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Abstract  

Reverse Polish Notation (RPN) is vital in evaluating machines' mathematical expressions. Further, 

it has many important applications. For more than 50 years, RPN Shunting Yard was utilized to 

evaluate mathematical expressions written infix notation. Most resources recommend using the 

Shunting yard algorithm to convert infix to RPN notation. In this paper, we proposed a variant 

shunting yard algorithm named Transfer Yard algorithm (TY) that transfers infix expression to 

RPN. The proposed algorithm has the advantage of using an array structure with minimum stack 

operations. The array structure is proved to have better performance in compassion of utilizing 

stack memory. Actually, utilizing array structure benefits of random access. In the proposed 

algorithm, we utilized the array to arrange operators’ precedency so we can perform transformation 

in an efficient way. We implemented the proposed algorithm and compared its performance with 

the Shunting Yard algorithm. To achieve a highly accurate comparison, we designed experiments 

that minimize any artifact that would affect the results. For that purpose, we repeated the 

experiment in the same environment more than thousand time and selected the lowest time to 

represent the execution time for those inputs. Furthermore, both algorithms are tested with variable 

inputs. Results show that the proposed transfer yard algorithm's performance is significantly better 

than the performance of the Shunting Yard algorithm.  

Keywords: Transfer Yard Algorithm; Shunting Yard Algorithm; Reverse Polish notation (RPN); 

infix notation; postfix notation. 

1. Introduction 
The mathematical expression is standard in programming language. Each programming language 
contains an expression or string. The mathematical expression has three formats: infix 
expression, postfix expression, and prefix expression. For example, the (+ a b) is a prefix; A B + is 
a postfix; A + B is an infix expression. Infix expression notation is a human-readable format but 
postfix and prefix is machine-readable format. The machine can easily evaluate the result 
according to this prefix and postfix format. The vision of this research is to evaluate the infix 
expression without parenthesis in mathematical postfix format with the minimum number of 
stack operations. Consider the following expression as an example with a polynomial expression 
of degree 2. 
The problem of evaluating mathematical expressions is a fundamental concern of computer 
science. There lies a great importance of efficiently evaluating the mathematical expressions in a 
computer program. As computer modeling and simulation became prominent, there is a huge 
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extent of dealing with mathematical equations in the computer program. Inmost of the scientific 
computation algorithms, initial estimates of the variables are iteratively refined to reach a 
solution to the formal mathematical problem. Mathematically complicated initial guess 
estimates are very common during the simulation, and there is usually a number of repeated 
guesses. This is also visible in most of the data analysis procedures using least square methods. 
Finally, a computer needs to evaluate complicated expressions to generate such variables. To 
evaluate the expression contained big mathematical equations, a simple and efficient evaluator 
is desired. 

 

Mathematical expressions evaluation, simplification, and transferring between different 

notations are fundamental in many applied and theoretical sciences. With many wonderful 

applications and wide popularity in the scientific community, Jan Lukasiewicz [1] invented Polish 

notation (PN) in 1924, which is commonly known as a prefix notation (Also called Polish prefix 

notation, Normal Polish Notation, Lukasiewicz notation, and Warsaw notation). Reverse polish 

notation (RPN) which is another name for polish postfix notation or postfix notation, becomes a 

complementary part of many computer science textbooks [2]–[6]. Moreover, it becomes the core 

of many technological applied techniques, such as scientific calculators, compilers, numerical 

methods, geometry, bioinformatics, genetic programming rules, etc [37-40]. Reverse Polish 

Notation (RPN) is a bracket-free notation that deduces the operator's presidency problem, makes 

expressions easier to be evaluated by machine, and proves excellent advantages over most other 

notations. 

 

Postfix solves the precedency problem. Therefore, comparing to infix notation, postfix 

notation is the middle way to final computation. Moreover, we can develop a straightforward 

computer algorithm to evaluate postfix expressions. On the other hand, infix notation was 

traditionally used in mathematics and all other scientific fields. Actually, Infix notation is closer 

to human logical thinking. Therefore, it leads to the necessity of having an excellent algorithm to 

convert infix notations to postfix notation and vice versa. The conversion between notations is 

vital to fill the gap between human logic and machine simplified computation. Table 1 shows 

examples of expressions written using infix notation and their equivalence expression in postfix 

notation. 

 

Table 1: Mathematical expressions written in infix and the equivalent postfix. 

Infix Postfix (RPN) 

3 + 5 * 2 – (6/3) 3 5 2 * + 6 3 / - 

5 + 4 * 3 / (1 – 5) ^ 2 ^ 3 5 4 3 * + 1 5 – 2 3 ^ ^ / + 

4 * (5 + 4/2) + 3^2 4 5 4 2 / + * 3 2 ^ + 

 

Shunting yard algorithm [7, 8] is one of the most populor solutions that convert infix 

expressions to postfix ones. It converts mathematical expression utilizing one stack and one queue. 

Shunting yard algorithm relies on stack operations (push and pop) heavily. Indeed, it performs 

many stack operations to accomplish infix to postfix conversion, where stack operation consumes 

many machine cycles and extra memory space. Thus, micro machines with limited memory can 

convert a limited size of mathematical expression. 
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The mathematical shunting yard algorithm parses numbers and operators in the form of infix 
expression to postfix expression with operator precedence. This grammar has extra stack 
operations to handle parentheses in this unoptimized form. The existing approach evaluates the 
mathematical expression which handles polynomial and matrix without operator precedence. 
The existing postficaptor contains a small gap of stack operations. The investigator will design a 
new mathematical infix to the postfix expression evaluator with minimum stack operations which 
can expand the mathematical expression in postfix easily. The mathematical grammar of this 
proposed approach can handle the polynomial and matrix format expression without operator 
precedence. The mathematical postficaptor contains two innovative ideas such as transfer yard 
and empty parentheses. Empty parentheses is employed to eliminate excess stack-push 
operation in shunting-yard algorithm and transfer yard is utilized to change shunting-yard 
grammar without parentheses. The designed approach is post-fix equivalent of the existing 
shunting yard which can ensure correctness [41]. 
In programming, a set of rules (grammar) is used to define a language. There are many 
programming languages, text based scripting languages (PHP, Perl, JavaScript) or markup 
languages (HTML, XML). Some languages are tree based visual languages (Scratch, IBasic, 
AppInventor) where programming is done by creating and assembling blocks together. All these 
languages consist of a set of valid tokens. Instructions can be composed using these tokens. 
However, the composition must comply with the rules defined by the grammar. When a code is 
written in a programming language, it is usually first checked in the grammar according to a 
given set of rules. If the code complies with the grammar rules, it is translated into machine 
code necessary to be executed. Otherwise, a compilation error is produced, listing unexpected 
tokens and expected ones. 
Input expressions are often given in infix format where operators are situated between 
operands: A + B. The Operator Precedence is determined by a precedence hierarchy defined in 
the set of grammar rules. Output expressions may be given in postfix format where operators 
are situated after their operands: I: A B +. It is common to use operator stack stack for parsing 
infix expressions. On the parsing process, the stack saves operators and parenthesis. Output 
stack saves postfix form operands and their operators. There are different implementations of 
the algorithm with and without operator stack and with or without output stack. Some 
implementations are more efficient than others according to a defined usage scenario. The one 
with the output stack is the most memory demanding approach [41]. 
 

 

 

2. Related works 

Since Shunting yard algorithm was appeared [8], many enhancements and extensions were 

suggested [9, 10]. Further, the algorithm and its enhancements were utilized in many applications 

and fields such as PKR by Rastogi et al. [9]. The PKR algorithm applies two additional rules for 

operators' comparison, where accordingly, the algorithm decides to keep the operator inside the 

stack or pop it out to the output. For example, assume that we have the following operation as part 

of an expression (… A * B - C ….), after pushing the subtract operator to the stack, the algorithm 

scans the last two items in the stack where they are '-' and '*',. Then, according to the first rule, the 

algorithm pops and implements multiplication. Krtolica et al. extend shunting yard algorithm 
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usability by few steps to make shunting yard algorithm accepting transferring comma-separated 

multi parameters functions [10]. Tiwari et al. introduce a multi-threaded algebra system, where 

they use RPN and shunting yard in the expression evaluation part [11]. 

 

Many applications, across various industries, heavily rely on the Reverse Polish Notation 

(RPN) and the Shunting Yard algorithm as fundamental components of their computational 

processes[12]–[17]. These algorithms have proven to be incredibly efficient and reliable for 

carrying out complex mathematical operations and logical evaluations.  

One of the earliest instances of the RPN being utilized was in the first calculator ever 

designed by Hewlett-Packard in 1968[18]. This groundbreaking calculator ingeniously employed 

the RPN methodology to effortlessly perform all the necessary calculations. Shortly after, in 1972, 

Hewlett-Packard released the remarkable HP-35, a handheld scientific calculator that 

revolutionized the field[4]. The HP-35 is widely regarded as the first portable scientific calculator.  

The significance of RPN extends far beyond calculators. It plays a crucial role in the field 

of computer science, specifically in compilers. Compilers, which are essential tools for converting 

high-level programming languages into machine code, often adopt the RPN as an initial step to 

transform infix notations into a more manageable format. This conversion allows for smoother 

processing and optimization of the code.  

RPN's versatility is further exemplified in its application within the Postscript language. 

Postscript, a programming language primarily used for describing and rendering text documents, 

incorporates RPN as a key component. This integration enables the representation of complex 

document structures and enhances the overall readability and understandability of the syntax.  

Beyond computer science and software engineering, RPN has also found its place in 

business domains. Avarm[19], a notable authority in the field, proposes a comprehensive approach 

to formalizing business rules using computational formulas. In this context, both RPN and XML 

are employed as foundational principles, ensuring that these formulas are intelligible to both 

humans and machines. This exemplifies how RPN can bridge the gap between human-readable 

and machine-readable representations, offering a practical solution for various business 

applications.  

In conclusion, the extensive utilization of the Reverse Polish Notation (RPN) and the 

shunting yard algorithm spans across a wide range of applications and industries. From calculators 

and compilers to programming languages and business domains, RPN consistently serves as a 

robust and efficient methodology for performing complex operations and facilitating clear 

communication between humans and machines. Its time-tested reliability and versatility continue 

to make it an indispensable tool in the ever-evolving world of computing and technology. 

 

Furthermore, Avarm is conducting research to explore the neural underpinnings of how 

hierarchical structures are constructed at different levels of hierarchy within the cognitive domains 

of language and mathematics. RPN (Reverse Polish Notation) is also being used in cognitive brain 

sciences. For example, Makuuchi et al. are employing RPN to elucidate the precise nature of 

mental arithmetic [20]. 

 

 

Furthermore, biology simulation and bio-inspired technologies are other examples of reverse 

polish notation applications. Reverse polish notation conditional expressions have been used in 

each production role, and Lindenmayer systems inspired a new method to develop genetics 
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generated by neural networks; Neural networks are used to control robots of spiders to follow 

compass [21]. Dhenakaran studied RPN utilization in Cryptography using RPN [22]. Dhenakaran's 

work suggested scramble cryptography by extending reverse polish notation to use characters for 

both operations and operands. This algorithm reserves few characters as operations and the 

remaining as operands. RPN was used to test paralleled Genetic Programming (GP) operations. A 

reverse polish notation interpreter and randomized sub-selection form were used to test 22 peta 

GP operations/day on parallelized GPU using 14 workstations. The measured performance was 

marvelous; it is twenty times the best speed of the fastest previously published GP and more than 

sixty times that of the best-reported performance of the next fastest genetic programming on a 

single GPU system [23]. Zeng et al. [24] proposed auto programming for numerical data, 

"Remnant-standard-Deviation guided Gene Expression Programming (RD-GEP)." They presented 

and studied K-expression to reverse polish notation code generation without expression tree 

construction algorithm (K2RPN) and remnant-standard-deviation based fitness evaluation method 

in RD-GEP. Furthermore, RPN has applications in Datamine and data reverse engineering 

applications. Vanderbeek [25] suggested using RPN instead of infix notation in education. 

Vanderbeek recommended RPN as a teaching tool to help build a solid computational foundation. 

He suggests that RPN forces a shift in responsibility for operations order from the person 

performing the calculation to the person notating the calculation. Since each operation given in 

RPN creates implied parentheses around the two previous values, the skill of translating infix to 

RPN becomes essential. Thus, once an expression is correctly written in RPN, it can be quickly 

calculated with a low probability for error [26].  

 

An extension of the learning classifier system, XCS is used to recombine and mutate classifiers 

[27], [28]. RPN expressions and stack-based Genetic Programming represent XCS classifier 

conditions. In contrast with other extensions of XCS involving tree-based Genetic Programming, 

the applied representation produced conditions that are linear programs, interpreted by a virtual 

stack machine (similar to a pushdown automaton), and recombined through standard genetic 

operators [27]. One solution to generate Catalan numbers is the reverse polish method, in which 

the sum would be presented as a string [29]. In fact, the reverse polish string can be formed for 

any product simply by deleting all left parentheses and substituting X for all right parentheses. 

Therefore, the string (a((bc)d)) has reverse Polish string abcXdXX [29].   

 

The Bioinformatics field utilizes RPN to extract discriminant rules from oligopeptides for protease 

proteolytic cleavage activity prediction. The extract discriminant algorithm is developed using 

genetic programming. The algorithm has three essential components: min-max scoring function, 

RPN, and minimum description length [36] The min-max scoring function is developed using 

amino acid similarity matrices to measure the similarity between an oligopeptide and a rule, which 

is a complex algebraic equation of amino acids rather than a simple pattern sequence. The Fisher 

ratio is then calculated on the scoring values using the class label associated with the oligopeptides. 

The discriminant ability of each rule can therefore be evaluated. The use of RPN makes the 

evolutionary operations more straightforward and thus reduces the computational cost [30]. In 

[31], RPN was utilized to predict congestive heart failure timing errors asynchrony. In this study, 

the robustness is measured by an iterative program based on RPN to test the degree of asynchrony 

derived from an individual segment analysis. 
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In geometry, RPN is utilized to solve the convex polygon triangulation problem. Stanimirović et 

al. Presented an algorithm for convex polygon triangulation based on the reverse Polish notation 

[32]. They successfully showed how to apply the reverse Polish method in this area of symbolic 

computation. 

 

Terris et al. used RPN to create a functional calculator, where python programming language and 

object-oriented paradigm were used [33]. Krtolica et al. also suggested a symbolic derivation 

method without a need for expression trees [34]. The expressions in RPN have unary pair functions 

and their compositions. These types of manipulation can be applied to symbolic computation areas, 

such as symbolic differentiation, polygon triangulation, elimination of redundant parenthesis [34]. 

 

Gruber et al. propose a new standard form for regular expressions. Reverse polish notation length 

was used with the alphabetic width of a regular expression as a measurement [35]. They showed 

that every regular alphabetic expression with n could be converted into a non-deterministic finite 

automaton with ǫ-transitions of size at most 42/5n + 1, which results in an optimal bound. 

 

3. Shunting Yard Algorithm 

 

The Shunting Yard is a classic CS algorithm developed by Dr. E. W. Dijkstra in the early 1960s. 

It interprets a mathematical expression (usually in infix notation) and creates a reverse polish 

notation equivalent (postfix) while preserving operator precedence. The Shunting Yard algorithm, 

which is also known as Reverse Polish Notation (RPN), utilizes one stack and one output queue to 

transfer infix notation to postfix notation.  Algorithm (1) shows the pseudocode for the Shunting 

Yard algorithm. If we consider the machine level when using push and pop operations, we can see 

that when we use push, we first need to load data from the stack and then compare it. In contrast, 

when we use pop, we compare first and then retrieve the data from the stack. This means that using 

stacks requires two steps, while using arrays allows for a more straightforward process, as arrays 

allow for direct comparison of their members at the machine level without the need for additional 

steps. Furthermore, the pop and push disturb the cpu pipeline. Thus, the cost of array access  

instructions is less than the cost of pop and push instruction.  

 

4. The Proposed Algorithm: Transfer Yard 

The proposed Transfer Yard algorithm utilizes an array to accomplish infix to postfix Transfer. 

Unlike the Shunting Yard algorithm, which is mainly designed to utilize the stack, the proposed 

algorithm utilizes only the stack for pre-brackets operation. Indeed, the proposed algorithm 

benefits from using an array through elements' direct access. For example, accessing an element 

in location n from the top of the stack requires n pop and push operations. While utilizing an array, 

accessing an element in position n in the array requires only one operation. 

Moreover, the proposed algorithm uses operations position in the utilized array to indicate its 

presidency. Therefore, the proposed algorithm increases the performance by benefiting from the 

direct access of arrays. Algorithm 2 shows the pseudocode for the proposed algorithm where a 

Boolean array and in-place stack are utilized.  

In-place stacks use infix expressions with tokens and minimum space for stack operations. This 

approach helps to reuse lost and unused memory for stack operations.  
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4. Implementation and Evaluation   

 

To evaluate the proposed algorithm, we implemented it in two different environments utilizing c# 

and python. For a comparison purposes, we also implemented Shunting Yard as shown in 

Algorithm 1. We utilized Microsoft Visual Studio 2022 Professional. Microsoft Visual studio has 

been installed on personal computer with Intel Core™ i7-12700, 2.11GHz processors, and 16GB 

RAM. The input for the proposed Transfer Yard and Shunting Yard  algorithm are infix 

expressions. The infix expressions are generated randomly with variable lengths.  The first row of 

Table 1 shows the generated infix sizes (x); the size of expressions length ranges from 16 to 2024 

character. The same expression is converted to postfix utilizing both algorithm and the running 

time was measured. To eliminate and artifact that affect the measured value, we conducted the 

following steps: 

1- We stopped and disabled all unnecessary tasks and services  

2- Disconnect the computer from the Internet and stopped all communication services. 

3- To ensure minimum overheads, we developed a Console application for implement 

Shunting Yard and the proposed Transfer Yard algorithms. 

4- The algorithms is executed 1500 times for each expression and we selected the minimum 

measured execution time to represent execution time for this expression. 

5- Step 4 is repeated 500 times, and then the minimum execution time from all results is 

considered the execution time. Moreover, the standard deviation for all measured results 

were calculated.  

 

The measured execution time for each expression size is shown in Table 1. The standard deviations 

for all experiments were less than 0.1. Figure 1 depicts the measured time for both algorithm with 

respect to expressing size.   

 

To parametrize the comparisons between the two algorithm, we defined two performance measures 

Time% and performance. Which defined as 

 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =  
shunting yard  time

Transfer Yard time
× 100% 

(1) 

 

 

 

and 

 

𝑇𝑖𝑚𝑒 % =
Transfer Yard time

Shunting yard  time
× 100% 

(2) 

 
 

The two performance measures have been calculated for each expression size. Figure 2 shows the 

Performance and Time% and proves the superiority of the proposed algorithm. 
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Algorithm 1: The pseudo code for Shunting Yard algorithm. 

 

 

Algorithm 1: Shunting Yard  

------------------------------------------------- 

Input:  IE: is an expression written in infix order 

Output: PE: is an expression written in Postfix order 

-------------------------------------------------- 

1 begin {main} 

2  t: is a token in the IE expression 

3 St: is temporary stack 

4 while IE has more token then 

5  t = read token from IE 

6  if isOperand(t) then 

7   PE.enqueue(t) 

8  else if t is left parenthesis then 

9   St.push(t) 

10  else if isOperator(t) then 

11   if precedence(t) > precedence (St.top()) then 

12    St.push(t) 

13   Else  

14    repeat 

15     PE.enqueue(St.pop()) 

16  until (St.top() is left parenthesis) Or 

isEmpty(St) 

17  else if t is right parenthesis then 

18   repeat 

19    PE.enqueue(St.pop()) 

20   until (St.top() is left parenthesis) 

21 end {while} 

22 while (!isEmpty(st)) 

23  PE.enqueue(St.pop() 

24 end {while} 

25 end {main} 
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         Algorithm 2: The pseudo code for proposed Transfer Yard algorithm.  

Algorithm 2: Transfer Yard Algorithm (TYA) 

------------------------------------------------- 

Input:  IE: is an expression written in infix order 

    x : the index to start parsing from 

Output:  PE: is an expression written in Postfix order 

-------------------------------------------------- 

1 begin {main} 

2  tokens : is the list of tokens in the IE start from x  

 to the end of expression 

3 list_ops : An array of operations ordered by precedency 

4 op  : The index of current operation  

5 prop  : The highest precedency appeard till now 

6 output : the subexpression in Postix order 

7 prop =0 

For (i = x to tokens.length) 

8  t = tokens(i) 

op = 0 

9  if t is open paranthesis then 

10   i++ 

11   output.append(TYA(i, IE) ) 

12  else if t is close parenthesis then 

13   for (k = 4 to 2 step -1) 

14    if list_ops[prop] != ‘ ‘ then 

15     PE.append(list_ops[prop]) 

16     list_ops[prop] = ‘ ‘ 

17   x = i 

18   return output 

19  else if isdigit(t) then 

20   output.append(t) 

21  else //t is an operation 

22   if t == ‘/’ or t == ‘*’ then op = 3 

23   else if t == ‘+’ or t == ‘-’ then op = 2 

24   else if t = ‘^’ then op = 4 

25   if prop = 0 then list_ops[op] = t 

26   else if list_ops[op] <= list_ops[prop] then 

27    while (op <= prop) 

28     if list_ops[prop] != ‘ ‘ then 

29      output.append(list_ops[prop]) 

30      list_ops[prop] = ‘ ‘ 

31     prop-- 

32   list_ops[prop] = t; 

33   prop = op 

34 end {For} 

35 for (k = 4 to 2 step -1) 

36  if list_ops[prop] != ‘ ‘ then 

37   output.append(list_ops[prop]) 

38  prop-- 

39 End {for} 

40 PE = output 

41 return PE 

42 end {main} 
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Table 2: Experimental results for Shunting Yard and the proposed Transfer Yard algorithm. 

Expr size (x) 16 32 64 128 256 512 1024 2048 

Expr size (2^x) 4 5 6 7 8 9 10 11 

Shunting yard 

Alg. 5.55 10.16 20.27 40.08 80.19 161.19 321.28 695.66 

Transfer Yard 

Alg. 4.64 6.59 14.48 27.67 54.31 107.55 213.29 460.32 

Time % 83.51% 74.66% 71.45% 69.05% 67.33% 66.72% 66.39% 66.17% 

Performance 119.7% 133.9% 140.0% 144.8% 148.5% 149.9% 150.6% 151.1% 

 

 
Figure 1: Measured time (MS) for Shunting Yard and Transfer Yard with respect to expression size. 

 
Figure 2: Time % and Performance for the propose Transfer Yard performance with respect 

to shunting Yard algorithm. 
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5. Conclusion  

This paper has proposed a novel algorithm that is an alternative to Shunting yard algorithm. The 

proposed algorithm reduces the utilization. It actually utilizes an array structure in storing the 

operations and compare operator precedency. The proposed use random access memory instead of 

stack memory. Actually, the proposed algorithm has boosted performance by replacing heavy 

stack and most stack operations with Boolean array. The Boolean array is faster to test if an 

operator is already passed or not, and to drift an operator to its presidency index directly without 

the overhead of pushing and popping operations. The proposed algorithm in implemented utilizing 

two programming languages to measure its performance.  In addition, the known shunting yard 

algorithm was implemented in the same manner.  The results of the proposed algorithm outperform 

the result of shunting yard algorithm. Finally, we emphasize that a paralyzed and a hardware 

implementation of the proposed algorithm will be more efficient and boost results. 

 

 

References: 

[1] Wikipedia - The free encyclopedia, "Reverse Polish notation." 2021, [Online]. Available: 

http://en.wikipedia.org/wiki/Reverse_Polish_notation. 

[2] J. Dixon, A Brief History of the Computer Sequencer and DAW, Quick Star. 2015. 

[3] J. Levine, Flex & Bison: Text Processing Tools. "O’Reilly Media, Inc.,” 2009. 

[4] S. Lempp, “Kunen Kenneth, The Foundations of Mathematics, Studies in Logic, 

Mathematical Logic and Foundations, vol. 19. College Publications, London, 2009, vii+ 

251 pp.,” Bull. Symb. Log., vol. 22, no. 2, pp. 287–288, 2016. 

[5] A. S. Tanenbaum, Structured computer organization. Pearson, 2006. 

[6] T. K. Enterprises, Everything you’ve always wanted to know about RPN but were afraid to 

pursue, comprehensive manual for scientific calculators. T.K. Enterprises, 1976. 

[7] L. Null and J. Lobur, The essentials of computer organization and architecture. Jones & 

Bartlett Publishers, 2014. 

[8] E. W. Dijkstra, “An ALGOL 60 translator for the x1,” Annu. Rev. Autom. Program., vol. 3, 

pp. 329–345, 1963. 

[9] R. Rastogi, P. Mondal, and K. Agarwal, “An exhaustive review for infix to postfix 

conversion with applications and benefits,” in Computing for Sustainable Global 

Development (INDIACom), 2015 2nd International Conference on, 2015, pp. 95–100. 

[10] P. V Krtolica and P. S. Stanimirović, “On some properties of reverse Polish notation,” 

Filomat, pp. 157–172, 1999. 

[11] A. Tiwari, A. Gupta, and V. K. Singh, “Developing a Multi-threaded Algebraic Application 

using Mathematical Pseudo Language for Efficient Computing,” 2013. 

[12] M. Semenov, Y. S. Colen, J. Colen, and A. Pardala, “An Introduction to the Edumatrix Set 

and Its Didactic Capabilities,” Res. Math. Educ., vol. 23, no. 1, pp. 47–62, 2020. 

[13] D. AROTARITEI, M. TURNEA, C. IONITE, and M. ROTARIU, “Artificial intelligence 

applied to model the sulphur absorption process-a possible application in cure with 

sulphurous mineral water,” 2020. 

[14] S. Gocht and J. Nordström, “Certifying Parity Reasoning Efficiently Using Pseudo-Boolean 

Proofs,” 2021. 

[15] G. I. Shivacheva and K. B. Yankov, “Graphical simulation of functions,” in IOP Conference 

Series: Materials Science and Engineering, 2021, vol. 1031, no. 1, p. 12052. 

[16] B. Zhang et al., “Power User Taging System Based on Micro-service,” in IOP Conference 

11



Series: Earth and Environmental Science, 2021, vol. 632, no. 4, p. 42088. 

[17] M. Chodacki, “Feedback Shift Registers Evolutionary Design Using Reverse Polish 

Notation,” in Asian Conference on Intelligent Information and Database Systems, 2019, pp. 

475–485. 

[18] D. M. Kasprzyk, C. G. Drury, and W. F. Bialas, “Human behaviour and performance in 

calculator use with Algebraic and Reverse Polish Notation,” Ergonomics, vol. 22, no. 9, pp. 

1011–1019, 1979, doi: 10.1080/00140137908924675. 

[19] V. AVRAM, “A Formalization Way For Computational Formulas Within Business Rules 

Defined In Sik Repositories,” 2014. 

[20] M. Makuuchi, J. Bahlmann, and A. D. Friederici, “An approach to separating the levels of 

hierarchical structure building in language and mathematics,” Phil. Trans. R. Soc. B, vol. 

367, no. 1598, pp. 2033–2045, 2012. 

[21] M. E. Palmer, “Evolved neurogenesis and synaptogenesis for robotic control: the L-brain 

model,” in Proceedings of the 13th annual conference on Genetic and evolutionary 

computation, 2011, pp. 1515–1522. 

[22] S. S. Dhenakaran, “Employing Reverse Polish Notation in Encryption,” Int. J. Comput. Sci. 

Inf. Secur. No. 0975-3826), 2011. 

[23] W. B. Langdon, “A Many Threaded CUDA Interpreter for Genetic Programming.,” in 

EuroGP, 2010, pp. 146–158. 

[24] T. Zeng, Y. Liu, X. Ma, X. Bao, J. Qiu, and L. Zhan, “Auto-programming for Numerical 

Data based on Remnant-standard-deviation-guided Gene Expression Programming,” in 

Natural Computation, 2009. ICNC’09. Fifth International Conference on, 2009, vol. 3, pp. 

124–128. 

[25] G. Vanderbeek, “Order of Operations and RPN,” MAT Exam Expo. Pap., p. 46, 2007. 

[26] S. Okamura, I. Matushima, and Y. Yano, “The effective learning support strategy for self 

learning with problem-based learning,” in Creating, Connecting and Collaborating through 

Computing, 2005. C5 2005. Third International Conference on, 2005, pp. 150–157. 

[27] P. L. Lanzi, “XCS with stack-based genetic programming,” in Evolutionary Computation, 

2003. CEC’03. The 2003 Congress on, 2003, vol. 2, pp. 1186–1191. 

[28] P. L. Lanzi and M. Colombetti, “An extension to the XCS classifier system for stochastic 

environments,” in Proceedings of the 1st Annual Conference on Genetic and Evolutionary 

Computation-Volume 1, 1999, pp. 353–360. 

[29] F. JARVIS, “Catalan Numbers,” Math. Spectrum", number={36}, Vol. pages={9-11}, 

year={2003}. 

[30] S. Porwal, Y. Chaudhary, J. Joshi, and M. Jain, “Data compression methodologies for 

lossless data and comparison between algorithms,” Int. J. Eng. Sci. Innov. Technol. Vol., 

vol. 2, pp. 142–147, 2013. 

[31] C. Van Eyll, M. F. Rousseau, J. Etienne, L. Stoleru, A. Charlier, and H. Pouleur, “High 

performance regional wall synchrony analysis in severe systolic dysfunction: a new 

program based on reverse Polish notation,” in Computers in Cardiology 1995, 1995, pp. 

509–512. 

[32] P. S. Stanimirović, P. V Krtolica, and R. Stanojević, “A non-recursive algorithm for 

polygon triangulation,” Yugosl. J. Oper. Res., vol. 13, no. 1, pp. 61–67, 2003. 

[33] B. Terris, P. Toussaint, S. Varga, and D. MacQuigg, “A calculator program using Object 

Oriented Data Structures,” Instructor, 2007. 

[34] P. V Krtolica and P. S. Stanimirović, “Reverse polish notation method,” Int. J. Comput. 

12



Math., vol. 81, no. 3, pp. 273–284, 2004. 

[35] H. Gruber and S. Gulan, Simplifying regular expressions: A quantitative perspective. 

Universitätsbibliothek, 2012. 

[36] Yang, Zheng Rong, et al. "Searching for discrimination rules in protease proteolytic cleavage 

activity using genetic programming with a min-max scoring function." Biosystems 72.1-2 

(2003): 159-176. 

[37] Peretiaha, M., Poltavets, M., Smelyakov, K., & Chupryna, A. (2023). SYNTACTIC 

ANALYSIS OF ARITHMETIC EXPRESSIONS FOR OPTIMIZING THE OPERATION 

OF PROGRAMS. Grail of Science, (26), 215-229. 

[38] Bochenek, B., & Tajs-Zielińska, K. (2023). TABASCO—Topology Algorithm that Benefits 

from Adaptation of Sorted Compliances Optimization. Applied Sciences, 13(19), 10595. 

[39] Albazar, H. (2020). A new automated forms generation algorithm for online assessment. 

Journal of Information & Knowledge Management, 19(01), 2040008. 

[40] Al Bazar, H., & Abdel-Jaber, H. (2020). A Developed Uncapacitated Scheduling Algorithm 

of Building Timetables for Different Exam Kinds. 

[41] Wei, G. (2023). Metaprogramming Program Analyzers (Doctoral dissertation, Purdue 

University). 

 

 

 

13


