became the most relevant communication
medium. As today Internet-connected computer systems
play a vital role in modern society, they are often subject
to intrusions and attacks. Therefore, Internet has to be
kept a safe place, providing an appropriate security layer
to its users. Intrusion detection techniques are executed to
identify malicious activities targeting a specific network
or host.

Intrusion Detection Systems (IDS) can be categorized
into anomaly detection and misuse detection: while
anomaly detection systems, such as IDES [1], flag as
anomalous each activity that significantly deviates from
normal usage profile, misuse detection systems, such as
IDIOT [2] or STAT [3], profile well-known menaces
extrapolating attack signatures characterizing an intrusion.

Currently, building an effective IDS is no easy task.
An anomaly-based approach may use intuition and
experience to identify statistical measures [4], while a
misuse approach first analyzes and categorizes attacks and
vulnerabilities, thus defining specific rules and patterns to

identify a running threat. Once the signature of a
particular menace is obtained, a potential execution of the
same attack could successfully be detected. Nevertheless,
since such signature based approach cannot detect novel
attacks, it should not be considered a complete solution.

In this paper, we propose a novel representation model
for application-layer attacks, focusing on denial of service
(DoS) threats. We will particularly refer to Slow DoS
Attacks (SDAs) [5], [6], also known as application DoS or
low-rate DoS attacks, which represent an emerging
category of denial of service attacks. Examples of such
threats are the Shrew [7], Slowloris [8], Apache Range
Headers [9], the recent HTTP.sys PoC (MS15-034) [10],
Slow Read [11], and SlowDroid [12] attacks. It is
important to highlight that, although we will contextualize
the model for analyzing SDAs to HTTP servers, it is
designed to potentially detect application layer attacks in
general. Indeed, the proposed system extracts accurately
selected features able to characterize application layer
threats. This extraction could generally be adopted for any
application-layer protocol working over the TCP transport
protocol and based on the so called request-response (or
request-reply) [13] communication mechanism (i.e.,
HTTP, SSH, SMTP, etc.). The proposed system is

http://dx.doi.org/10.12785/ijcds/050104

32 E. Cambiaso et. al.: A Network Traffic Representation Model for Detecting Application Layer Attacks

http://journals.uob.edu.bh

intended to be a fundamental component of an IDS. It is
indeed designed to be extended and integrated with a wide
range of detection algorithms, applying specific
approaches to the data extracted through our system.

The rest of the paper is organized as follows: Sect. 2

presents the related work on the topic. Sect. 3 justifies the

need of a detection framework for application-layer

threats, and Sect. 4 describes in detail our proposed

model. Sect. 5 reports the tests we have executed and

describe the obtained results, while Sect. 6 reports an

example of application of our detection framework.

Finally, Sect. 7 concludes the paper.

2. RELATED WORK

The idea of an intrusion detection framework is not
new. In [14], a data mining framework for adaptively
building intrusion detection models is provided. Other
works are instead focused on designing a Collaborative
Intrusion Detection System (CIDS) framework. In this
context, [15] represents a first attempt to categorize CIDS
systems. While systems such as DIDS [16], DShield [15],
or NSTAT [17] present centralized CIDS systems, in [18]
[19] a hierarchical approach is used. Instead, [20] and [21]
propose CIDS systems based on a fully distributed
approach.

Other works are instead focused on designing a
framework for detecting attacks targeting particular
networks. Special interest is given to wireless systems:
[22] introduces an IDS framework for cluster-based
wireless sensor networks, while [23] aims at protecting
wireless sensor networks from routing attacks. [24]
proposes a distributed IDS framework for MANETs based
on cooperation among nodes, while [25] introduces a
layered intrusion detection framework for ad-hoc
networks. [26] integrates a layered intrusion detection
framework with neural network algorithms to design an
IDS system. [27] combines data mining classification with
clustering fundamentals to design a hybrid intrusion
detection framework.

In order to design an intrusion detection framework
for anomaly detection, a proper identification of important
features is needed. Although [28] tries to identify those
features, the choice of important parameter is still an open
challenge in the field. In [29] a statistical intrusion
detection framework known as SID is proposed,
identifying a set of flow based parameters (duration,
protocol, service, source port number, and source byte)
used during the detection process. The model proposed in
this paper identifies traffic features working at the
application layer extracting parameters from connections
established with the victim. In this context, [30] focuses
on data at the application layer, analyzing information
stored in daemons log files. Although this approach may
reveal anomalies working at application layer, it is not
designed to efficiently protect from slow DoS attacks.
Indeed, for example, under a slow DoS attack (i.e.

slowloris), server logs may not reveal anomalies, since the
attacker’s behavior is apparently legitimate. In addition,
since logs records may be stored only once (malicious)
connections are closed (i.e. identification of a malformed
request), such approaches fail in on-line timely protection.
Conversely, the proposed method can be applied for on-
line detection of running threats.

In [31] it is presented instead an application layer
attacks detection system based on re-distributing clients
requests on multiple virtual servers. This load-balancing
approach, among with the introduction of a network proxy
or a network accelerator, is known to counter some
specific application threats [32]. Similar protection
approaches, such as mod-security or reqtimeout modules
of Apache, are able to mitigate specific slow DoS threats.
Nevertheless, as demonstrated in [32], these techniques
are not designed to protect from distributed threats.
Instead, the proposed system implicitly considers
distributed attack perpetrated by many coordinated
nodes/bots. The approach followed by [33], [34] is instead
based on dynamically changing the port number of the
server through a random port hopping approach. We
believe that such approach should be considered invasive
for the server, while we prefer adopting a technique which
can be deployed even on a network node such as a
firewall. In [35] a mechanism for protecting web servers
from application DoS attacks is proposed, focusing on a
whitelist-based admission control and busy period-based
attack flow detection. [36] proposes instead a detection
system to counter the LoRDAS attack, exploring different
approaches to defend against this threat and suggesting
approaches based on Random Service Time (RST),
Random Time Queue Blocking (RTQB), Improved
Random Time Queue Blocking (IRTQB) and Random
Answer Instant (RAI). [37] introduces a low-rate DoS
attacks intrusion detection system making use of signal
processing based models applied on spectral energy
distribution probability. The system is based on analyzing
incoming network traffic on the server. Nevertheless,
since some low-rate threats induce the server to an
anomalous behavior [5], the system is not able to properly
identify such threats. The approach adopted in [37] is
based on analyzing packets timing arrival. [38] proposes a
detection system specific for SQL injection attacks, based
on the analysis of repetition of characters. Similarly to
[37], the proposed system is based on the extraction of
various data relative to the captured packets.

The anomaly detection model we introduce in this
paper is based on the extraction of specific metrics able to
characterize (distributed or not) application layer
menaces. The metrics definition and extraction phase is a
fundamental and crucial activity researchers have to
accomplish in order to design an efficient intrusion
detection system. Focusing on the extraction of relevant
data for application DoS attacks detection, the proposed
system staves researchers off the need of such activity,
opening to a wide range of implementations, integrating

 Int. J. Com. Dig. Sys. 5, No.1, 31-42 (Jan-2016) 33

http://journals.uob.edu.bh

algorithms belonging to different research areas. In virtue
of this, the proposed system should be considered a
fundamental tool for the cybersecurity research field.

3. THE NEED FOR A DETECTION MODEL

Our goal is to design a representation model based on
parameters able to characterize network anomalies related
to an exploitation of the application layer. Since
application layer attacks such as slow DoS threats are
becoming very common, an efficient detection system
able to identify them is needed. Although the menaces
work at the application layer of the communication
protocol stack, the identified extrapolated parameters refer
to lower layers as well. For instance, at lower layers it is
possible to retrieve information related to higher layers,
such as the application layer payload size of the packet,
analyzed at the transport layer.

Analyzing the available detection and mitigation
methodologies for network attacks, a protection system
may involve hardware or software components. While
applying a hardware protection (such as a load balancer, a
network proxy, or a hardware accelerator [32]) could
successfully mitigate some categories of attacks, it can be
considered a workaround rather than a good solution.
Indeed, since such hardware appliances have not been
designed for this purpose, their resources would be
allocated for this additional activity. Moreover, such
approaches usually do not provide a built-in functionality
aimed at detecting a working attack on the network.

Instead, if we consider the HTTP protocol, which is
particularly exploited by network attacks such as SDAs,
current software protections systems are organized as
software modules. Although there are several different
modules available, their functioning is based on two basic
principles: (i) limit the maximum number of simultaneous
connections coming from a particular client, and (ii) apply
specific server-side timeouts [32], [39]. Even if such
solutions represent some sort of mitigation techniques,
[32] shows the inefficacy of the available modules in
protecting from particular attacks such as, e.g., distributed
attacks.

If we analyze the design process for building an IDS,
three core activities are involved:

1. first of all, a behavior is observed, usually on the
server host or on the server’s network path. Based
on this observation, a network traffic
representation phase is accomplished to select
specific parameters to extrapolate, in order to
identify potential network anomalies

2. subsequently, an analysis algorithm is applied to
the extrapolated data, by using approaches and
metrics deriving from different research fields
such as machine learning, neural network,
statistics, game theory, etc.

3. finally, a characterization phase is accomplished,
by defining a proper threshold distinguishing a
legitimate situation from an anomalous one. Also
in this case, different research areas may be
involved.

Our proposed model belongs to the first category of
activities and it provides a representation framework
specific for DoS attacks working at the application layer.
Since we believe that a component-based implementation
of an IDS is fundamental, our proposed model not only
provides important parameters able to identify application
DoS attacks, but it also simplifies researchers’ work,
allowing them to use an already defined representation
system.

4. THE PROPOSED MODEL

Our model is specific to request-response protocols
acting at the application layer and making use of the TCP
transport protocol. At this layer, the protocol is based on
messages exchange between two entities, commonly
known as client and server. Moreover, we assume that for
each message sent by the client there is always one and
only one reply message sent by the server. Known
examples of request-reply protocols are HTTP, FTP, or
SSH.

A. Connections on Request-Response Protocols

After the connection between client and server has

been established, the client sends a request to the server.

The request is interpreted by the server in order to

generate a response to send back to the client. After the

first request-response exchange, two possible events could

characterize the connection: (i) the connection is closed or

(ii) the connection is kept alive (persistent connection

[40]), in order to reduce the connection overhead for any

additional request-response between the same

client/server pair.

B. The Extracted Parameters

Since each connection potentially is persistent, a first
extrapolated parameter is the parameter, reporting

for each connection the number of requests included in
each connection stream.

We define as connection slot the portion of a
connection which refers to the time passing between the
start of a request and the end of the relative response on
the same stream. According to Fig. 1, let us define
 the connection start identified by the 3-

way-handshake completion, the starting time of

a request, the ending time of a request,

the starting time of a response, and the ending

time of a response. From these values we can extrapolate
data relatively to the time passed before sending the first
request (), the duration of a request (), the

duration of a response (), and the time passed

between the end of a request and the start of the relative

34 E. Cambiaso et. al.: A Network Traffic Representation Model for Detecting Application Layer Attacks

http://journals.uob.edu.bh

response (). While the parameter is

associated with a single connection, other parameters are
related to each connection slot, which also includes the
time passed between the end of the response and the start
of the next request of the same stream (). In addition,
since connections slots are part of a connection, each
connection is uniquely identified by the value (in our
case, a sequential integer value), and each connection slot
is associated with the connection it belongs, plus the
slot index on the connection.

Figure 1. TCP Connection Stream for a Request-Response Protocol

Based Connection

Fixing a connection stream, let us define the

connection slot index on the stream. According to Fig. 1

(where), which depicts a scheme of the parameters,

we define:

(1)

 (2)

 (3)

 (4)

 (5)

Moreover, relatively to a single connection slot, the
model also provides the following parameters:

 to identify the request size, in bytes

 to identify the amount of TCP packets that

compose a request

 to identify the response size, in bytes

 to identify the amount of TCP packets that

compose a response

In particular, let us note that and values

depend on the data-link layer protocol adopted.
From these parameters we build two tables. Selected

parameters are indeed grouped in two categories: from
one side, we analyze each connection, extrapolating the
triple (i) , (ii) , (iii) . These data are part of

the Connections Table. From the other side, we analyze
each slot composing a connection, extrapolating the
following data: (i) , (ii) , (iii) , (iv) , (v)

 , (vi) , (vii) , (viii) , (ix) , (x)

 . These data are part of the Connections Slots Table.

By choosing these parameters, we are able to
extrapolate behavioral features for application layer
attacks. For instance, it is known that Slow DoS Attacks
like Slowloris [8] split HTTP requests by sending request
packets delayed during the time, thus being typically
characterized by high values. Instead, the Apache

Range Headers [9] attack makes the parameter

assumes high values, since requests sent to the server need
particularly intensive calculations to produce an
appropriate response. Similarly, Slow Read attack [11]
simulates a tiny reception buffer to slow down the
responses of the server, thus being characterized by high
 and values. Relatively to the parameter,

it is instead exploited by the Slow Next attack [41].

Our model provides us the ability to retrieve

composed parameters. For instance, the amount of bytes

per second sent during a request/response may be defined

as reported in Eq. 6.

(6)

Similarly, the ratios representing the amount of

packets per second sent during a request/response are

reported in Eq. 7.

(7)

It is also possible to obtain the average size per packet,

as reported in Eq. 8.

(8)

C. Model Assumptions

In order to properly define a detection model, we have
to define the model behavior at limit cases. In particular,
we make the following assumptions:

 a connection which does not start with a request is
ignored until a request is found on the same
connection; this may happen when traffic capture
operation begins after a full request has been sent
and the relative response is captured;

 Int. J. Com. Dig. Sys. 5, No.1, 31-42 (Jan-2016) 35

http://journals.uob.edu.bh

 due to the nature of elements like network,
communication medium, or response production
times, traffic measurements always provide:

 (9)

D. Messages Overlapping on the Same Connection

Stream

If we focus on the parameter for a single TCP
connection stream, in case a connections slots
overlapping occurs. Moreover, in this case connection
persistence is adopted and connections may include more
than a single request. For example, in Fig. 2, the request
next to the current one on the same connection stream is
(even partially) received before the full response to the
current request is sent.

Figure 2. TCP Connection Stream in case of

Although in Fig. 2 no overlapping is shown between

 and , since

 ,

overlappings may occur. In particular, relatively to a
single TCP connection, an overlapping occurs when Eq.
10 is satisfied.

 (

)

(10)

For instance, this kind of overlapping may occur in the
HTTP protocol: considering a single TCP connection
stream, a client requests to the server a particular resource
such as a web page. After the page content is received and
parsed by the client, a set of resources bounded to the
same hosting server (i.e. pictures, scripts, or stylesheets)
may be found in the page. In order to correctly show the
web page such additional resources have to be obtained,
hence additional requests have to be sent to the server. In
case a persistent connection (HTTP 1.1) is used, a series
of subsequent requests is usually sent to the server
through the already established TCP connection

1
. In this

1 Actually, some browsers use multiple connections in order to speed up
displaying

case, the requests sent from the client and next to the first
one may be overlapped to the receiving of the responses
to the previous requests.

Our model is based on the concept that each
connection is composed by a sequence of requests and
responses. This fact is not always true; as described
above, in case of messages overlapping at the application
layer some connections may adopt a full-duplex
communication thus resulting in a simultaneous
communication between client and server. The model has
therefore to adapt itself to correctly identify the start/end
of a request/response.

In this context, although a first implementation may
identify changes in the packets direction for a common
connection stream, such solution may generate inaccurate
data. Indeed, although in this case packet inspection at the
application level is not needed, if message overlapping
occurs improper data would be generated, due to the
(possible) frequent change of direction relative to two
different and overlapping messages on the same channel.
Therefore, in order to carefully extrapolate connection
slots data an external protocol-dependent module may be
needed.

E. HTTP Model Implementation

After defining the model, we implemented a software

component to extrapolate the selected representation

features. Our intent is to analyze traffic data, such as a

PCAP packet capture file, representing the rough network

packets on a network/host relatively to a time interval.

The analyzed rough data are only relative to the packets

directed to the application layer. From such packets it is

possible to rebuild and extrapolate a list of (captured)

connection streams. This choice allows us to easily

retrieve needed capture files by sniffing the network on

the server needing protection. Nevertheless, some issues

are related to such approach: due to network traffic dump

limits, a request (or similarly a response) composed by a

single packet leads to:

 (11)

since capture files associate a packet to a specific
reception time. For instance, this fact may occur in case of
a single packet including the entire request payload.
Although this issue may be considered an important
limitation, a more accurate retrieval is not relevant in this
context, since our model focuses on attacks targeting the
application layer, while in case of a single packet
composing the request (or similarly for a response), we
expect potentially long values for attacks targeting

lower layers. In addition, a more accurate data retrieval
would operate on the protected server (for instance by
operating at the kernel level, by intercepting sent and
received messages), thus excluding a central node
analyzing an entire subnetwork.

36 E. Cambiaso et. al.: A Network Traffic Representation Model for Detecting Application Layer Attacks

http://journals.uob.edu.bh

Another important consideration is relative to packets

payload. In particular, the inspection of the messages

directed to the application layer is needed for protocols

allowing message overlapping (see Sect. 4.D). Indeed, in

this case an analysis of the payload is needed in order to

identify the starting/ending times of a request/response on

a mixed stream. For instance, in case of the HTTP

protocol the end of requests is identified by analyzing

packets payloads and looking for the \r\n\r\n string.

Instead, the Content-Length value sent by the server

in the response header is needed to identify the response

end. Conversely, in case messages overlapping is not

supported by the protocol, inspection is not needed, and it

is possible to identify requests/responses times by

analyzing the direction flow of the packets. Although the

packet inspection requirement is a limitation of the

proposed approach, gaining access to the server needing

protection should not be a problem, hence messages

decryption should be possible (i.e. making use of private

encryption keys).

F. Model Architecture

Figure 3 shows that the first step of the model

extrapolates the observed data. For instance, in our

implementation these data are represented as rough

network traffic (a PCAP packet capture file). For retrieval

operations, traffic has been filtered on packets directed to

the application layers, except for the retrieval of the

parameter, requiring the 3-way-handshake packets. Then

the data extrapolation phase is accomplished by applying

payload inspection, if needed, in order to manage

messages/connection slots overlapping possibly occurring

on the same connection stream. Two separate tables are

generated: the Connections Table, including a connection

identifier, the number of requests found in the stream, and

the associated value, for each connection

establishment captured; and the Connections Slots Table,

where each row refers to single connection slot on the

stream and includes the parameters defined in Sect. 4.B.

These tables represent the output of the proposed model

and are taken in input from a detection algorithm which

makes use of statistical approaches to identify traffic

anomalies.

Moreover, due to the definition of the parameter

we always have a number of requests/connection slots

greater than or equal to the number of captured

connections. This is because every connection always

includes at least one connection slot. Therefore, since

each connection slot is associated with a single record of

the Connections Slots Table, the number of records

composing this table is equal to the sum of the values

composing the Connections Table, whose values are

strictly greater than .

Figure 3. The Proposed Model Architecture

5. TESTS AND RESULTS

We have used our proposed model in a real
environment (considering the HTTP protocol), executing
tests with the purpose of showing the model’s
potentialities. Tests involved the capture of network
traffic on an Apache HTTP server without any specific
protection module running on it.

Two different scenarios have been analyzed: in the
former all the traffic directed to the server is legitimate; in
the latter only malicious packets are received by the
server, generated by a Slowloris [8] attack. Since this
attack works by establishing a large amount of
connections with the victim and making pending and
potentially endless requests, we expect in this case to
obtain different values, especially for the parameter.

In order to show the whole obtained tables generated
by our proposed model, we have limited the number of
requests accomplished during the tests. In particular, in
the legitimate scenario a web page has been requested for
 times during the capture, disabling

client-side caching and using Google Chrome web
browser. The requested page contains two additional
resources located on the same server: a CSS stylesheet
and a JPEG picture. We captured traffic relative the
 page openings.

Instead, in the Slowloris attack scenario no specific
resource is actually requested to the server: indeed,
requests are never parsed by the server since the string
identifying the end of the request is never sent by the
malicious client. In this case we have limited the

 Int. J. Com. Dig. Sys. 5, No.1, 31-42 (Jan-2016) 37

http://journals.uob.edu.bh

connections number to and

we have applied a Wait Timeout of seconds
[6]. Network traffic has been captured for
seconds. Although the limits used during our tests may
represent not harmful situations, our intent is to show the
results of the proposed method instead of comparing a
legitimate situation with several clients to a fully working
attack situation.

A. Legitimate Traffic Analysis

In this case we expect to capture persistent

connections in total, thus a Connections Table composed
by records. In practice, as reported in Fig. 4, we
noticed that more than connections are

established: we observed a total of established
connections and not all of them exactly include
requests/connection slots, which represents the expected
value, since pages are composed by the HTML content,
the CSS stylesheet, and the JPEG picture. In particular,
deeply analyzing the network traffic we discovered that
connection with is relative to the web page
favicon, automatically requested by Google Chrome
browser, even if not specified in the HTML content.

Moreover, although they are not displayed in sequence
(since order is not relevant in our context), connections
with and refer to the same web page
show. In particular, the latter is relative to HTML web
page and CSS stylesheet requests, while the former is
relative to the JPEG picture request. This behavior is due
to the web browser used during the tests. In particular, the
browser may open more than one connection for showing
the same web page for performance optimization, by
separating typically large-sized resources (such as images,
video, or audio ones) from small sized ones (such as page
contents, stylesheets, or scripts).

Figure 4 also reports results relatively to the
Connection Slots Table built from the captured traffic. In
this case the Connections Slots Table is composed of
connection slots. In particular, three requests are
accomplished at any page showing, thus making in total
 requests (plus the favicon request

automatically issued by the browser).

C
id

 N
req

start

1 3 0.00094

2 1 0.00093
3 3 0.00075

4 3 0.00093

5 3 0.00098
6 3 0.00092

7 1 0.00116

8 3 0.00090
9 3 0.00254

10 2 0.00097

11 3 0.00076
12 3 0.00092

Connections Table

C
id

 S
i

req

delay

resp

next
 s

req
 p

req
 s

resp
 p

resp

1 1 0.00000 0.00075 0.00000 0.02675 400 1 816 1
1 2 0.00000 0.00052 0.00000 0.00337 419 1 432 1

1 3 0.00000 0.00034 0.00816 418 1 52169 38

2 1 0.00000 0.00045 0.00542 418 1 52170 38

3 1 0.00000 0.00091 0.00000 0.03586 400 1 816 1

3 2 0.00000 0.00054 0.00000 0.00298 419 1 432 1
3 3 0.00000 0.00034 0.00570 418 1 52169 38

4 1 0.00000 0.00076 0.00000 0.02707 400 1 816 1

4 2 0.00000 0.00053 0.00000 0.00237 419 1 432 1
4 3 0.00000 0.00033 0.00826 418 1 52169 38

5 1 0.00000 0.00074 0.00000 0.06189 400 1 816 1

5 2 0.00000 0.00056 0.00000 0.00152 419 1 432 1
5 3 0.00000 0.00034 0.00559 418 1 52169 38

6 1 0.00000 0.00073 0.00000 0.05575 400 1 816 1

6 2 0.00000 0.00055 0.00000 0.00175 419 1 432 1
6 3 0.00000 0.00034 0.00565 418 1 52169 38

7 1 0.00000 0.00067 0.00000 316 1 506 1

8 1 0.00000 0.00090 0.00000 0.02832 400 1 816 1
8 2 0.00000 0.00054 0.00000 0.00268 419 1 432 1

8 3 0.00000 0.00034 0.00709 418 1 52169 38

9 1 0.00000 0.00074 0.00000 0.04879 400 1 816 1
9 2 0.00000 0.00056 0.00000 0.00275 419 1 432 1

9 3 0.00000 0.00035 0.00681 418 1 52169 38

10 1 0.00000 0.00074 0.00000 1.47218 400 1 816 1
10 2 0.00000 0.00055 0.00000 419 1 432 1

11 1 0.00000 0.00072 0.00000 0.02797 400 1 816 1

11 2 0.00000 0.00054 0.00000 0.00355 419 1 432 1
11 3 0.00000 0.00034 0.00599 418 1 52169 38

12 1 0.00000 0.00077 0.00000 0.03167 400 1 816 1

12 2 0.00000 0.00054 0.00000 0.00217 419 1 432 1

12 3 0.00000 0.00042 0.00671 418 1 52169 38

Connections Slots Table

Figure 4. Results Obtained for Legitimate Traffic

Some of the values reported in the table assume

null values. Indeed, this happens when no requests next to

the current one are observed. Moreover, from the

Connections Slots Table we can observe that each request

is composed by a single packet. Indeed, requests payload

is usually shorter than the maximum length of the payload

included in a network packet
2

. Responses are also

composed by a single packet except in the picture case,

whose response is composed by fragments due to the

2 This size is variable and it depends from the Maximum Transmission

Unit (MTU) of the data-link layer, which assumes for instance the value

of in case of an Ethernet connection.

38 E. Cambiaso et. al.: A Network Traffic Representation Model for Detecting Application Layer Attacks

http://journals.uob.edu.bh

large image size. In fact, the HTML page is sized

Bytes, the JPEG picture is sized Bytes, and the

stylesheet is sized Bytes. By analyzing the responses

size, these values are never found, since each response

also include protocol header information, such as the

Content-Length value or the HTTP response code.

Nevertheless, from the Connections Slots Table in Fig. 4

we can easily associate response sizes to the requested

resources: HTML web page related response is sized

Bytes, CSS stylesheet related response is sized Bytes,

favicon related error response is sized Bytes, and

JPEG picture related response is sized Bytes.

B. Malicious Traffic Analysis

In this case we expect exactly connections
in the Connections Table. As reported in Fig. 5, this fact is
confirmed in practice.

From the Connections Table we also see that a single
request/connection slot is included in each connection.
Indeed, since no response comes from the server, captured
traffic only includes requests. Moreover, similarly to the
 null results obtained in the legitimate case tests
reported above, in this case we always have null values
for the , , , , and parameters.

Analyzing results for the attack we also notice that
connections are almost always characterized by extremely
similar values

3
. These facts confirm the potentialities of

the proposed method to detect attacks targeting the
application layer. Figure 5 also confirms our expectations
on the Connections Slots Table cardinality, composed in
this case by records. Moreover the

parameter assumes in this case an extremely high value
compared to the legitimate case, as expected. In particular,
this parameter always assumes a value near to
 seconds. Due to additional times such as connection
establishment, value is strictly greater than .

This may represent a strange value, since we may expect a
value near seconds. In practice, if we consider
a single connection/record, since capture has been
interrupted after exactly seconds, the last captured
packet is registered at about
seconds. Therefore, since we always have values strictly
greater than , the next sending phase would occur at
 , thus not being registered by the capture.

3 Note that displayed values are rounded to five decimals.

C
id

 N
req

start

1 1 0.00030
2 1 0.00030

3 1 0.00307

4 1 0.00030
5 1 0.00030

6 1 0.00030

7 1 0.00030
8 1 0.00030

9 1 0.00030

10 1 0.00030

Connections Table

C
id

 S
i

req

delay

resp

next
 s

req
 p

req
 s

resp
 p

resp

1 1 540.01366 309 11
2 1 540.01046 309 11
3 1 540.01486 309 11
4 1 540.01286 309 11
5 1 540.00911 309 11
6 1 540.01156 309 11
7 1 540.01109 309 11
8 1 540.01429 309 11
9 1 540.00979 309 11

10 1 540.01220 309 11

Connections Slots Table

Figure 5. Results for Slowloris Traffic

Another interesting result to notice is the value.

In this case, relatively to each connection/request, we may

expect a value equal to

 . In practice, due

to the considerations made above, the last packet is
never sent exactly at the last captured instant at time ,

but later. Because of this, we may expect

 .

Instead, by analyzing the results, during the capture
time the attack sends packets. This is because the
Slowloris attack tool works in two phases [6]: in the first
phase the initial part of the request is sent normally;
subsequently, a repeated phase is accomplished by
sending an additional payload string to the server, thus
making use of the Wait Timeout, waiting for its
expiration, and repeating this phase again. The obtained
results are compliant to this behavior: relatively to the
same connection, captured traffic includes a first packet
containing the initial part of the request followed by a
packet including the additional payload. Then, for the first
time, the Wait Timeout is used. Therefore, we have two
initial packets sequentially sent just after the connection
has been established, followed by a repeated and endless
slow packet sending.

Particularly, if we consider time interval
we analyze that packets are sent by the attacker, while
packets are sent in time interval , and so
on. In general, considering time interval ,

with

,

 packets are sent. Hence, due

to previous assumptions, since the first timeout expiration

 Int. J. Com. Dig. Sys. 5, No.1, 31-42 (Jan-2016) 39

http://journals.uob.edu.bh

actually never occurs at , but later, we have

 , thus confirming the obtained results.

6. POSSIBLE MODEL APPLICATION

The purpose of our proposed model is intrusion
detection. In order to provide a complete overview of the
introduced model we will now report an example of a
possible application for detecting different Slow DoS
Attacks. We have focused on three Slow DoS Attacks
that, in our opinion, currently represent the most serious
threats, namely: Slowloris [8], SlowDroid [12], and Slow
Read [11].

We analyzed the behavior on an Apache2 web server
by targeting it with the three attacks for a duration of
seconds. The server configuration is the same of tests
reported in Sect. 5, but in this case the attacks are now
executed to yield a DoS on the victim; this was obtained
by establishing and keeping the minimum amount of
connections needed to cause a DoS. Attacks results have
been compared to a legitimate situation including
minutes of network traffic related to different clients
communicating with the victim’s web server.

A. Data Analysis

By adopting the proposed model we have been able to
extrapolate information potentially capable of detecting
the executed threats. We have chosen to focus on
parameters. Indeed, although the proposed framework
provides the ability to retrieve several parameters, for
performance reasons, by accurately choosing and
extrapolating only selected metrics, IDS performance are
enhanced. Starting from the retrieved information, for
each attack we analyzed results for parameters,
obtaining average and variance values. Results are shown
in Table I. We have observed that for all the Slow DoS
Attacks the required connections amount is successfully
established (and maintained) with the server, thus
achieving the primary goal of these threat. Notice that the
success of the attacks is not relevant for our purpose, since
our aim is to detect the attacks execution independently of
their effectiveness.

TABLE I. OBTAINED RESULTS APPLYING THE PROPOSED MODEL

TO DIFFERENT ATTACKS TARGETING AN APACHE 2.2.22 WEB SERVER

 LEGITIMATE SLOWLORIS SLOWDROID SLOW READ

Obtained values are similar for all traffic
conditions: indeed, the analyzed threats work by sending
the first request (or part of the request) a few instants after
a connection has been established. Analyzing results for
the attacks it is clear that both Slowloris and SlowDroid
may be detected by analyzing the parameter, while

Slow Read may reveal an anomaly relative to the

parameter.

B. Legitimate Traffic Characterization

The above displayed table shows that attack results are
different from legitimate results. Nevertheless, in order to
properly identify an anomaly on the network a clear
separation between legitimate and potentially anomalous
traffic is needed.

It is indeed fundamental to establish a threshold
beneath which two network scenarios can be considered
semantically equivalent. A possible approach starts from
results shown in Table I and defines legitimate traffic
thresholds for the parameters using the 3-sigma rule
(also known as 68-95-99.7 rule) [42]. In statistics, this
rule is used to identify the percentage of values which
present characteristics similar to the mean value in a
normal distribution with a width of one. In the empirical
sciences field, the rule expresses a conventional heuristic
that almost all the values are taken to lie within three
standard deviations of the mean. In particular, assuming a
Gaussian distribution of parameters associated with
legitimate traffics, all traffics associated to values
 are flagged as anomalous. This
approach normally provides a confidence level equal to
 .

40 E. Cambiaso et. al.: A Network Traffic Representation Model for Detecting Application Layer Attacks

http://journals.uob.edu.bh

In accordance to Table I, since “left”
thresholds always provide negative values, except for the
 parameters, that can assume negative values, we
only consider in general as threshold, thus
obtaining the following values: for
parameter, for parameter, for

 parameter, for parameter, and

 (relatively to the left threshold) and
(relatively to the right threshold) for parameter.

Even if it was unexpected, the threshold allows
us to identify Slow Read as an anomaly, while the other
attacks cannot be distinguished from legitimate traffic
from this point of view. Nevertheless, by adopting the
 threshold, both Slowloris and SlowDroid are

detected from the system and flagged as anomalies.

The introduced detection system is therefore able to
identify and detect all considered Slow DoS Attacks. In
case a mixed traffic would be considered, including both
legitimate and attack data, it should be clear that the
success of the detection depends on the connections ratio
relative to the attack, over the total amount of connections
captured. Nevertheless, in order to perpetrate a successful
attack, a large number of connections is usually
established [5]. In addition, obtained results clearly show
that the order of magnitude relative to legitimate and
anomalous traffic is very different. Therefore, the
proposed system should be considered an important tool
to efficiently detect application layer attacks. Although a
simple algorithm has been reported, the aim of the paper
is not to introduce a novel Intrusion Detection System, but
to provide instead a representation method able to
extrapolate features characterizing application layer
attacks.

7. CONCLUSIONS AND FUTURE WORK

We defined and provided an innovative model aimed
at detecting attacks targeting the application layer of the
victim and working over the TCP transport protocol. An
accurate selection and extrapolation of characteristic
parameters is defined in the paper.

Thanks to our proposed model, it is possible to start
from the introduced metrics (or a subset of them) and
apply a particular intrusion detection method or algorithm,
thus avoiding the characteristic features selection phase
that researchers usually have to accomplish before
applying their analysis algorithms. As a consequence, this
approach provides a simplified and direct way to deploy
an Intrusion Detection System. Moreover, since our
model provides the ability to easily retrieve those
parameters, testing of novel algorithms and consequently
mitigation of such threats should be facilitated and
accelerated.

Possible applications for our model may involve
several research branches. For instance, it could apply to
the extracted data of a statistical based intrusion detection

or a machine learning study, trying to detect an anomaly
through properties belonging to these specific fields. The
model provides an infrastructure to researchers who want
to design, adapt and adopt a particular algorithm for
application layer menaces detection. In particular, by
integrating our model with statistical analysis techniques
it is possible to detect (even still unknown) network
attacks acting at the application layer of the
communication protocol stack. Therefore, the proposed
work should be considered a fundamental resource for the
research community, providing them an infrastructure
able to identify and retrieve information characterizing
network attacks acting at the application layer over the
TCP protocol (i.e. Slowloris, SlowDroid, etc.), for a faster
and more accurate deploying of the detection tool.

In order to show how the model behaves in a real
scenario, we have accomplished accurate tests analyzing,
describing, and comparing a legitimate situation and a
malicious one, reporting and explaining in detail the
obtained results and how data change in these two
different scenarios. In this way, we have provided a real
sample of the output generated by our tool and proved that
it can be applied to different contexts, highlighting the
potentialities of the proposed model to detect network
attacks.

In order to provide an example of adoption of the
proposed model we have also reported a simple intrusion
detection system making use of our model to identify
different attacks working at the application layer (e.g.
slow denial of service, SQL injection attacks, etc.)
targeting web servers. Since the model is not bounded to a
specific detection algorithm or to a specific threshold
definition, it is possible to integrate our work for defining
novel detection systems, using approaches coming from
different research areas (i.e., machine learning, statistics,
neural networks, spectral analysis, game theory, etc.).

Although the proposed approach requires an

observation of the protected server, a more accurate

extrapolation of the selected features may be applied on

the server itself, by analyzing sent and received data at the

kernel level, rather than at the network level. Therefore,

further work on the topic may involve more accurate

retrieval operations and appropriate comparisons with the

current approach.

REFERENCES

[1] F. Gilham, R. Jagannathan, C. Jalali, P. G. Neumann. H. S. Javitz.
A. Valdes. T. D. Garvey. T. F. Lunt, A. Tamaru. A real-time
intrusion-detection expert system (IDES). SRI International,
Computer Science Laboratory, 1992.

[2] S. Kumar, E. H. Spafford. A software architecture to support
misuse intrusion detection. 1995.

[3] K. Ilgun, R. A. Kemmerer, P. A. Porras. State transition analysis:
A rule-based intrusion detection approach. Software Engineering,
IEEE Transactions on, 21(3):181–199, 1995.

 Int. J. Com. Dig. Sys. 5, No.1, 31-42 (Jan-2016) 41

http://journals.uob.edu.bh

[4] T. Lunt. Detecting intruders in computer systems. In Proceedings
of the 1993 Conference on Auditing and Computer Technology,
1993.

[5] E. Cambiaso, G. Papaleo, G. Chiola, M. Aiello. Slow DoS attacks:
  definition and categorisation. International Journal of Trust
Management   in Computing and Communications - In press
article, 1, 2013.

[6] M. Aiello E. Cambiaso, G. Papaleo. Taxonomy of slow dos
attacks to web applications. In Recent Trends in Computer
Networks and   Distributed Systems Security, pages 195–204.
Springer, 2012.

[7] A. Kuzmanovic, E. W. Knightly. Low-rate TCP-targeted denial of
service attacks: the shrew vs. the mice and elephants. Proceedings
of the 2003 conference on Applications, technologies,
architectures, and   protocols for computer communications,
pages 75–86, 2003.

[8] L. C. Giralte, C. Conde, I. M. De Diego, E. Cabello. Detecting
denial of service by modelling web-server behaviour. Computers
& Electrical   Engineering, 39(7):2252–2262, 2013.

[9] H. Gonzalez, M. A. Gosselin-Lavigne, N. Stakhanova, A. A.
Ghorbani.   The Impact of Application-Layer Denial-of-Service
Attacks. Case   Studies in Secure Computing: Achievements and
Trends, page 261, 2014.

[10] Microsoft-TechNet-Library. Microsoft Security Bulletin MS15-
034 - Available at https://technet.microsoft.com/en-
us/library/security/   ms15-034.aspx.

[11] S. Shekyan. Are you ready for slow reading? - Available at https://
  community.qualys.com/blogs/securitylabs/2012/01/05/slow-
read.

[12] E. Cambiaso, G. Papaleo, M. Aiello. SlowDroid: Turning a
Smartphone into a Mobile Attack Vector. 2014 2nd International
Conference on   Future Internet of Things and Cloud (FiCloud),
pages 405–410, 2014.

[13] J. Heidemann, K. Obraczka, J. Touch. Modeling the performance
of HTTP over several transport protocols. Networking, IEEE/ACM
  Transactions on, 5(5):616–630, 1997.

[14] W. Lee, S. J. Stolfo, K. W. Mok. A data mining framework for
building   intrusion detection models. Security and Privacy,
1999. Proceedings of   the 1999 IEEE Symposium on, pages
120–132, 1999.

[15] C.V.Zhou,C.Leckie,S.Karunasekera.Asurveyofcoordinatedattacks
and collaborative intrusion detection. Computers & Security,
29(1):124–   140, 2010.

[16] S. R. Snapp, J. Brentano, G. V. Dias, T. L. Goan, L. T. Heberlein,
C. L. Ho, K. N. Levitt, B. Mukherjee, S. E. Smaha, T. Grance.
DIDS (distributed intrusion detection system)-motivation,
architecture, and an early prototype. Proceedings of the 14th
national computer security conference, pages 167–176, 1991.

[17] R. A. Kemmerer. NSTAT: a model-based real-time network
intrusion detection system. Computer Science Department,
University of California, Santa Barbara, Report TRCS97-18,
http://www. cs. ucsb. edu/TRs/TRCS97-18. html, 1997.

[18] P. A. Porras, P. G. Neumann. EMERALD: Event monitoring
enabling response to anomalous live disturbances. Proceedings of
the 20th national information systems security conference, pages
353–365, 1997.

[19] J. Li, D.-Y. Lim, K. Sollins. Dependency-based distributed
intrusion detection. Proc. of DETER, 2007.

[20] M. E. Locasto, J. J. Parekh, S. Stolfo, V. Misra. Collaborative
distributed intrusion detection. 2004.

[21] D. Dash, B. Kveton, J. M. Agosta, E. Schooler, J. Chandrashekar,
A. Bachrach, A. Newman. When gossip is good: Distributed
probabilistic inference for detection of slow network intrusions.
Proceedings of the national conference on Artificial Intelligence,
21:1115, 2006.

[22] H. Sedjelmaci, S. M. Senouci, M. Feham. An efficient intrusion
detection framework in cluster based wireless sensor networks.
Security and Communication Networks, 2013.

[23] T. Eswari, V. Vanitha. A novel rule based intrusion detection
framework for Wireless Sensor Networks. Information
Communication and Embedded Systems (ICICES), 2013
International Conference on, pages 1019–1022, 2013.

[24] S. Mutly, G. Yilmaz. A distributed cooperative trust based
intrusion detection framework for MANETs. ICNS 2011, The
Seventh International Conference on Networking and Services,
pages 292–298, 2011.

[25] N. Komninos, C. Douligeris. LIDF: Layered intrusion detection
framework for ad-hoc networks. Ad Hoc Networks, 7(1):171–182,
2009.

[26] N. Srivastav, R. K. Challa. Novel intrusion detection system
integrating layered framework with neural network. Advance
Computing Conference (IACC), 2013 IEEE 3rd International,
pages 682–689, 2013.

[27] R. M. Elbasiony, E. A. Sallam, T. E. Eltobely, M. M. Fahmy. A
hybrid network intrusion detection framework based on random
forests and weighted k-means. Ain Shams Engineering Journal,
2013.

[28] S. Mukkamala, A. H. Sung. Identifying significant features for
network forensic analysis using artificial intelligent techniques.
International Journal of digital evidence, 1(4):1–17, 2003.

[29] K.-C. Lee, Z.-J. Hsu, L. Liu. Efficient Statistics Based Framework
for Network Intrusion Detection. 2013.

[30] M. Almgren, U. Lindqvist. Application-integrated data collection
for security monitoring. Recent Advances in Intrusion Detection,
pages 22– 36, 2001.

[31] Y. Xuan, I. Shin, M. T. Thai, T. Znati. Detecting application
denial-of-service attacks: A group-testing-based approach.
Parallel and Distributed Systems, IEEE Transactions on,
21(8):1203–1216, 2010.

[32] M. Aiello, G. Papaleo, E. Cambiaso. SlowReq: A Weapon for
Cyber-warfare Operations. Characteristics, limits, performance,
remediations. 6th International Conference on Computational
Intelligence in Security for Information Systems, 2013.

[33] R. P. Kumar, J. Babu, T. G. Sekhar, S. B. Bhushan, D. Shamki, A.
Al-Arussi, S. Tamrakar, M. Aloney, M. Kandpal, D. Sah.
Mitigating Application DDoS Attacks using Random Port
Hopping Technique. 2014.

[34] T. Siva, E. P. Krishna. Controlling various network based ADoS
Attacks in cloud computing environment: By Using Port Hopping
Technique. International Journal of Engineering Trends and
Technology (IJETT), 4, 2013.

[35] S. Y. Nam, S. Djuraev. Defending HTTP Web Servers against
DDoS Attacks through Busy Period-based Attack Flow Detection.
KSII Transactions on Internet and Information Systems (TIIS),
8(7):2512– 2531, 2014.

[36] G. Macia-Fernandez, R. A. Rodriguez-Gomez, J. u. E. Diaz-
Verdejo. Defense techniques for low-rate DoS attacks against
application servers. Computer Networks, 54(15):2711–2727,
2010.

[37] Z. Wu, M. Yue, D. Li, K. Xie. SEDPbased detection of lowrate
DoS attacks. International Journal of Communication Systems,
2014.

[38] M. Kiani, A. Clark, G. Mohay. Evaluation of anomaly based
character distribution models in the detection of SQL injection
attacks. Availability, Reliability and Security, 2008. ARES 08.
Third International Conference on, pages 47–55, 2008.

[39] cPanel. How To Mitigate Slowloris Attacks - Available at
http://docs.cpanel.net/twiki/bin/view/EasyApache/Apache/Slowlor
isAttacks.

42 E. Cambiaso et. al.: A Network Traffic Representation Model for Detecting Application Layer Attacks

http://journals.uob.edu.bh

[40] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P.
Leach, T. Berners-Lee. RFC 2616, Hypertext Transfer Protocol –
HTTP/1.1 - Available at http://www.rfc.net/rfc2616.html.

[41] E. Cambiaso, G. Papaleo, G. Chiola, M. Aiello. Designing and
Modeling the Slow Next DoS Attack. CISIS 2015, International
Conference, pages 249-259. Springer International Publishing,
2015.

[42] M. Aiello, E. Cambiaso, S. Scaglione, G. Papaleo. A Similarity
Based Approach for Application DoS Attacks Detection. The
Eighteenth IEEE Symposium on Computers and Communications,
2013.

Enrico Cambiaso graduated in

Computer Science at the

University of Genoa, Italy, in

2012, with a thesis entitled

“Analysis of slow DoS attacks”.

He is a PhD student at the

University of Genoa and he

collaborates with the Research

National Council of Italy, working

to the slow DoS field. His

scientific interests are related to

computer and network security,

intrusion detection systems, covert

channels and cloud computing.

Gianluca Papaleo graduated in

Computer Science at the

University of Genoa, Italy in 2005.

He is a Fellow Researcher of the

National Research Council since

2006. His main scientific interests

are in the field of computer and

network security, intrusion

detection systems, wireless

communications and covert

channels. His current teaching

activity in University of Genoa are

focused on Wi-Fi security and

tunneling protocols.

Giovanni Chiola graduated in

Electronics Engineering at the

Polytechnic of Turin, Italy in

1983. He was an Assistant

Professor and subsequently an

Associate Professor of Computer

Science from 1985 to 1993 at the

University of Turin, Italy. Since

1994, he is a Full Professor of

Computer Science at the

University of Genoa, Italy. In the past, his main scientific

contributions have been in the fields of distributed simulation,

performance modelling and evaluation of distributed systems,

and stochastic Petri nets. His current research and teaching

activities are focused on operating systems, distributed systems,

peer-to-peer and computer and network security.

Maurizio Aiello graduated in

1994, worked as a free-lance

consultant both for universities

and research centre and for

private industries. From August

2001, he is responsible of CNR

network infrastructure. He is a

Teacher at the University of

Genoa and University College of

Dublin; students Coordinator,

fellowships and EU projects in

the computer security field. His

research are on network security

and protocols.

