
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 5, No.3 (May-2016)

http://dx.doi.org/10.12785/ijcds/050301

Thread-Level CPU Power Measurement for
High Performance Parallel Systems:

Impact Analysis of System Control Parameters on HPC Energy Efficiency

David K. Newsom1, Sardar F. Azari2, Olivier Serres1, Abdel-Hameed Badawy1,3 and
Tarek El-Ghazawi1

1Department of Electrical and Computer Engineering, the George Washington University, Washington, DC, USA
2Institute of Electrical and Electronics Engineers (IEEE), NJ, USA

3Electrical Engineering Department, Arkansas Tech University, Russellville, AR, USA

Received 2 November 2015, Revised 7 March 2016, Accepted 2 April 2016, Published 1 May 2016

Abstract: Research in high performance computing (HPC) energy optimization is a growing field motivated by cost and
environmental drivers. One of the key challenges in reducing program-dependent HPC power consumption is precise measurement
of the thread-level CPU (as distinct from other system components) energy use during the initialization and execution phases
of a parallel program’s execution. In support of our research in Partitioned Global Address Space (PGAS) power optimization
we developed a scalable CPU direct measurement framework with its associated reporting and data acquisition components. We
utilized this framework to evaluate the execution time and energy consumption impact of our code optimizations. The measurement
framework itself and the associated instrumentation is sufficiently scalable to support any program-level energy optimization
research in high performance parallel systems.

Keywords: Energy management, High Performance Computing, CPU Power Measurement, MATLAB, Simulink

1. Introduction and Overview

Research in energy efficient high-performance com-
puting (HPC) continues to be driven by both environ-
mental and cost factors. The investigations can be broadly
divided into three main focus areas: compiler and runtime
optimizations; operating system automations; and power
efficient microprocessor design. In order to validate HPC
energy efficient compiler/runtime optimizations, a key
challenge lies in precisely measuring thread-specific en-
ergy consumption and the corresponding impact of code-
level optimizations.

To support our own research [1], [2], [3] in CPU
power optimization using the Partitioned Global Ad-
dress Space (PGAS) programming paradigm, we devel-
oped a precise and scalable thread-level CPU energy
measurement framework. We only measured the energy
consumption of the CPU because it has a substantial
portion of overall system energy and because the CPU has
the greatest energy consumption variance of any system
component as a function of program related activity [4].

A prerequisite to experimental validation of our code-
level energy optimizations was the construction of an

instrumented HPC test-bed cluster system. In this paper,
we describe 1) an accurate and scalable CPU power
measurement system to assess the energy savings impact
of parallel program code modifications, and 2) the key de-
sign aspects to consider when building high performance
test-bed systems to support power optimization research.
The key energy measurement problem we solved was how
to tightly synchronize the program’s execution phases
with the data acquisition system across the network.

This synchronization involved two main aspects. First,
the program needed to be controlled by the data acqui-
sition system from a start/stop standpoint. Second, the
program also needed to inform the data acquisition system
as it transitioned between discrete phases so that the
time and energy results that were specific to the program
phases could be measured. This paper describes the re-
search and development of the CPU power measurement
system that produced the experimental results shown in
Section 7.

The paper is organized as follows: Section 2 covers
topics that provide a relevant context for the measurement
system, energy calculations, and experimental results;

E-mail address: dkn@gwu.edu, Dr.Sardar.Azari@ieee.org, serres@gwu.edu, badawy@gwu.edu, tarek@gwu.edu

http:// journals.uob.edu.bh

http://dx.doi.org/10.12785/ijcds/050301
http://journals.uob.edu.bh


190 David Newsom, et al.: Thread Level CPU Power Measurement for High Performance Parallel Systems

Section 3 outlines related work in HPC power measure-
ment and estimation; Section 4 presents the methodology
and mathematical basis for the energy calculations of
our data acquisition system; Section 5 describes the
instrumented hardware platform used for our experiments
and the associated instrumentation and data acquisition
system; Section 6 explains the software configuration and
setup including the OS/compiler setup on the cluster, the
MATLAB/Simulink implementation, the Google Cloud
job control and user interface design, and the XML
data structure; Section 7 presents some sample results
the system has produced; and Section 8 discusses our
conclusions and future work related to the measurement
and instrumentation aspects of our research.

2. Background

This section presents some relevant background infor-
mation related to the development of the measurement
system, the energy calculation methodology, and the
evaluation of the experimental results.

A. Metrics

It is useful to describe the metrics used to evaluate
the performance and energy efficiency across processor
families or between different algorithms running on the
same processor under different conditions. Early computer
architectures were driven primarily by the quest for im-
proved performance, regardless of the energy consump-
tion. According to Hennesy and Patterson [5] this was
evidenced by the legacy metrics used to compare com-
puter performance, such as FLoating-point OPerations
per Second (FLOPS) or Million Instructions Per Second
(MIPS). All the metrics were in terms of instructions
per unit time. As component densities increased with
a corresponding rise in energy consumption and heat
dissipation, the performance metrics associated with HPC
systems are now described in terms of the energy (not
time) necessary to complete a given computational task.

The most basic metrics used to measure computational
performance and/or energy efficiency are time, measured
in seconds and energy, measured in Joules. Total
execution time is generally considered the most basic
metric to compare computational performance between
two different computer systems executing identical pro-
grams and data sets. At an aggregate level, there is
usually a strong correlation between the execution time
and the energy consumed over the execution time interval.
However, a large number of conditions can affect how
much energy is consumed for a given computational
problem without significantly impacting execution time.
An improvement in computational energy efficiency is
defined as a reduction in the energy consumed over the
same execution time interval. In the case where an opti-
mization reduces the execution time and a corresponding
proportional reduction in the energy consumption is also

observed, energy efficiency is not improved even though
the overall energy consumption is reduced because the
energy reduction can be attributed simply to the reduction
in execution time.

The energy-delay product (Joule*seconds) [6] is de-
fined as the product of the measured energy and time over
the time interval. It is good measure of overall improve-
ment in absolute terms and is straightforward to calculate
from energy and time measurements. Its main advantage
over the energy consumption rate is that it presents, in
a single value, both time and energy consumption. This
means that it can be used as a dependant variable in a two
dimensional graph to show the correlation between both
time and energy and some other factor (e.g., temperature).
However, as a single value, it is difficult to conclude the
degree to which energy or time (or both) were improved.
The charts in Section 7 use the energy-delay product as
one of the comparison metrics.

B. CMOS Power Dissipation

There are two basic ways that CMOS circuits dissipate
(consume) electrical power, dynamic power and static
power. The total power consumption of any CMOS circuit
is the sum of the dynamic and static power consumption.
The basic works on the calculation of CMOS dynamic
(switching) and static (leakage) power are found in [7],
[8], [9], [10], [11], [12]. We cover the specifics of our
approach to calculating the total CPU and memory power
consumption of our instrumented HPC test-bed cluster in
Section 4.

Dynamic power is the activity-dependent power con-
sumption and varies according to workload as well as the
switching frequency of the circuits. Intel® ’s paper [13]
on Core™ processor power management explains the tech-
niques used by chip designers to mitigate dynamic power
consumption, which include techniques such as Dynamic
Voltage and Frequency Scaling (DVFS) described in Sec-
tion 2-C. It is a generally accepted fact that commodity
microprocessors consume more dynamic power at higher
operating (switching) frequencies.

Static or leakage power is consumed by the circuit
when it is powered on and tends to be constant regardless
of the switching frequency. In other words, static power is
activity-independent power consumption and is a constant
for a given circuit irrespective of the activity level of the
processor. Kim et al., [12] provide an excellent overview
of the prior works as well as explaining how the effect
of Moore’s Law is increasing the percentage of static
power consumption of the total power consumption in
CMOS components due to the increase in chip density.
The static power consumption of a CPU represents the
lower bound for dynamic power consumption, (i.e.,even
when all workload related activity has ceased and the
switching frequency is set to the lowest value) the static
power consumption continues so long as all the hardware

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 5, No.3, 189-209 (May-2016) 191

Figure 1. Measurement system high-level view

components are powered-up.

C. Dynamic Voltage and Frequency Scaling

DVFS can be used at the program, operating system,
or hardware level to reduce CPU dynamic power con-
sumption by lowering the switching frequency (often by
reduction of the supply voltage) of the core and/or the
entire CPU. DVFS has many applications, but the most
common one is to reduce predictable idle periods in a
program’s execution thereby reducing energy consump-
tion without increasing execution time.

The application of DVFS at the program, operating
system, or CPU is one of the most heavily researched
areas in computational energy efficiency. All current com-
modity microprocessors are equipped with DVFS capa-
bility. Intel® ’s DVFS implementation is called Enhanced
Intel® Speedstep™ Technology (EIST) [14] and AMD’s
DVFS implementation is called PowerNow!™ [15].

D. TurboBoost

TurboBoost [16] is a feature of later generation
Intel® microprocessors that allow a subset of micro-
processor cores to burst above their maximum rated
operating frequency. The TurboBoost feature can be en-
abled in the system BIOS if DVFS is also enabled.
On Intel® ’s Sandy Bridge [17], Ivy Bridge [18], and
Haswell [19] Core™ processors, TurboBoost steps up a
core’s frequency in 100MHz increments under the control
of the UnCore processor. The number of frequency steps,
their stride, and the max frequency are a function of how
many cores are active (i.e., are not in the C1 or greater idle
state) and is dependent on the total number of cores and
the maximum thermal envelope of the microprocessor.
TurboBoost is an architectural concession to the fact that
a large portion of software remains sequential (rather
than parallel) in nature and so this feature can boost
the performance of application codes that are “lightly-
threaded” (i.e., under-utilize the full core capacity of
a CPU). While this feature improves performance in

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


192 David Newsom, et al.: Thread Level CPU Power Measurement for High Performance Parallel Systems

cases where computational parallelism does not utilize
the entire available cores of a given processor, the energy
consumption per unit of computational execution does
not scale linearly because as the processor’s overall tem-
perature increases it consumes more energy for a given
workload [20].

E. Dependency Domains and Packages

Dependency domains (also referred to as a voltage
island or package when the number of cores equals the
total number of cores on a physical die) are groups of
physical or logical processors, that must be controlled
together for a particular feature to take effect. Some
microprocessors require that all cores on a CPU must
have their frequencies scaled together (i.e., all cores must
be set to the same frequency and governor for any change
to occur). This would make the dependency domain for
P-States (DVFS) at the CPU level. For example, up
until the Haswell [19] series of microprocessors, the
Intel® Core™ (including Xeon™ ) family of micropro-
cessors could only frequency scale all package cores to-
gether, while the Intel® Phi™ [16], [21] co-processor can
frequency scale sub-groups of cores. Haswell processors
can voltage and frequency scale individual cores [22] as
each core is fed by its own power supply. It should be
noted that while AMD’s Opteron™ [23] microprocessor
(and later processors) could frequency scale at the core
level, the cores had to do this inside a fixed supply voltage
envelope as all the cores were fed by a single voltage
source which limited the usefulness of the feature.

F. Processor Asymmetry

We experimented with simulating an Asymmetric Pro-
cessor (AMP) system on our AMD cluster [2] by forcing
one of the two physical CPUs to the lowest frequency
step and the other CPU to the highest frequency step. At
program load time, some number of worker threads were
launched on the “slow” processor and would block on
local operating system mutexes. When remote commu-
nications needed to be performed by one of the threads
running on the “fast” processor, the thread would use a
MUTEX (mutually exclusive synchronization construct) to
release a worker-thread to handle the remote communi-
cations at the slower frequency. This setup was designed
to avoid the DVFS transition time penalty because it
avoided the CPU-local frequency down/up-shift during
the remote communications phase. It also avoided the
much larger overhead of rescheduling a thread between
physical processors (using a thread-specific CPU affinity
mask and calling sleep(0) system call) which would
invalidate the L1, L2, and L3 caches.

The approach suffered, however, from the longer
memory access times when a thread is accessing a region
of memory which does not have hardware affinity with the
processor on which it is executing. When the thread first

allocates the thread-local memory into which it will write
the remote data, the memory is pinned to the memory
bank that has affinity with the processor on which the
thread is running (the “fast” CPU in this case). When the
worker-thread running on the “slow” CPU tries to access
the memory, the access must transit the inter-CPU connec-
tion bus and the remote memory controller. We disabled
the Non-Uniform Memory Access (NUMA) optimization
(in the system BIOS) which had the effect of creating
a low-order memory bank interleave between the two
processors’ respective memory banks. This configuration
created even more delay for a particular thread because
the memory access time for the thread became the lowest
common denominator access time between the two pro-
cessors because when the NUMA optimization is turned
off, the memory interleave creates a consistent memory
access time for any thread on the system, irrespective of
the relative proximity of CPU and memory bank. (With
NUMA optimization enabled, the lowest memory access
time would be to the memory bank that is associated with
a particular CPU.)

3. RelatedWork

Two principal approaches have been followed with
regard to high performance computing CPU power mea-
surement: direct measurement and estimation.

A. Direct Measurement Approaches

Cui et al., [4] describe a complete system for mea-
suring the energy consumption of all the system com-
ponents in a commodity computer system. While they
touch briefly on the issue of synchronizing the energy
measurements with program phases, they do not develop
the idea into a practical implementation for systematic
exploration of the permutation space.

The most recent developments in direct measurement
of CPU power is described by Laros et al., [24] the
authors describe an non-intrusive embedded measurement
system, PowerInsight, that intercepts CPU power via
the power supply harness (similar in principle to the
approach we describe in 5-B). The measurement and data
acquisition systems are combined on a small footprint
embedded system that can be installed in each node of a
cluster and then polled by a master system for overall data
assembly and analysis. The primary focus of PowerInsight
was the hardware aspects of the power measurement and
data acquisition; they did not address the problem of
program-level measurement synchronization.

In [25] the authors had access to a built-in, albeit
still non-intrusive measurement capability built into a
Cray™ blade chassis – a so called Computer Remote Man-
agement and Serviceability (CRMS) system that allowed
them to pull accumulating power statistics from each of
the blades at a sample rate of not more than 1/sec. They

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 5, No.3, 189-209 (May-2016) 193

Figure 2. Energy measurement by program phase at thread level

also make a claim regarding the ability to tune the OS to
take advantage of sleep cycles on the processor as a power
savings technique, yet all modern commodity processors
force all their cores into a C-state during idle periods and
this feature is not usually under the control of the OS.

The overhead associated with direct measurement
approaches is one of the main reasons why the di-
rect measurement approach is a minority in the HPC
energy research community; researchers tend to favor
indirect methods such as estimation [26] using the built-
in performance counters of most CPUs as a proxy for
direct measurement; or aggregation methods such as
just inserting a current meter between the main system
power supply and the utility source (wall socket) [27].
While this approach has a certain “brute force” simplicity
about it, this measurement approach introduces a lot of
measurement noise into the data as many other system
components are also getting measured along with the
CPU/DRAM.

B. Estimation Approaches

Beyond direct measurement methods is the approach
of estimating system power consumption based on CPU
performance counters. This topic is covered in detail by
Bircher and John [26], but they conclude that there can be
up to a 9% error per subsystem using this method. Based
on our own work, this level of error may obviate the value
of certain optimizations that may provide energy savings
within this margin.

In addition to performance counter estimation, Pakin
and Lang [28] explore the use of time, power, and energy
models for supercomputers running large-scale scientific
application suites. Their work provides an evaluation of
the impact of DVFS techniques in terms of the energy-
delay product (see Section 2-A). While their research is
useful in describing the potential impact of frequency
scaling for certain common workloads, the work does not
address optimization techniques beyond frequency scaling
(such as the effect of idle-power management of recent
processor generations).

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


194 David Newsom, et al.: Thread Level CPU Power Measurement for High Performance Parallel Systems

4. Energy CalculationMethodology

This section outlines our energy calculation method-
ology. The basis of our power optimization research was
to evaluate a particular parallel algorithm and predict
the code regions where the CPUs may be in an idling
state such as waiting on remote communications or a
synchronization construct (e.g., lock, barrier, etc.).

For purposes of experimentation, we divided an al-
gorithm into two distinct operating phases: initialization
(INIT), in which the optimized program is perform-
ing the bulk of its predictable remote communications;
and execution (EXEC), in which the program is highly
CPU/local memory bound. Each phase of operation is
delineated by a barrier construct that forces all threads
to synchronize before entering the next phase. Depending
on the algorithm being tested, we employed a number of
techniques to improve energy consumption in comparison
to the original form of the algorithm.

Our initial measurement design [1] relied on the
program under investigation to output eXtensible Markup
Language XML [29] tags in real-time to which a system-
level “listener” on the data acquisition computer would
monitor cluster activity. We compensated for the inherent
system latencies by using an energy/time ratio corre-
lated with the program’s self-reported execution times by
phase.

Each CPU being measured represents a single channel
on our data acquisition system. The data acquisition
hardware (described in Section 5) is constantly measuring
current flow to the active processors, and our energy
calculations are based on the delta between the start and
stop timestamps that the program is generating for each
thread as it executes each program phase. Depending on
the type of experiment being run, we measure different
time intervals on the CPU measurement channels to
accurately capture the energy usage of a program during
its INIT and EXEC phases. Our system keeps track of a
specific thread’s energy consumption, even if it transitions
between CPUs (see Section 2-F for a use case), through
careful placement of the calls to the instrumentation
runtime. For ease of explanation, Figure 2 shows the
measurement model in the case where we have two
threads (one per CPU) running on each cluster node and
DVFS is in use. As presented in Section 7, we tested
many different thread combinations.

With the exception of our work to simulate processor
asymmetry described in Section 2-F, we used a CPU
affinity mask [30] to “pin” a thread to a core or set of
cores on the same physical processor when the thread is
initialized. We do this to prevent a thread from migrating
between physical processors when executing system calls
(e.g., changing CPU frequency). A system call transfers
context to the Linux scheduler to execute the requested
(privileged) operation and the calling thread is suspended

during this interval. When the thread context is restored,
it may have been rescheduled to a core on a different
physical processor which also means that the thread
moved from one current measurement channel to another.
Since we do not necessarily have the timestamp data to
correlate the thread’s movement, this change of processor
would invalidate the measurement continuity for that
thread. The equations that relate the thread activity to
the energy calculations are shown below.

The power (P) in Watts that a CPU draws is ex-
pressed by Equation 4 that describes the power draw of
a CMOS circuit [12]:

P = C f V2 + PS tatic (1)

where C is the capacitance of a CMOS Integrated
Circuit, f is the operating frequency, V is the supply
voltage, and Pstatic is the leakage power consumption
of the circuit. Since C and f in Equation 4 are not
directly measurable values, we apply Equation 2 where
we measure I and U over a time interval t and then
numerically integrate the product using the trapezoidal
rule [31]. The integral formula to calculate the total
energy E over the measurement interval t1 to t2 is shown
in Equation 2:

E =

∫ t2

t1
I(t) · U(t) dt (2)

where E is the electrical energy measured in Watt-
hours, I(t) is the instantaneous current measured in Am-
peres and U(t) is the instantaneous voltage measured in
Volts. The curves on the bottom of Figure 2 are derived by
the process shown (for a single node) in Figure 3 and are
the energy readings calculated using the formula in Equa-
tion 2. The clocks on the cluster nodes are synchronized
with the clock on the MATLAB system at the start of each
program run and then the timestamps are correlated with
the energy readings after the program terminates using
the approach described in 6-B. Equation 3 shows how
the INIT phase energy readings are calculated for a single
node when both CPUs are in use. By way of illustration,
ET0

3 is the timestamp marker for Thread 0 at the beginning
of its EXEC phase. If only one thread been running on
the node, the second term in Equation 3 would not be
present. Equation 4 shows a similar calculation for the
EXEC phase.

EINIT =
(
ET0

3 − ET0
1

)
+

(
ET1

3 − ET1
1

)
(3)

EEXEC =
(
ET0

4 − ET0
3

)
+

(
ET1

5 − ET1
3

)
(4)

Equation 5 sums the energy for the two program

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 5, No.3, 189-209 (May-2016) 195

Figure 3. Energy measurement by data acquisition channel

phases to calculate the node specific energy and Equa-
tion 6 shows how the total energy across the cluster is
calculated.

ENode = EINIT + EEXEC (5)

ECluster =

n∑
i=1

ENodei (6)

The energy of threads waiting on synchronization
barriers (BW = Barrier Waste) is calculated from the idle
periods directly preceding a threads arrival timestamp on

a barrier construct. Similar to Equation 6, the total Barrier
Waste energy can be summed for the cluster.

EBW =
(
ET0

5 − ET0
4

)
+

(
ET1

3 − ET1
2

)
(7)

5. Hardware Configuration

This section describes the hardware configuration of
the test bed, its associated power measurement instrumen-
tation, and the current and voltage data acquisition system
at the hardware level.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


196 David Newsom, et al.: Thread Level CPU Power Measurement for High Performance Parallel Systems

TABLE I. Evolution of test-bed clusters

Label CPU Type Frequency cpu# core# node# RAM HT? TB? CS?

A Intel® E6550 2.00-2.33GHz 1 2 6 4GB N N N
B Opteron™ 2354 1.1-2.2GHz 2 4 16 16GB N N N
C Xeon™ E5-2640v2 1.1-2.0GHz 2 8 4 32GB Y Y Y

Figure 4. Instrumentation diagram four node Intel® Ivy Bridge cluster

A. Instrumented HPC Test Cluster

Over the period covered by this research we built three
distinct generations of instrumented test-bed clusters as
shown in Table I. The first generation (A) system [1]
used Hall Effect meters on a single Intel® desktop CPU
six node cluster and hinted at the possibilities inherent
in a scalable in-line measurement of CPU current. The
second generation (B) system [2] and was based on a
dual processor AMD Opteron™ [23] and had 16 nodes
interconnected by both Ethernet and Infiniband networks.
Our third generation (C) system that was used for the
experiments described in Section 7 is documented below.

The test-bed cluster used for the experiments con-
sists of 4 dual-socket Intel® S2600CP™ systems [32],
instrumented as shown in Figure 4 and Reference C in
Table I. Each socket contains an 8-core Intel® ’s Ivy
Bridge Xeon™ E5-2640 v2@ 2.00GHz [13], with 16GB
of RAM per CPU, for a total of 32GB memory per
node. Each processor core is capable of running two
execution threads when the hyper-threading [33] feature
is enabled in the BIOS. Each node of the cluster holds

two CPUs, so there are 8 CPUs x 8 cores/CPU for a total
physical core capacity of 64 cores (the system will report
128 cores with hyper-threading enabled). The controllable
frequency domain of the cluster was at the socket level,
thus there were 8 independent frequency domains (one
per socket) which had to be separately controlled when
the cluster’s frequency needed to be changed. Figure 6
shows a single node of the cluster and Figure 5 shows the
entire cluster in operation including the data acquisition
hardware described in Section 5-B.

In addition to the measurement instrumentation, the
cluster nodes were connected by two different intercon-
nection networks, 40Gb/s QDR Infiniband and Gigabit
Ethernet so that we could explore the energy consumption
impact of different network latency on various types of
HPC codes. These networks could be used singly or in
tandem and their usage was controllable at runtime by
selection of the UPC (see Section 6-A) GASNet [34]
conduit.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 5, No.3, 189-209 (May-2016) 197

Figure 5. Four node Ivy Bridge cluster with instrumentation

B. Hardware Instrumentation

This section describes the way we performed our
energy measurements. The system measures the instan-
taneous static and dynamic power (see Section 2-B) con-
sumption and then integrates the power over the execution
time interval to calculate the actual energy consumption
of the full program (or job set) execution. The energy is
calculated as described in Section 4.

The principle design goal of the measurement system
was to measure CPU/DRAM energy consumption without
any impact to the CPU performance (which might also
affect the overall energy consumption). We measured the
current usage over time (in combination with a constant
voltage) running over the wires between the switching
power supply and the CPU sockets. The measurement
system uses two National Instruments (NI) Compaq-

Figure 6. Instrumented dual Ivy Bridge Xeon™ chassis

Figure 7. Custom wiring harness to route EPS/EATX connector

DAQ™ model 9188 ethernet data acquisition chassis, each
with 4x4-channel model 9227 current [35] module and
1x4 channel model 9229 voltage acquisition module [36].
This setup provided a total measurement capacity of 32
current data acquisition channels, 16 of which capture
CPU current and 16 of which capture DRAM current.
There are a total of 8 processors so each processor
consumed two channels for the CPU and two channels
for the memory. Figure 8 shows the decomposition of
the wiring harness (see Figure 7) that allows the non-
intrusive interception of the current and voltage feeding
the CPU/DRAM module. (A) shows the connectors that
connect to the motherboard/backplane power connector,
and (B) shows the external ports that connect to the NI
data acquisition current (2 red connectors) and voltage (1
green connector) modules.

We had 4 nodes to instrument and we designed and
built a custom wiring harness to intercept the EPS/EATX
power lines between the power supply and the moth-

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


198 David Newsom, et al.: Thread Level CPU Power Measurement for High Performance Parallel Systems

Figure 8. Node level measurement diagram

erboard CPU socket power interface as shown in Fig-
ures 7 and 6. The negative side of the circuit (black)
connected the power supply directly to the motherboard
CPU power interface, and the positive side (yellow) was
routed through the back-plane connector and then through
the in-line current meters of the data acquisition system.
One harness was used for each CPU/memory unit and
thus two harnesses per node were installed to capture the
current draw from each unit. Figure 4 shows the schematic
for the in-line current and reference voltage measurement.

To measure power consumption, we needed to mea-
sure the current usage over time (in combination with
a constant voltage) running over the wires between the
switching power supply and the CPU sockets. Most
current generation of commodity microprocessor moth-
erboards use a dedicated EATX [37] power connector
running at 12VDC to feed power to the CPU sockets. As
the standard wire gauge used in computer power supply
harnesses is 18 American Wire Gauge (AWG) [38], it
is necessary to use multiple single wires (as opposed to
increasing the wire gauge) to safely carry the current load
that a CPU can draw. On a dual CPU system like the Ivy
Bridge, there are eight pairs of 18 AWG wires feeding
the CPU sockets and associated DRAM banks. Each CPU
and each DRAM bank are fed by two pairs of wires. Thus
each CPU/Memory unit provides four separate pairs of
wires, and each pair of wires was routed through separate
in-line current measurement modules.

While the NI 9227 in-line current measurement mod-
ule is limited to 5A/channel and the maximum current
draw of an Ivy Bridge CPU is over 7A, this current
load was divided (by the EATX harness itself) into two
separate pairs of wires. During the experimental data post-
processing step, the current draw of both channels is
summed together to calculate the total current draw for
each processor. For the Intel® Ivy Bridge Xeon™ cluster
(see Figure 5, we had the capability to report on the CPU
power consumption, the memory power consumption, or
the combined sum of the two for each CPU/memory unit.

We used identical computer systems with identical
power supplies, so we only measured the voltage of four
sample nodes to detect the delta between the actual and
ideal supply voltage. An “ideal” switching power supply
would not show any fluctuation in supply voltage during
changes in current demand from the CPU. However, our
“real world” power supplies did show an approximate
0.2V drop during load, which correlated with the in-
creased current draw. The final energy measurement result
takes into account the systematic nature of this error,
although it became quickly apparent during our initial
experiments that any voltage instability in the 12V rail
feeding the CPU/DRAM sockets was easy to account for
and well within the margin of measurement error, even
at the comparatively high sample rate of the NI current
meters.

6. Software Configuration

A. Operating System and Compiler

The cluster test bed was installed with 64-bit Cen-
tOS [39] version 6.2. An extra node was configured as
the mount point for an Network File System (NFS) share
of the home directory. Secure Shell (SSH) keys were pre-
shared among all the nodes to allow inter-node program
execution without requiring interactive logon authentica-
tion. The compiler used for building the test applications
was Berkeley Unified Parallel C (UPC) [40] and its
network transport runtime, GASNet [34] configured with
Infiniband (ibv) and Gigabit Ethernet (udp) conduits for
the two interconnection networks.

B. System Orchestration

This section describes the orchestration of the mea-
surements in conjunction with program execution. The
system is flexible enough to run single applications that
consume the entire cluster’s resources, or to schedule sets
of jobs that run concurrently across the cluster in many
different placement configurations. In either case, the
experiments can be queued to run for any desired number
of iterations, from which can be extracted data with a high
statistical confidence. This aspect is particularly important
in the context of the minor variations (noise) in the
measurement data for identical experiments. Our initial

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 5, No.3, 189-209 (May-2016) 199

Figure 9. Console screen showing composite view of measurement control interface

design [1] relied on the program under investigation to
output XML tags in real-time to which a system-level
“listener” on the data acquisition computer would react
for program and measurement duration control. We tried
to compensate for the inherent system latencies by using
an energy/time ratio correlated with the program’s self-
reported times for each phase of execution. Following the
initial presentation of this research [1] we redesigned the
data acquisition process to compensate for these latencies,
though not without an increase in the overall complexity
of the measurement system. At the same time, we rebuilt
the user interface and experiment job control sub-systems
to improve ease-of-use and permit iterative experimental
runs and post-experiment data analysis.

C. MATLAB

Captured data was recorded with and processed with
the 64-bit version of MATLAB/Simulink [41] running
in a 64-bit Microsoft Windows environment. Figure 9
shows the Google Cloud java interface in the lower

left, the MATLAB console interface in the upper left),
and Cluster composite current measurement trace for 32
measurement channels on the right. MATLAB was used
not only to process the raw data being acquired from
the measurement sources, it was also used to orchestrate
the overall measurement system process control. Figure 1
shows the high-level process flow as a an experimental
run is initiated.

Once the experimental program terminates, MATLAB
performs an orderly shutdown of the measurement capture
streams, and then performs post-execution data process-
ing. Part of the post-processing step is to assemble these
time-stamps (which are thread-specific) into an consol-
idated XML file. MATLAB picks up this XML file,
associates the time-stamp data with the power measure-
ment streams, integrates the data into energy consumption
values. The system can be loaded to run for days or
weeks of continuous execution to exhaustively explore a
particular set of input parameter permutations (e.g., thread
count, network interconnect, CPU frequencies, Turbo-
Boost states, etc.).

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


200 David Newsom, et al.: Thread Level CPU Power Measurement for High Performance Parallel Systems

Figure 10. Matlab UI for experiment parameter entry

Figure 11. Google UI (iOS) for experiment parameter entry

D. Graphical User Interface for Experimental Parame-
ters

We designed a custom graphical user interface (GUI)
to simplify the complex and often repetitive entry of
the large number of experimental parameters. The first
implementation of the measurement system [2] used a
MATLAB generated GUI as shown in Figure 10 that
was tightly integrated with the Simulink model. While
the first GUI was effective for initiating experiments, it
had two significant drawbacks. First, it suffered from
a lack of an automated iteration capability. This was
particularly important in light of the variation we were
seeing in terms of energy utilization between successive
experiments with the same parameter sets. To achieve a
reliable and repeatable result usually involved running
a particular experiment a minimum of five iterations
and then selecting the median value of the set. Second,
because the Simulink model itself did not provide an
automated results logging mechanism thus experimental
results needed to be manually entered in a spreadsheet
before data analysis could be conducted. In order to
address these issues, we designed a second generation
GUI and results reporting mechanism using the Google
Cloud Java API as described in Section 6-E and as shown
in Figure 9 below.

E. Google Cloud User Interface and Job Control

This section describes how the measurement system’s
user interface (UI) and job control (JC) mechanisms work.
The approach described here is a second generation tech-
nique that uses XML and Google Spreadsheets API [42]
to extend the capability of MATLAB/Simulink’s native
scripting and user interface features beyond the design
described in Section 6-D. As shown in Figure 1, an exper-
imenter launches the UI by connecting to a Google Cloud
URL. Once authenticated, the experimenter configures
the parameters of the experiment he/she wishes to run
using the UI shown in Figure 11. Upon submission of the
form, a job queue spreadsheet (also hosted in the Google
Cloud) is populated with the parameter configuration of
the experiment.

We developed a custom polling agent using Google
Cloud Java API libraries which runs as a Windows
service. This agent, running on the MATLAB computer,
picks up the job from the Google spreadsheet, deletes the
active row, and triggers a MATLAB script to execute the
experiment. When control passes to the Simulink model,
a script creates a custom build string containing all the
various parameters of the compilation and execution (that
were set from the UI) of the UPC program running on
the test bed cluster. The compilation and execution are
monitored through an SSH console session. Upon the
successful termination of the test program, another script
retrieves the XML file that the program created, parses
it, and then adds to each time field an associated energy
measurement for the respective data acquisition channel.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 5, No.3, 189-209 (May-2016) 201

Figure 12. XML structure for CPU measurement data

The mathematical calculations performed by the Simulink
model to compute the energy values from this data are
described in Section 4.

F. XML Data Structure

Our initial data capture approach assumed that threads
executing on identical hardware nodes had execution
times that differed within our margin of measurement
error. During a set of detailed calibration exercises,
we discovered that this was not true and that inherent
system latencies and synchronization constructs could
cause thread execution times to vary significantly. Since
the precision of our energy measurement was largely
dependent on the accuracy of our time measurements, this
presented a serious issue. To address it, we subsequently
developed an XML schema that would consolidate all the
information needed for precise energy measurement on a
multi-core SMP compute cluster.

The high level schema of our XML file is presented
in Figure 12. Every thread generates its own start and

stop times for each program phase. The node, CPU, core
IDs, core frequency and cpufreq [43] power governors
active at the time the timestamps are recorded are also
captured. When a thread generates this section, only time
information is populated since the thread does not have
information about its energy usage. Energy information
is inserted after the experiment by the MATLAB portion
of measurement framework working backward through
its captured power data and matching the measurement
channel results against the corresponding thread activity
based on the recorded timestamps.

G. Google Spreadsheets API

We developed an aggregate reporting mechanism to
create a row in the Google spreadsheet for each iteration
of an experiment. After sending the experiment report
email, the new row is populated with the experiment spe-
cific data as shown in Figure 13. Once in the spreadsheet,
it can be exported and manipulated with ease for the
creation of charts, graphs, and deeper analytical reports.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


202 David Newsom, et al.: Thread Level CPU Power Measurement for High Performance Parallel Systems

Figure 13. Google spreadsheet for output data

H. Program Level Time-Energy Synchronization

The program executing the test algorithm is aug-
mented with a set of function calls to utility routines
that record precise time stamps for each phase of its
operation. We use the Linux API gettimeofday which
provides microsecond level accuracy. These values are
stored in a thread local data structure which also captures
the thread ID and the associated CPU and processor core
for the respective phase of the program. This data is then
processed into an XML file at the end of the program
run which is used to associate the measurement channel
energy consumption with the time stamps as described
in Section 6-F. Upon completion of each simulation
(experiment run) the Simulink model’s StopFcn routine
uses a java class to send an email report to the email
address specified in the GUI.

7. Experimental Results

In this section, we provide examples that show the
utility of our measurement system described above. We
investigate two benchmarks both written in UPC: Fast
Fourier Transform (FFT) and Heat Transfer (HT).
Both benchmarks are non-trivial applications, represen-
tative of common HPC codes, for which several hand-
optimizations (three for FFT, two for HT) were coded. We
successively ran each benchmark version using 8, 16, 32,
and 64 total threads, evenly distributed across the cluster.
For the experiments shown, all nodes participate in every
experiment, with at least one active core per processor.

Since the cluster nodes are actively interconnected by
two different network fabrics (described in Section 5-A)
we sequentially execute each benchmark on each network
type. The network is selected at compile time by selecting
the UPC GASNet [34] conduit: ibv (Infiniband) or udp
(Ethernet). Though not configurable at compile/run time
(because it requires a system re-boot), the machines

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 5, No.3, 189-209 (May-2016) 203

Figure 14. Normalized Fast Fourier Transform as function of frequency steps

Figure 15. FFT energy consumption (joules) vs. frequency

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


204 David Newsom, et al.: Thread Level CPU Power Measurement for High Performance Parallel Systems

Figure 16. FFT Magic Quadrant for execution time (seconds) vs. energy consumption (Joules) for FFT

Figure 17. Heat Transfer energy-delay product (Joule*seconds) as a function of thread count and frequency steps

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 5, No.3, 189-209 (May-2016) 205

Figure 18. Magic Quadrant for execution time (seconds) vs. energy (Joules) consumption for the Heat Transfer benchmark

can be BIOS configured to have Intel® ’s CPU Turbo-
Boost [16] feature ON or OFF. We denote ON and OFF as
Yes and No, respectively in the Figures displaying the
results.

The Intel® Ivy Bridge Xeon™ processors have a
total of 9 fixed frequency steps, and a workload-adaptive
variable frequency mode (referred to as the ondemand
CPU governor [43]). The results that are shown were
for experiments designed to systematically discover the
combination of all the control factors that produced
the minimum energy consumption. The Magic Quadrant
charts show the execution energy and time in a combined
(two axis) manner. These graphs show the energy/time
correlation without performing the multiplication that
would show a typical energy/delay product [44]. The
advantage of the two-axis charts is that the values of the
energy consumption and execution time are not lost in the
calculation (and subsequent display) of the energy-delay
product, yet the two values can be shown in a correlated
fashion as a single bubble in the chart. The upper right-
hand quadrant is where the minimum energy and time

values are reported for the specific combination of fre-
quency, thread count, network interface, and TurboBoost
state.

Figure 14 shows the normalized energy-delay product
of Fast Fourier Transform as a function of frequency
steps running with udp with 8 and 16 threads and with
the O0 code variant (hand optimization). The data is
normalized using the 8 threads at 1.2GHz as the base
case. The TurboBoost state is shown as YES or NO. We
normalized the data to the 8 threads at 1.2GHz base case.
Executing 16 threads (2 threads per CPU) consistently
outperforms 8 threads, all other factors held constant. The
best performance for 8 threads takes place at 2GHz with
TurboBoost ON, while for the 16 thread execution, the best
performance is with TurboBoost OFF and the ondemand
frequency governor enabled.

Figure 15 shows FFT energy consumption in joules
vs frequency under 32 and 64 threads with TurboBoost
ON and OFF, with udp and using the O1 code variant.
With TurboBoost ON and 64 threads, the minimum energy

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


206 David Newsom, et al.: Thread Level CPU Power Measurement for High Performance Parallel Systems

consumption occurs at 1.2GHz. With TurboBoost OFF, 32
threads has the lowest energy usage with the ondemand
governor enabled.

Figure 16 shows the Magic Quadrant for execution
time vs. energy consumption for FFT running with the
O1Static variant, 32 and 64 threads with TurboBoost
OFF. The best (lowest) energy/time values are shown in
the top right corner. The ondemand frequency governor
with 32 threads achieves the lowest energy consumption
but not best performance (shortest time). Second, the
1.8GHz with 64 threads achieves the best performance,
but at the cost of slightly higher energy consumption
than the other option. These kinds of results can only
be determined through a direct measurement system as
predictive models cannot provide granular performance
differentiation across a range of frequency steps.

Figure 17 shows the energy-delay product (see
Section 2-A) for the Heat Transfer Application in
Joule*seconds as a function of thread count (8 to 64)
for all frequency steps. The lowest energy-delay product
occurs at 1.6GHz with 16 threads. Execution with 16
threads does better than any other thread count in terms
of energy-delay product.

Figure 18 shows the Magic Quadrant for execution
time in seconds against energy consumption in joules
for the Heat Transfer application. The figure compares
two hand-coded optimizations and 64 threads with Tur-
boBoost ON. The lowest energy consumption/shortest
execution time is shown in the top right corner. Both
optimizations do best at 1.8GHz.

8. Conclusions and FutureWork

In this paper we have presented an extensible CPU
power measurement framework that supports our own
research but is also generally applicable to the computer
engineering community in general for accurate compu-
tational power consumption measurements. Our results
illustrate the need for a precise direct energy measurement
capability since it is very hard to predict the operating
parameters (e.g., frequency, thread count, TurboBoost,
and network interface) that will achieve the lowest energy
consumption.

In our future work we are planning the design for
a more scalable direct measurement method by moving
the data acquisition system directly into the node chassis.
This system could potentially capture real-time energy
measurements from cluster systems with large node/CPU
counts. In addition, we are investigating how to calculate
the actual power consumption of individual CPU cores
within the restriction of measuring the power consump-
tion of the aggregate CPU. Finally, we are exploring how
to automatically profile a particular CPU or system for
the power optimization feature set it exposes to operating
system or program level control so that the total space of

control combinations can be systematically examined.

Acknowledgment

This paper is a significant extension and update of a
paper that appeared in the proceedings of the Workshop
on Power Measurement and Profiling of in conjunction
with the 4th International Green Computing Conference
in June 2013 [2]. All trademarks ™ and registered trade-
marks ® mentioned, cited, or referenced in this document
remain the property of their respective owners.

References

[1] Newsom, Azari, Anbar, and El-Ghazawi, “Predictive Energy
Management Techniques for PGAS Programming,” in
Proceedings of the 2013 ACS International Conference on
Computer Systems and Applications, ser. AICCSA ’13. Ifrane,
Morroco: IEEE, May 2013, pp. 1–8.

[2] Newsom, Azari, Anbar, and El-Ghazawi, “Granular CPU Power
Measurement for SMP Clusters,” in Workshop Proceedings of
the 2013 International Green Computing Conference, ser. IGCC
’13. Arlington, VA: IEEE, Jun. 2013, pp. 1–6.

[3] Newsom, Azari, Anbar, and El-Ghazawi, “Locality-Aware
Power Optimization and Measurement Methodology for PGAS
Workloads on SMP Clusters,” in Proceedings of the 2013
International Green Computing Conference, ser. IGCC ’13.
Arlington, VA: IEEE, Jun. 2013, pp. 1–10.

[4] Cui, Zhu, Bao, and Chen, “A Fine-Grained Component-Level
Power Measurement Method,” in Proceedings of the 2011
International Green Computing Conference and Workshops, ser.
IGCC ’11. Orlando, FL: IEEE, Jul. 2011, pp. 1–6.

[5] Hennessy and Patterson, Computer Architecture: A Quantitative
Approach, 5th ed., ser. The Morgan Kaufmann Series in
Computer Architecture and Design. Waltham, MA: Elesvier,
2012.

[6] Gonzalez and Horowitz, “Energy Dissipation in General Purpose
Microprocessors,” IEEE Journal of Solid-State Circuits, vol. 31,
no. 9, pp. 1277 – 1284, Sep. 1996. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=535411

[7] Eisenmann and Kohl, “Power Calculation for CMOS Gate
Arrays,” in Proceedings of the Fourth Annual IEEE International
ASIC Conference and Exhibit, ser. ASIC ’91. Rochester, NY,
USA: IEEE, Sep. 1991, p. 5.

[8] Davari, Dennard, and Shahidi, “CMOS Technology for Low
Voltage/Low Power Applications,” in Proceedings of the IEEE
1994 Custom Integrated Circuits Conference, ser. CICC ’94.
San Diego, CA, USA: IEEE, May 1994, pp. 3–10.

[9] Horowitz, Indermaur, and Gonzalez, “Low-Power Digital
Design,” in Digest of Technical Papers of the 1994 IEEE Low
Power Electronics Symposium, ser. IEEE Low Power Electronics.
San Diego, CA, USA: IEEE, Oct. 1994, pp. 8–11.

[10] Frank, Solomon, Reynolds, and Shin, “Supply and Threshold
Voltage Optimization for Low Power Design,” in Proceedings
of the 1997 International Symposium on Low Power Electronics
and Design, ser. ISPLED ’97. Monterey, CA, USA: ACM,
Aug. 1997, pp. 317–322.

http:// journals.uob.edu.bh

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=535411
http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 5, No.3, 189-209 (May-2016) 207

[11] Oklobdzija, “Design for Low Power,” in High-Performance
System Design: Circuits and Logic. Wiley-IEEE Press, 1999,
pp. 169–259. [Online]. Available: http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?arnumber=5265218

[12] Kim, Austin, Baauw, Mudge, Flautner, Hu, Irwin, Kandemir,
and Narayanan, “Leakage Current: Moore’s Law Meets Static
Power,” Computer, vol. 36, no. 12, pp. 68–75, Dec. 2003,
computer, the flagship publication of the IEEE Computer Society,
publishes peer-reviewed articles written for and by professionals
representing the full spectrum of computing technology from
hardware to software and from current research to new
applications. [Online]. Available: http://ieeexplore.ieee.org/xpls/
abs all.jsp?arnumber=1250885

[13] Intel Corporation, “Intel® Xeon® Proces-
sor E5-2640 v2 Data Sheet,” 2013.
[Online]. Available: http://ark.intel.com/products/75267/
Intel-Xeon-Processor-E5-2640-v2-20M-Cache-2 00-GHz

[14] Intel Corporation, “Using Enhanced Intel SpeedStep®
features in HPC Clusters | Intel® Developer Zone,”
Aug. 2009. [Online]. Available: https://software.intel.com/en-us/
articles/using-enhanced-intel-speedstep-features-in-hpc-clusters

[15] Advanced Micro Devices, Inc., “AMD PowerNow!™
Technology,” Nov. 2000, publication #: 24404 Rev: A. [Online].
Available: http://support.amd.com/TechDocs/24404a.pdf

[16] Intel Corporation, “Intel® Turbo Boost Technology 2.0,” 2015.
[Online]. Available: http://www.intel.com/content/www/us/en/
architecture-and-technology/turbo-boost/turbo-boost-technology.
html

[17] Rotem, Naveh, Rajwan, Ananthakrishnan, and Weissmann,
“Power-Management Architecture of the Intel Microarchitecture
Code-Named Sandy Bridge,” IEEE Micro, vol. 32, no. 2, pp.
20–27, Mar. 2012. [Online]. Available: http://ieeexplore.ieee.org/
xpl/articleDetails.jsp?arnumber=6148200

[18] Jahagirdar, George, Sodhi, and Wells, “Power Management of
the Third Generation Intel Core Micro Architecture Formerly
Codenamed Ivy Bridge,” Cupertino, CA, USA, Aug. 2012.
[Online]. Available: http://hotchips.org/wp-content/uploads/hc
archives/hc24/HC24-1-Microprocessor/HC24.28.117-HotChips
IvyBridge Power 04.pdf

[19] Hammarlund, Kumar, Osborne, Rajwar, Singhal, D’Sa, Chappell,
Kaushik, Chennupaty, Jourdan, and others, “Haswell: The
Fourth-Generation Intel Core Processor,” IEEE Micro, vol. 34,
no. 2, pp. 6–20, Mar. 2014. [Online]. Available: http://www.
computer.org/csdl/mags/mi/2014/02/mmi2014020006-abs.html

[20] Charles, Jassi, Ananth, Sadat, and Fedorova, “Evaluation of
the Intel® Core™ i7 Turbo Boost feature,” in Proceedings
of the 2009 IEEE International Symposium on Workload
Characterization, ser. IISWC 2009. Austin, TX: IEEE, Oct.
2009, pp. 188–197.

[21] Kidd, “Power Management States: P-States, C-
States, and Package C-States,” Apr. 2014.
[Online]. Available: https://software.intel.com/en-us/articles/
power-management-states-p-states-c-states-and-package-c-states

[22] Hackenberg, Schone, Ilsche, Molka, Schuchart, and Geyer,
“An Energy Efficiency Feature Survey of the Intel® Haswell
Processor,” in Proceedings of the 2015 IEEE International
Parallel and Distributed Processing Symposium Workshop, ser.

IPDPSW ’15. Hyderabad, India: IEEE, May 2015, pp. 896–904,
00009.

[23] Advanced Micro Devices, Inc., “Opteron™ 2354 Processor Data
Sheet,” Jun. 2010. [Online]. Available: http://support.amd.com/
TechDocs/43374.pdf

[24] James H Laros, Phil Pokorny, and David DeBonis, “PowerInsight
- a Commodity Power Measurement Capability,” in Proceedings
of the 2013 International Green Computing Conference, ser.
IGCC ’13. Arlington, VA: IEEE, Jun. 2013, pp. 1–6.

[25] James H. Laros III, Kevin Pedretti, Suzanne M. Kelly,
Wei Shu, Kurt Ferreira, John Van Dyke, and Courtenay
Vaughan, Energy-Efficient High Performance Computing, 1st ed.,
ser. SpringerBriefs in Computer Science. Berlin Heidelberg:
Springer International Publishing AG, 2013, vol. 1.

[26] Bircher and John, “Complete System Power Estimation
Using Processor Performance Events,” IEEE Transactions
on Computers, vol. 61, no. 4, pp. 563–577, Apr. 2012.
[Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=5714687&isnumber=6156497

[27] Huck, “Measuring Processor Power TDP vs.
ACP,” Apr. 2011, revision: 1.1. [Online].
Available: http://www.intel.com/content/dam/doc/white-paper/
resources-xeon-measuring-processor-power-paper.pdf

[28] Pakin and Lang, “Energy Modeling of Supercomputers and
Large-Scale Scientific Applications,” in Proceedings of the 2013
International Green Computing Conference, ser. IGCC ’13.
Arlington, VA: IEEE, Jun. 2013, pp. 1–6.

[29] W3C Information and Knowledge Domain, “Extensible Markup
Language (XML),” May 2015. [Online]. Available: http:
//www.w3.org/XML/

[30] Kerrisk, The Linux Programming Interface. San Francisco, CA:
No Starch Press, Oct. 2010.

[31] Johnson, “Notes on the Convergence of
Trapezoidal-Rule Quadrature,” 2010. [Online].
Available: http://mitocw.fermielearning.it/courses/mathematics/
18-335j-introduction-to-numerical-methods-fall-2010/
lecture-notes/MIT18 335JF10 Lec31a hand.pdf

[32] Intel Corporation, “Intel Performance Tuning Utility
4.0 Update 5 - Release Notes,” Apr. 2011.
[Online]. Available: https://software.intel.com/en-us/articles/
intel-performance-tuning-utility-product-overview

[33] Upton, “Hyper-Threading Technology Architecture and Microar-
chitecture,” Intel Technology Journal Q, vol. 1, no. Q1, p. 12,
2002, 00003.

[34] Bonachea and Jeong, “GASNet: A Portable High-Performance
Communication Layer for Global Address-Space Languages,”
Nov. 2006, version 1.8. [Online]. Available: https://gasnet.lbl.
gov/dist/docs/gasnet.pdf

[35] National Instruments, Inc, “Operating Instructions and
Specifications-NI 9229 Voltage Module,” Jul. 2014. [Online].
Available: http://www.ni.com/pdf/manuals/374184l.pdf

[36] National Instruments, Inc, “Operating Instructions and
Specifications-NI 9227 In-Line Current Module,” Jul. 2014.
[Online]. Available: http://www.ni.com/pdf/manuals/375101e.pdf

http:// journals.uob.edu.bh

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5265218
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5265218
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1250885
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1250885
http://ark.intel.com/products/75267/Intel-Xeon-Processor-E5-2640-v2-20M-Cache-2_00-GHz
http://ark.intel.com/products/75267/Intel-Xeon-Processor-E5-2640-v2-20M-Cache-2_00-GHz
https://software.intel.com/en-us/articles/using-enhanced-intel-speedstep-features-in-hpc-clusters
https://software.intel.com/en-us/articles/using-enhanced-intel-speedstep-features-in-hpc-clusters
http://support.amd.com/TechDocs/24404a.pdf
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6148200
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6148200
http://hotchips.org/wp-content/uploads/hc_archives/hc24/HC24-1-Microprocessor/HC24.28.117-HotChips_IvyBridge_Power_04.pdf
http://hotchips.org/wp-content/uploads/hc_archives/hc24/HC24-1-Microprocessor/HC24.28.117-HotChips_IvyBridge_Power_04.pdf
http://hotchips.org/wp-content/uploads/hc_archives/hc24/HC24-1-Microprocessor/HC24.28.117-HotChips_IvyBridge_Power_04.pdf
http://www.computer.org/csdl/mags/mi/2014/02/mmi2014020006-abs.html
http://www.computer.org/csdl/mags/mi/2014/02/mmi2014020006-abs.html
https://software.intel.com/en-us/articles/power-management-states-p-states-c-states-and-package-c-states
https://software.intel.com/en-us/articles/power-management-states-p-states-c-states-and-package-c-states
http://support.amd.com/TechDocs/43374.pdf
http://support.amd.com/TechDocs/43374.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5714687&isnumber=6156497
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5714687&isnumber=6156497
http://www.intel.com/content/dam/doc/white-paper/resources-xeon-measuring-processor-power-paper.pdf
http://www.intel.com/content/dam/doc/white-paper/resources-xeon-measuring-processor-power-paper.pdf
http://www.w3.org/XML/
http://www.w3.org/XML/
http://mitocw.fermielearning.it/courses/mathematics/18-335j-introduction-to-numerical-methods-fall-2010/lecture-notes/MIT18_335JF10_Lec31a_hand.pdf
http://mitocw.fermielearning.it/courses/mathematics/18-335j-introduction-to-numerical-methods-fall-2010/lecture-notes/MIT18_335JF10_Lec31a_hand.pdf
http://mitocw.fermielearning.it/courses/mathematics/18-335j-introduction-to-numerical-methods-fall-2010/lecture-notes/MIT18_335JF10_Lec31a_hand.pdf
https://software.intel.com/en-us/articles/intel-performance-tuning-utility-product-overview
https://software.intel.com/en-us/articles/intel-performance-tuning-utility-product-overview
https://gasnet.lbl.gov/dist/docs/gasnet.pdf
https://gasnet.lbl.gov/dist/docs/gasnet.pdf
http://www.ni.com/pdf/manuals/374184l.pdf
http://www.ni.com/pdf/manuals/375101e.pdf
http://journals.uob.edu.bh


David K. Newsom David K. Newsom
earned his Ph.D. (2015) in Computer
Engineering at The George Washington
University’s School of Engineering and
Applied Science where he has been con-
ducting research in green high perfor-
mance and parallel computing. He holds
a M.Sc. degree in Electrical Engineering
from Johns Hopkins University (1992),
a B.Sc. degree in Electrical Engineering

from the University of Maryland (1990), and a B.A. degree 
in International Relations from San Francisco State University 
(1983). Dr. Newsom has been a staff member at the World 
Bank Group since 1996, where he currently holds the position 
of Senior Manager, Enterprise Platforms in the central IT 
department. Prior to the World Bank Group, he was part of the 
NASA Antarctic Field Team that deployed the first geostationary 
satellite communications system to support telephony and data 
communications from the Geographic South Pole in 1994. Dr. 
Newsom has been a member of the IEEE and ACM since 1988.

208 David Newsom, et al.: Thread Level CPU Power Measurement for High Performance Parallel Systems

[37] Intel Corporation, “ATX Motherboard Specification 2.2,” 2004,
version 2.2. [Online]. Available: http://www.formfactors.org/
developer%5Cspecs%5Catx2 2.pdf

[38] ASTM International, “Standard Specification for Standard
Nominal Diameters and Cross-Sectional Areas of AWG Sizes of
Solid Round Wires Used as Electrical Conductors,” Apr. 2014.
[Online]. Available: http://www.astm.org/Standards/B258.htm

[39] CentOS Community, “CentOS Project,” 2015, community
ENTerprise Operating System. [Online]. Available: https:
//www.centos.org/about/

[40] California, “Berkeley Unified Parallel C (UPC) Project,” Apr.
2015. [Online]. Available: http://upc.lbl.gov/

[41] MathWorks, “MATLAB,” Sep. 2015. [Online]. Available:
http://www.mathworks.com/products/matlab/

[42] Google, Inc., “Google Spreadsheets API Version 3.0,” Aug. 2015.
[Online]. Available: https://developers.google.com/google-apps/
spreadsheets/

[43] Pallipadi and Starikovskiy, “The Ondemand Governor,” in
Proceedings of the 2006 Linux Symposium, ser. OLS ’06, vol. 2.
Ottawa, Ontario, Canada: Linux Symposium, Jul. 2006, pp.
215–230.

[44] Freeh, Lowenthal, Pan, Kappiah, Springer, Rountree, and
Femal, “Analyzing the Energy-Time Trade-Off in High-
Performance Computing Applications,” IEEE Transactions on
Parallel and Distributed Systems, vol. 18, no. 6, pp. 835–848,
Jun. 2007. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=4180349

Sardar F. Azari Sardar F. Azari is an
independent researcher, scientist, and hob-
byist who has continued to conduct aca-
demic research and development in con-
junction with his 28 year career as an
IT professional. He is currently a senior
staff member and Lead for the Enterprise
Search and Data Analytics Team of the
World Bank Group which he joined in
1999. He was awarded his Ph.D. (2003)

and M.Sc (1993) in Electrical and Computing Engineering from 
Azerbaijan State Oil Academy. Dr. Azari has published many 
research publications in his area of academic interest since 1990, 
which include green computing, electrical power measurement 
and instrumentation, smart sensors and soft computing (fuzzy 
logic and ANN’s). He has been an IEEE Member since 2000.

Olivier Serres Olivier Serres earned his
Ph.D. (2015) in Computer Engineering
at The George Washington University’s
School of Engineering and Applied Sci-
ence. He is a postdoctoral research sci-
entist at GWU’s High Performance Com-
puting Laboratory. He obtained a research
Master’s degree (2008) in Mechatronics
and a B.S. (2007) in Computer Science
from the University of Technology of

Belfort-Montbeliard, France. His research interests include high-
performance computing and reconfigurable computing. Dr. Ser-
res’s primary research focus is programming models for high-
performance many-core based and heterogeneous systems.

Abdel-Hameed A. Badawy Abdel-
Hameed A. Badawy is a lead research 
scientist at GWU High Performance Com-
puting Laboratory (HPCL) and is a tenure-
track assistant professor in the Department 
of Electrical Engineering at Arkansas 
Tech University. He received his Ph.D. 
and M.Sc. both from the University of 
Maryland, College Park, in Computer En-
gineering. His research interests include

locality optimizations, interactions of computer architectures 
and compilers, machine intelligence techniques and their ap-
plications to computer architecture, and Green Computing. He 
has published in ACM/IEEE conferences and Journals. He is 
a Senior Member of the IEEE, IEEE Computer Society, and a 
Professional member of the ACM. He serves as the vice chair 
of the Arkansas River Valley IEEE section.

http:// journals.uob.edu.bh

http://www.formfactors.org/developer%5Cspecs%5Catx2_2.pdf
http://www.formfactors.org/developer%5Cspecs%5Catx2_2.pdf
http://www.astm.org/Standards/B258.htm
https://www.centos.org/about/
https://www.centos.org/about/
http://upc.lbl.gov/
http://www.mathworks.com/products/matlab/
https://developers.google.com/google-apps/spreadsheets/
https://developers.google.com/google-apps/spreadsheets/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4180349
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4180349
http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 5, No.3, 189-209 (May-2016) 209

Tarek El-Ghazawi Tarek El-Ghazawi is a
Professor in the Department of Electrical
and Computer Engineering at The George
Washington University, where he leads the
university-wide Strategic Academic Pro-
gram in High-Performance Computing.
He is the founding director of The GW In-
stitute for Massively Parallel Applications
and Computing Technologies (IMPACT)
and a founding Co-Director of the NSF In-

dustry/University Center for High-Performance Reconfigurable
Computing (CHREC). El-Ghazawi’s research interests include
high-performance computing, computer architectures, reconfig-
urable, embedded computing and computer vision. He is one
of the principal co-authors of the UPC parallel programming
language and the first author of the UPC book from John
Wiley and Sons. He received his Ph.D. degree in Electrical and
Computer Engineering from New Mexico State University in

1988. Dr. El-Ghazawi has published more than 200 
refereed research publications in this area. Dr. El-Ghazawi has 
served in many editorial roles and is currently an Associate 
Editor for the IEEE Transactions on Computers. He has chaired 
and co-chaired many international conferences and symposia 
including the 2009 Conference on Partitioned Global Address 
Space (PGAS) Pro-gramming Models and Languages 
(PGAS2009), The 10th IEEE International Conference on 
Scalable Computing and Commu-nications (ScalCom-10), 
2010, and the 9th ACS/IEEE Confer-ence on Computer 
Systems and Applications, AICCSA2011. Dr. El-Ghazawi’s 
research has been frequently supported by Federal agencies 
and industry including DARPA/DoD, NSF, DoE/LBNL, 
NASA, IBM, HP, Intel, AMD, SGI, Microsoft, and Mellanox. 
Professor El-Ghazawi is a Fellow of the IEEE and a 
Research Faculty Fellow of the IBM Center for Advanced 
Studies, Toronto. He is a member of the Phi Kappa Phi 
national honor society and an elected member of the IFIP 
WG10.3.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


 


	Introduction and Overview
	Background
	Metrics
	CMOS Power Dissipation
	Dynamic Voltage and Frequency Scaling
	TurboBoost
	Dependency Domains and Packages
	Processor Asymmetry

	Related Work
	Direct Measurement Approaches
	Estimation Approaches

	Energy Calculation Methodology
	Hardware Configuration
	Instrumented HPC Test Cluster
	Hardware Instrumentation

	Software Configuration
	Operating System and Compiler
	System Orchestration
	MATLAB
	Graphical User Interface for Experimental Parameters
	Google Cloud User Interface and Job Control
	XML Data Structure
	Google Spreadsheets API
	Program Level Time-Energy Synchronization

	Experimental Results
	Conclusions and Future Work
	References
	Biographies
	David K. Newsom
	Sardar F. Azari
	Olivier Serres
	Abdel-Hameed A. Badawy
	Tarek El-Ghazawi




