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QAPNet, or Quantized Attention Pruning Network, represents a significant advance-
ment in neural network design by integrating quantization, attention mechanisms, and
pruning techniques. This architecture is engineered to enhance both model perfor-
mance and computational efficiency, setting a new benchmark in deep learning [1].
By addressing the limitations of existing models, QAPNet offers a more scalable and
effective solution for complex tasks, paving the way for breakthroughs in various Al
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Abstract

This study presents the development of a novel algorithm, QAPNet( Quan-
tization Attention Pruning Network), and its comprehensive evaluation, demon-
strating its superior performance compared to traditional deep learning models
such as VGG (Visual Geometry Group) and ResNet (Residual Network) for skin
cancer prediction. QAPNet achieves an impressive accuracy of 99.47% and an
Fl-score of 99.5%, showcasing exceptional precision and robustness. In contrast,
VGG reaches 97.78% accuracy with a 97.92% F1l-score, and ResNet achieves
96.67% accuracy and a 96.91% F1-score. The analysis of training efficiency indi-
cates that QAPNet converges more rapidly due to its advanced architecture and
optimized hyperparameters, including a lower learning rate and smaller batch
size. The effectiveness of the Adam optimizer is highlighted through sensitivity
analysis, further enhancing QAPNet’s performance. Moreover, QAPNet demon-
strates superior efficiency with fewer parameters and lower floating-point oper-
ations (FLOPs) compared to VGG and ResNet. This reduction in error rates
reinforces QAPNet’s advantage over traditional models. Overall, QAPNet’s com-
bination of high accuracy, efficiency, and robustness positions it as a compelling
choice for applications requiring both precision and real-time processing capabil-
ities. While VGG and ResNet are effective within their domains, they exhibit
limitations that QAPNet overcomes through its innovative design. Future re-
search should focus on refining these models and exploring their performance in
diverse practical scenarios to fully leverage their capabilities and potential for
advanced applications.

Keywords: QAPNet, Skin Cancer Prediction, Quantization,Attention Mech-
anisms,Pruning

Introduction

applications.

1.1 Background

Skin cancer detection is a critical global health challenge, necessitating precise and
efficient diagnostic tools. Early and accurate detection of skin cancer can significantly
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improve patient outcomes and reduce mortality rates. While deep learning methods
have shown potential in automating skin cancer detection, traditional models often face
challenges in balancing performance with computational efficiency. The complexity
and resource demands of these models can hinder their practical deployment, making
it essential to explore innovative solutions that optimize both accuracy and operational
efficiency [2].

1.2 Challenges in Previous Literature

Conventional convolutional neural networks (CNNs) like VGG (Visual Geometry Group)
and ResNet (Residual Network) encounter several limitations, including susceptibility
to overfitting, high computational demands, and scalability issues, which affect their
practical deployment for skin cancer detection [3,/4].

1.3 Motivation

The need for more effective and resource-efficient skin cancer detection solutions drives
the exploration of innovative architectures such as QAPNet. By addressing the lim-
itations of traditional CNN models through advanced techniques, QAPNet aims to
improve accuracy and scalability in skin cancer detection [1].

1.4 Objectives and Contributions

This paper introduces QAPNet as a novel CNN architecture designed specifically for
skin cancer detection. The main objective is to demonstrate QAPNet’s superior perfor-
mance compared to traditional models, focusing on computational efficiency and accu-
racy. Key contributions include the development and empirical evaluation of QQAPNet,
showcasing its impact on medical image analysis [1].

1.5 Overview of the Paper’s Organization

The paper is organized as follows:
e Section 1 presents QAPNet and its relevance to skin cancer detection.

e Section 2 details the QAPNet architecture, explaining its core components and
design rationale.

e Section 3 describes the methodology for evaluating QAPNet’s performance and
comparing it with traditional models.

e Section 4 provides empirical results, highlighting QAPNet’s advantages.

e Section 5 discusses the findings, comparing them with existing literature, and
emphasizes QAPNet’s unique contributions.

e Section 6 concludes with a summary of key insights and future research directions
in deep learning for skin cancer detection.

QAPNet’s integration of quantization, attention mechanisms, and pruning tech-
niques signifies a paradigm shift in neural network design, offering a robust framework
for advanced machine learning tasks and contributing to significant advancements in
Al research and applications.



Figure 1: System Architecture

The figure [1] illustrates the workflow of QAPNet for image classification. It starts
with dataset collection and data cleaning, including hair and noise removal, contrast
enhancement, and resizing. Feature extraction identifies key characteristics such as
asymmetry and border details. The processed data is split into training and testing sets.
During model training, QAPNet utilizes advanced techniques, including ResNet, VGG,
and its own architecture, for image classification. Performance evaluation metrics such
as accuracy, specificity, sensitivity, and F1 score assess model effectiveness. Finally,
the trained model generates predictions, distinguishing between malignant and benign
images, demonstrating QAPNet’s efficiency and performance.

2 Related Work

2.1 Machine and Deep Learning Algorithms

This section reviews various algorithms applied to skin cancer detection, highlighting
their strengths and limitations.

e Support Vector Machines (SVMs): SVMs are effective classifiers that create
a clear boundary between benign and malignant images ﬂé__lﬂ They excel with well-
defined data but may struggle with complex datasets.

e Convolutional Neural Networks (CNNs): CNNs, including architectures
like VGG and ResNet, are leading models in image recognition due to their

ability to learn from and classify dermoscopy images efficiently
,,. They capture spatial relationships and features well but can be

computationally expensive and challenging to interpret.

e Beyond CNNNs: Advanced architectures like U-Net and DenseNet address spe-
cific tasks such as image segmentation and feature reuse, improving accuracy and

training efficiency .



2.2 Applications

e Dermoscopy Images: High-resolution dermoscopy images are crucial for ac-
curate skin cancer detection, providing detailed lesion information essential for
machine learning algorithms [2|/16}21].

e Multi-Step Detection: A two-step approach, including segmentation and clas-
sification, enhances detection accuracy by isolating suspicious regions and classi-
fying them [13}19)].

2.3 Performance Improvement Strategies

e Transfer Learning: Leveraging pre-trained models for skin cancer detection re-
duces training time and improves performance by adapting generic image recog-
nition models to specialized tasks [6}/10].

e Ensemble Learning: Combining multiple models enhances accuracy and ro-
bustness by integrating various strengths and minimizing overfitting [25].

e Multi-Scale Analysis: Analyzing lesions at different scales captures important
details, improving detection accuracy for subtle variations [15].

2.4 Emerging Trends

e Uncertainty-Aware Deep Learning: Incorporating model uncertainty into

diagnoses improves reliability by identifying ambiguous cases for expert review
[18].

e Exploring New Sensors: Innovations like hyperspectral imaging offer addi-
tional data for improved skin cancer detection beyond traditional methods [22].

2.5 Consolidated Techniques and Research Gaps

A review of the literature on skin cancer detection reveals several techniques and their
associated research gaps. For instance, while deep learning architectures have shown
promise, the model details in some studies are not fully specified [1]. CNNs, widely used
for feature extraction, often face challenges with generalizability to unseen data [2] and
require efficiency evaluations on large datasets [5]. Specific architectures like Xception-
Net [3] and ResNet [8] show limited comparative analysis with other models, highlight-
ing the need for performance comparisons. Additionally, while deep transfer learning
methods, such as those incorporating the Sparrow Search Algorithm, present innova-
tive approaches, their effectiveness remains inadequately explored [6]. Hybrid intel-
ligent systems [7] and probabilistic neural networks [14] are noted for their potential
but require further performance evaluations against diverse datasets. The integration
of multi-scale analysis and transfer learning [10], as well as improvements in model
interpretability [11], are critical areas where current research could be expanded. Fur-
thermore, transformer networks [13] and hybrid texture features [12] warrant additional
evaluations to establish their efficacy compared to traditional deep learning methods.
Overall, there is a consistent need for external validation, model interpretability, and
comprehensive comparisons across different architectures to address these research gaps
effectively.



3 Methods

3.1 Working Principle

The integration of quantization, attention mechanisms, and pruning techniques in
QAPNet significantly enhances its efficiency and effectiveness in various machine learn-
ing tasks, particularly for cancer image prediction. Let’s break down how each compo-
nent contributes to QAPNet’s success:

3.1.1 Quantization

In QAPNet, quantization reduces the precision of numerical values, such as weights
and activations, to a lower bit-width representation. This process effectively reduces
the memory footprint and computational complexity of the model while maintaining
acceptable levels of accuracy, which is crucial for handling high-dimensional cancer
imaging data [1,[2].

Let W denote the original weight matrix of the i-th layer, Q® denote the quan-
tized weight matrix, QFunc denote the quantization function, and A; denote the quan-
tization step size for the i-th layer.

The quantization process can be mathematically represented as follows:

W@

Q_weights[i] = round ( ) x A; (element-wise quantization) (1)

i

Q-activations[i] = QFunc(activations[i]) (layer-specific quantization function) (2)

This representation provides a clear and concise mathematical description of the
quantization algorithm used in QAPNet, tailored for the specific needs of cancer image
prediction. The approach ensures that the model remains efficient and scalable while
processing large and complex medical imaging datasets.

3.1.2 Attention Mechanism

QAPNet incorporates attention mechanisms to selectively focus on important features
within skin cancer image data. This allows the network to assign higher weights to
relevant features, enhancing its ability to capture essential patterns and information in
the images [1H3].

Let Z; be the output tensor of the i-th convolutional layer.
Let A; represent the activated tensor after applying batch normalization and ReLLU
activation.
Let W.” be the attention weight matrix for the ¢-th layer.
Let bt(f') be the attention bias vector.
Let v$” be the attention score vector. ‘

The attention mechanism process involves calculating attention scores v for each
feature in Z;. This is achieved by applying a softmax function to the linear combination
of Z; and Wéi), along with b

v = softmax(Z; - W + p®)

Here, the softmax function ensures that the attention scores sum up to 1, providing
a probability distribution over the features. Higher scores indicate higher importance
[45].

Subsequently, the activated tensor A; is obtained by weighting the output tensor
Z; with the attention scores o) and applying the ReLLU activation function:

A; = ReLU(Z; - vl)
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This process allows the network to selectively focus on important features, enhanc-
ing its ability to capture essential patterns and information in skin cancer images. By
assigning higher weights to relevant features, the network effectively filters out noise
and concentrates on the most informative aspects of the data, leading to improved
performance and efficiency [6/7].

3.1.3 Pruning

Pruning in QAPNet removes unnecessary connections from the network, promoting
sparsity and efficiency. By eliminating redundant connections, pruning reduces model
size and potentially improves performance, which is particularly important for process-
ing high-dimensional skin cancer image data [8-10].

Let W@ denote the weight matrix of the i-th layer and P® denote the pruned
weight matrix. Let 7 represent the pruning threshold.

The pruning process can be mathematically represented as follows:

P(i)_ “](‘;c) if|“g('2)|>7—
Jjk :
0 otherwise

Here, Pglk) is the weight element in the pruned weight matrix, and W](Q is the
corresponding weight element in the original weight matrix. A binary mask matrix
M® is created to indicate which weights are kept:

M 1 W >
ik }
0 otherwise

By integrating quantization, attention mechanisms, and pruning techniques, QAP-
Net achieves advanced capabilities in skin cancer image prediction while optimizing
model efficiency and performance. This comprehensive approach represents a signifi-
cant advancement in neural network architecture, promising to revolutionize skin cancer
diagnostics and other medical imaging applications.

4 QAPNet Algorithm Design

The QAPNet algorithm integrates quantization, attention mechanisms, and pruning to
enhance neural network efficiency. It performs layer-wise quantization of weights and
activations, applies an attention mechanism to focus on relevant features, and prunes
weights based on a threshold to reduce model complexity, optimizing performance and
memory usage.



Algorithm 1 QAPNet

Require: input_tensor, weights, activations, threshold
Ensure: () weights, Q) _activations, pruned_weights, mask_matriz,

I T e T o T S e e S S
© 0 N DU WO

DO
o

attention_activated_tensor

Quantization:

for each layer 7 in network do
Define quantization step size d;
Q-weights|i] < round(weights[i]/d;) x o;
Q-activations|i] < QuantizationFunction(activationsli])

end for

Attention Mechanism:

Z; < input_tensor

A; + BatchNorm(ReLU(Z;))

attention_scores < tanh(Z; x W, + b,)

. a < softmax(v!" x attention_scores)
: attention_activated_tensor < a X Z;
: Pruning:

. pruned_weights < {}

: for each layer ¢ in network do

important_connections < {w € weightsli] | |{w| > threshold}
pruned_weights[i] < important_connections

: end for
: Create mask matrix M based on pruned-weights entries (M]i,j] = 1 if weight

kept, 0 otherwise)

: return Q_weights,  Q_activations,  pruned_weights,  mask_matriz,

attention_activated_tensor

5

QAPNet Architecture

The QAPNet architecture (Figure integrates convolutional layers with batch normal-
ization, ReLLU activation, quantization, attention mechanisms, and pruning techniques.
This design enhances model efficiency and performance for skin cancer image prediction
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Implementation

6.0.1 Dataflow Diagram

Here’s the data flow diagram representing the evaluation process of a neural network
model for image classification:
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Figure 3: Data Flow Diagram.

The input image is processed through the QAPNet model [1], which predicts a
label for the image [2]. The predicted label is compared to the true label using the
cross-entropy loss function to compute the loss [3]. The average loss across the dataset
is then calculated to evaluate the QAPNet’s performance . This cycle of forward
propagation, loss computation, and backpropagation forms the foundation for assessing
the model’s effectiveness in image classification . Empirical data is crucial in validat-
ing model efficacy and advancing QAPNet, highlighting the significance of data-driven
approaches in Al innovation [6-10].

6.1 Data Preparation:

The research utilizes a curated dataset of skin lesion images, categorized into benign
and malignant classes from Kaggle [1]. The dataset is divided into training, validation,
and testing subsets. Sample images from the dataset are shown in Figure 3 .

Malignant

Benign

Figure 4: Skin Cancer Raw Data.

6.2 Prediction:

The implementation of QAPNet on skin cancer image analysis represents a comprehen-
sive approach to leveraging deep learning techniques for medical image processing .
By sequentially applying convolution, batch normalization, ReLU activation, attention
mechanisms, and pruning, QAPNet aims to enhance accuracy and efficiency in skin
cancer detection and classification [4-6].
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Figure 5: Data Flow Diagram.

7 Result Analysis

7.1 Training and Validation Loss and Accuracy
7.1.1 QAPNet

The QAPNet model, designed with a focus on optimizing performance through ad-
vanced architectures and fine-tuned parameters, demonstrates superior learning ca-
pabilities. During training, the model exhibits a consistent decrease in loss and a
corresponding increase in accuracy over the epochs, as illustrated in Figure [(] The
rapid convergence observed in QAPNet indicates an efficient learning process, where
the model quickly adapts to the training data and reduces errors effectively. Com-
pared to traditional models like VGG and ResNet, QAPNet maintains a lower training
and validation loss throughout, reflecting its robustness in handling the complexities
of the dataset. The consistently high accuracy further underscores its potential for
deployment in real-world applications where precision is critical.

QAPNet Accuracy Over Epochs QAPNet Loss Over Epochs
1.0 4 0.6
0.9 0.5 1
0.8 - 0.4 1
g
g i 2 0.3 1
§ 0.7 3
< 06 n 0.2 T
- 0.1 -
0.5 1 Training Accuracy Training Loss
0.4 Validation Accuracy 0.0 Validation Loss
’ 1 1 1 1 1 1
0 50 100 0 50 100
Epochs Epochs

Figure 6: Training and Validation Loss for QAPNet.

7.1.2 VGG

The VGG model, known for its depth and simplicity in design, demonstrates a moderate
reduction in loss and improvement in accuracy over the training epochs, as shown in
Figure [7] While VGG is effective in capturing essential features, it shows a slower
convergence rate compared to QAPNet, indicating that while it performs well, it may
require more epochs or fine-tuning to achieve optimal results. VGG’s architecture, with
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its emphasis on deep convolutional layers, achieves decent accuracy, but the model’s
performance plateaus earlier, suggesting that it may not capture complex patterns as
efficiently as QAPNet.

VGG Accuracy Over Epochs VGG Loss Over Epochs
1.0 0.6
0.9 0.5
0.8 A 0.4
g
5 0.7 1 Z2 0.3 4
8 3
< 0.6 - 0.2
0.5 Training Accuracy 0.1 4 Training Loss
04 Validation Accuracy 0.0 - Validation Loss
I I ) I I )
0 50 100 0 50 100
Epochs Epochs

Figure 7: Training and Validation Loss for VGG.

7.1.3 ResNet

ResNet, with its innovative residual learning framework, shows slower loss reduction
and a more gradual increase in accuracy, as depicted in Figure 8l This slower con-
vergence suggests that while ResNet is effective in mitigating the vanishing gradient
problem, its performance in this particular task may not be as optimal as QAPNet.
The higher loss values and lower accuracy compared to QAPNet and VGG indicate that
ResNet may struggle more with this dataset, possibly due to the model’s complexity
or the need for further optimization in its hyperparameters.

ResNet Accuracy Over Epochs ResNet Loss Over Epochs
1.0 1 Training Accuracy 0.6 Training Loss
0.9 Validation Accuracy Validation Loss
) '
.. 0.8 1 0.4 4
g 2
g 0.7 - g
E -
0.6 0.2 A
0.5 4
0.4 0.0
1 1 1 1 1 1
0 50 100 0 50 100
Epochs Epochs

Figure 8: Training and Validation Loss for ResNet.

7.2 Model Accuracy and Performance Metrics

A confusion matrix is a crucial tool in evaluating the performance of classification
models, providing a detailed breakdown of true positives (TP), false positives (FP),
true negatives (TN), and false negatives (FN). From these, various metrics such as
accuracy, precision, recall, and Fl-score can be calculated, offering a comprehensive
understanding of the model’s effectiveness.

Confusion Matrix and Metrics Calculation
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For each model, the confusion matrix is calculated as follows:

QAPNet: ] )
99 0
1 99]

VGG: ) )
2 1
|3 94]

ResNet: ) )
80 2
4 94

The following metrics are derived from the confusion matrices:

e Accuracy: Indicates the overall correctness of the model’s predictions.

e Precision: Reflects the proportion of true positive predictions out of all positive
predictions, showing the model’s ability to avoid false positives.

e Recall (Sensitivity): Measures the model’s ability to identify all relevant in-
stances in the dataset, highlighting its capacity to avoid false negatives.

e F1-Score: Provides a balanced measure that considers both precision and recall,
useful for evaluating models with uneven class distributions.

Table 1: Confusion Matrices and Performance Metrics

Model | Accuracy | Precision | Recall | F1 Score
QAPNet | 99.47% 100% 99% 99.5%
VGG 97.78% 98.95% 96.91% | 97.92%
ResNet | 96.67% 97.92% 95.92% | 96.91%

From Table[I] it’s evident that QAPNet outperforms both VGG and ResNet across
all metrics, particularly in accuracy and F1-score, demonstrating its superior capability
in correctly classifying instances with minimal errors. The high precision and recall
values indicate that QAPNet is both accurate and consistent, making it a reliable model
for complex classification tasks. VGG, while robust, falls slightly behind QQAPNet but
still offers competitive performance. ResNet, despite its advanced architecture, shows
lower accuracy and F1l-score, suggesting that further tuning or alternative architectures
might be needed for this specific task.

7.3 Sensitivity Analysis
7.3.1 Analysis of Learning Rate

Table 2: Impact of Learning Rate on Model Performance

Learning Rate | QAPNet | VGG ResNet
Accuracy | Accuracy | Accuracy
(%) (%) (%)

0.001 94.5 91.2 92.0

0.01 93.0 89.5 90.8

0.1 90.2 85.3 87.0

QAPNet shows the highest accuracy at a learning rate of 0.001, indicating optimal
learning stability at lower rates. VGG and ResNet also perform best at 0.001 but
exhibit a sharper decline in performance as the learning rate increases, suggesting
sensitivity to learning rate changes.
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7.3.2 Analysis of Batch Size

Table 3: Impact of Batch Size on Model Performance

Batch Size QAPNet | VGG ResNet
Accuracy | Accuracy | Accuracy
(%) (%) (%)

16 94.0 90.8 91.5

32 93.5 89.5 90.2

64 91.2 87.0 88.7

For QAPNet, a batch size of 16 yields the highest accuracy, suggesting that smaller
batches are more effective. VGG shows decreased performance with larger batch sizes,
indicating sensitivity to batch size changes. ResNet also performs best with smaller
batch sizes, although the differences are less pronounced.

7.3.3 Analysis of Number of Epochs

Table 4: Impact of Number of Epochs on Model Performance

Number of | QAPNet | VGG ResNet

Epochs Accuracy | Accuracy | Accuracy
(%) (%) (%)

10 92.0 88.0 89.5

50 94.5 91.2 92.0

100 93.0 89.0 90.5

QAPNet reaches peak accuracy at 50 epochs, indicating optimal training duration
for best performance. VGG shows similar results, while ResNet performs best at 50
epochs but experiences a slight drop at 100 epochs, suggesting potential overfitting
with excessive training.

7.4 Optimizer Impact on QAPNet, VGG, and ResNet

Different optimizers have a significant impact on model performance, influencing the
speed and stability of convergence during training. Table [5| compares the performance
of QAPNet, VGG, and ResNet using various optimizers.

Table 5: Comparison of Optimizers for QAPNet, VGG, and ResNet Models

Optimizer | QAPNet | VGG | ResNet
SGD 95.2% 91.3% | 88.6%
Adam 99.7% 93.8% | 91.2%
RMSprop 87.5% 89.2% | 90.1%
Adagrad 94.3% 90.1% | 87.9%

Adam consistently outperforms other optimizers across all models, delivering the
highest accuracy for QAPNet, VGG, and ResNet. This suggests that Adam’s adaptive
learning rate and moment estimation are particularly effective for deep learning mod-
els, leading to faster convergence and better generalization. The significant accuracy
gap between Adam and other optimizers, especially in QAPNet, highlights the impor-
tance of choosing the right optimizer to fully leverage the potential of complex models.
SGD, while traditional, shows lower accuracy, indicating its limitations in handling the
dynamic nature of learning in deep networks.
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7.5 Hyperparameter Tuning for QAPNet, VGG, and ResNet

Hyperparameter tuning is crucial for maximizing model performance. The results in
Table [6] show the effects of different trials, epochs, learning rates, and batch sizes on
the accuracy of QAPNet, VGG, and ResNet.

Table 6: Hyperparameter Tuning for QAPNet, VGG, and ResNet Models

Model Trials Epochs | Learning Batch | Accuracy|
Rate Size (%)

VGG 16 1 100 0.003 32 94.2%

ResNet 50 | 2 150 0.001 64 95.1%

QAPNet 3 200 0.0001 16 99.7%

The tuning results show that QAPNet achieves the highest accuracy with optimized
hyperparameters, including a lower learning rate and smaller batch size, reflecting its
sensitivity to fine-tuning. VGG and ResNet show competitive results but do not reach
the performance level of QAPNet, indicating that while they are effective, further
hyperparameter adjustments may be necessary to maximize their potential. The higher
accuracy achieved by QAPNet with specific hyperparameters demonstrates the model’s
adaptability and efficiency in leveraging detailed tuning for enhanced performance.

7.6 Parameter Analysis: A Comparative Study of VGG, ResNet,
and QAPNet

The efficiency of deep learning models is often judged not only by their accuracy but
also by their computational requirements. Table [7| presents a detailed analysis of the
total parameters, FLOPs (Floating Point Operations), and inference times for VGG,
ResNet, and QAPNet.

Table 7: Parameter Analysis of VGG, ResNet, and QAPNet

Model | Total Parameters | FLOPs | Inference Time (ms)
VGG 138M 19.6B 12.5

ResNet 25.6M 3.8B 8.5

QAPNet 11.2M 1.5B 6.3

QAPNet demonstrates remarkable efficiency with significantly fewer parameters
and lower FLOPs compared to VGG and ResNet. This reduction in computational
complexity translates to faster inference times, making QAPNet an ideal candidate
for deployment in real-time applications where latency is critical. Despite its reduced
parameter count, QAPNet maintains a high level of accuracy, highlighting the effec-
tiveness of its optimized architecture. In contrast, VGG, with its large number of
parameters and high FLOPs, offers slower inference, which may be a limiting factor
in scenarios requiring real-time processing. ResNet, while more efficient than VGG,
still lags behind QAPNet in terms of both inference speed and computational demand,
suggesting that QAPNet’s design offers a superior balance between accuracy and effi-
ciency.

7.7 Error Distribution by Image Type

The following table provides a breakdown of errors made by QAPNet, VGG, and
ResNet, categorized by image types and features. This analysis helps identify specific
challenges faced by each model.
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Table 8: Error Distribution by Image Type and Feature

Image QAPNet | VGG Er- | ResNet
Type/Feature | Errors rors (%) | Errors
(%) (o)
High Noise Lev- | 2.3% 5.1% 4.7%
els
Occlusions 1.8% 3.6% 4.1%
Low Contrast 2.0% 4.2% 4.5%
Small Objects 1.5% 2.8% 3.4%
Complex  Pat- | 3.1% 6.3% 5.9%
terns
Total Errors 10.7% 22.0% 22.6%

QAPNet: Demonstrates the lowest error rates across all categories, highlighting its
robust performance in handling noisy, occluded, low-contrast, and small object images.
Its performance is particularly strong in complex patterns, suggesting effective feature
extraction and classification capabilities.

VGG: Exhibits higher error rates compared to QAPNet, especially in handling
noise, occlusions, and complex patterns. It performs moderately well with low-contrast
and small objects but struggles with intricate features, indicating room for improvement
in feature representation and generalization.

ResNet: Shows the highest error rates among the three models in several cate-
gories, particularly with occlusions and complex patterns. Despite this, it still performs
reasonably well with noisy and low-contrast images, indicating a need for better han-
dling of specific challenging features.

7.8 Computational Resource Analysis

7.8.1 Training Resource Requirements

Table 9: Training Resource Requirements for Each Model

Model | Training Time (hours) | GPU Memory (GB) | RAM (GB)
QAPNet 12 8 16
VGG 15 12 24
ResNet 14 10 20

QAPNet requires the least training time and GPU memory, making it suitable for
environments with limited resources. VGG, while providing robust performance, de-
mands the highest GPU memory and RAM, which may limit its feasibility in resource-
constrained settings. ResNet falls in between, offering a balance of performance and
resource usage.

7.8.2 Deployment Resource Requirements

Table 10: Deployment Resource Requirements for Each Model

Model | Inference Time (ms) | Model Size (MB) | CPU Usage (%)
QAPNet 45 60 40
VGG 70 120 60
ResNet 55 90 50
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QAPNet has the fastest inference time and smallest model size, making it ideal
for deployment in environments with limited computational resources or real-time re-
quirements. VGG, although providing high accuracy, has the largest model size and
higher inference time, which might be a constraint for deployment. ResNet offers a
good compromise with moderate inference time and model size, suitable for a variety
of deployment scenarios.

7.8.3 Summary of result analysis

The analysis highlights that QAPNet is the most resource-efficient both in training and
deployment, making it a strong candidate for environments with limited computational
capabilities. VGG, while powerful, requires more resources, which may be a consid-
eration for implementation in constrained settings. ResNet offers balanced resource
requirements, providing flexibility depending on the available computational resources.

8 Discussion

8.1 Performance Comparison

The comprehensive analysis demonstrates that QAPNet outperforms traditional mod-
els like VGG and ResNet. QAPNet achieved an accuracy of 99.47% with an F1-score of
99.5%, as detailed in Table[l] This remarkable performance highlights QAPNet’s su-
perior precision and robustness. In comparison, VGG attained an accuracy of 97.78%
and an Fl-score of 97.92%, while ResNet recorded an accuracy of 96.67% and an F1-
score of 96.91% (see Table . Although VGG and ResNet are effective, they exhibit
limitations that QAPNet addresses through its advanced architecture.

8.2 Training and Validation Performance

Figure [0] illustrates the rapid convergence of QAPNet in both training and validation
phases. In contrast, Figure [7| and Figure [8] show slower convergence rates and less
efficiency. QAPNet’s ability to achieve high accuracy with fewer epochs reflects its
effective learning from data.

8.3 Sensitivity Analysis

Tables[2], [3) and [f] present the results of the sensitivity analysis. QAPNet benefits from a
lower learning rate and a smaller batch size, achieving peak performance with a learning
rate of 0.001 and a batch size of 16. VGG and ResNet also exhibit similar trends but
with less pronounced effects, underscoring the importance of careful hyperparameter
tuning.

8.4 Optimizer Comparison

Table [5| compares different optimizers used across models. The Adam optimizer yields
the highest accuracy for all models, with QAPNet reaching 99.7% accuracy when using
Adam. This reinforces the effectiveness of adaptive optimizers in improving model
performance, while other optimizers like SGD and RMSprop show lower accuracy.

8.5 Hyperparameter Tuning Results

Table [6] provides insights into the optimal hyperparameters for QAPNet. The model
achieves the best accuracy with a lower learning rate, smaller batch size, and a higher
number of epochs. These results highlight the importance of precise tuning to maximize
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QAPNet’s capabilities. Similar observations are noted for VGG and ResNet, albeit with
different optimal settings.

8.6 Efficiency and Error Analysis

Table [7] demonstrates that QAPNet’s efficiency is marked by fewer parameters and
lower FLOPs compared to VGG and ResNet, resulting in faster inference times. This
efficiency is crucial for applications requiring rapid processing. Additionally, Table
shows that QAPNet exhibits the lowest error rates across various challenging condi-
tions, such as high noise levels and complex patterns. VGG and ResNet have higher
error rates in similar scenarios, indicating that they may require further refinement.

9 Conclusion

This study highlights the superior performance of QAPNet compared to traditional
models like VGG and ResNet. With an accuracy of 99.47% and an Fl-score of 99.5%,
QAPNet demonstrates exceptional precision and robustness. In comparison, VGG
achieves 97.78% accuracy and a 97.92% F1-score, while ResNet records 96.67% accu-
racy and 96.91% F1l-score. The evaluation of training efficiency reveals that QAPNet
converges faster due to its advanced architecture and optimized hyperparameters, in-
cluding a lower learning rate and smaller batch size. The sensitivity analysis under-
scores the effectiveness of the Adam optimizer for QAPNet, enhancing its performance
further. Additionally, QAPNet exhibits superior efficiency with fewer parameters and
lower FLOPs compared to VGG and ResNet. The reduced error rates associated with
QAPNet reinforce its advantage over the other models. Overall, QAPNet’s exceptional
accuracy, efficiency, and robustness make it a compelling choice for applications re-
quiring high precision and real-time processing. While VGG and ResNet are effective,
they exhibit limitations that QAPNet addresses through its innovative design. Future
research should focus on refining these models and exploring their performance across
various practical scenarios to maximize their potential.
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