
1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

14	

15	

16	

17	

18	

19	

20	

21	

22	

23	

24	

25	

26	

27	

28	

29	

30	

31	

32	

33	

34	

35	

36	

37	

38	

39	

40	

41	

42	

43	

44	

45	

46	

47	

48	

49	

50	

51	

52	

53	

54	

55	

56	

57	

60	

61	

62	

63	

64	

65	

A multi-objective optimization technique for scheduling real-time IoT

Applications in Fog Computing Using Approximate Computations and TOPSIS

Rishika Mehta1, Jyoti Sahni2, Shilpa Mahajan3, Kavita Khanna4

1,3The NorthCap University, Gurugram, India
2Victoria University of Wellington, New Zealand

4Delhi Skill and Entrepreneurship University, New Delhi, India
1rishikamehta10@gmail.com, 2jyoti.sahni@ecs.vuw.ac.nz, 3shilpa@ncuindia.edu, 4kavita.khanna@dseu.ac.in

Abstract: In the last decade, fog computing arose as a distributed computing paradigm to handle latency-sensitive real-time
IoT applications in an effective way. By utilizing fog resources, improved performance such as timely service provisioning,
optimal energy usage, decreased network load, etc. can be achieved. Fog resources usually have finite computational
capacities. Conversely, Internet of Things (IoT) applications are getting complicated in addition to being computationally

intensive, necessitating a specific degree of QoS in stringent time restrictions. In real-time, many times it is preferable for an
IoT application to complete its execution by its deadline by generating an imprecise outcome instead of yielding a delayed
accurate output. We study the placement of real-time IoT applications in a heterogeneous fog infrastructure by applying
approximate computations. In this technique, we considered that if a constituent task yields an inaccurate outcome, the error
may not only be limited to its closest predecessor tasks but may also proliferate to the succeeding workflow tasks, thereby,
affecting the overall result of the workflow. We simultaneously study the impact of error proliferation on energy consumption
of fog resources. The proposed workflow orchestrating model is compared to a baseline technique and a state-of-the-art policy,
where the effects of partial computations are studied under varying values of proliferation probability of input error and result

precision threshold. The simulation findings reveal that the proposed technique outperformed both policies in terms of the
number of deadline misses, energy savings, schedule hole utilization, and overall result precision.

Keywords: IoT workflow, Error proliferation, Topsis, Real-time scheduling, Partial computations

1. Introduction

The Internet of Things (IoT) envisions to make human life more intelligent and automated [1]. An expeditious

increase in the count of IoT devices is not unanticipated in the near future. The initial IoT phases have seen an
immense upsurge in IoT data production which is further likely to increase exponentially as a vast number of

everyday objects, including, mobile devices, actuators, and sensors are linked to the Internet, producing at an

astounding rate an unparalleled amount and variety of data. Cloud resources may be inadequate to efficiently

process such large volumes of data within strict time limits [2-3].

This generates the need to utilize local computing resources to meet IoT requirements. Essentially, fog computing

has emerged to bridge this void [4]. Scheduling IoT applications on fog resources enhances performance metrics,

including timely service provisioning, decreased network load, and optimized energy consumption. Fog

computing supplements cloud computing by providing an extra computing infrastructure layer between Internet

of Things devices and cloud resources. Such an interconnected infrastructure is termed a fog-integrated cloud [5].

IoT data often requires processing within strict time constraints. The accuracy and utility of the results in such a

real-time scenario rely not only on their result quality but also on timeliness [6-7]. Generally, real-time complex

applications comprising various constituent tasks with antecedence and data constraints, process the IoT data. In
other words, every job forms a workflow, wherein the outcome of a task is utilized by subsequent tasks of the job

[8]. Only when all its predecessors have been completed can a child task begin to be executed. Usually, every job

is associated with a fixed deadline by which all of its tasks must be finished. A delayed result would be futile

otherwise. As a result, it is preferable for an application to give an inexact outcome by its deadline as opposed to

an accurate delayed outcome. It is to be noted that the terminologies workflow, job, and application are used

interchangeably.
Considering this, Lin et al. presented an approximate computations strategy, where, a workflow is permitted to

produce in-between and inexact results of lower yet acceptable quality by its deadline [9]. In this technique, each

constituent task is presumed to be monotone which means that every task is divided into a mandatory portion that

generates an inexact result of the lowest permissible quality, and an optional portion that improves the outcome

of the mandatory portion [29]. For a task to yield a satisfactory result, the task's mandatory portion must be
finished. If a task's optional portion is permitted to be processed for a prolonged period, the task's result precision

gets further raised (e.g. video streaming and statistical guesstimation) [10]. When a parent task yields imprecise

results, it is imperative to analyse the input error proliferation impact from parent to child tasks because of the

data interdependence among the constituent tasks of the workflow.

Majority of the research studies consider that error in parent’s output is always handled by immediate child tasks

[15,18]. Only a few research studies consider the case where error would proliferate to subsequent tasks of the

workflow [4]. Subsequently, the impact of approximate computations on computation time of the workflow tasks

and energy consumption of fog computational resources need to be examined simultaneously. Furthermore, no

IJCDS 1571064448

1

mailto:2jyoti.sahni@ecs.vuw.ac.nz
mailto:3shilpa@ncuindia.edu
mailto:kavita.khanna@dseu.ac.in

Multi Criteria Decision Making (MCDM) technique is utilized in the literature for selecting computational

resources when workflow tasks are monotone in nature. This applies not only to fog environments but also to

other distributed computing environments. Consequently, the effect of error proliferation among the tasks of the

workflow in addition to its effect on the computation time of every impacted task and energy consumption of each

computational resource should be examined while taking the limited computation capabilities of fog resources
into consideration.

Towards this end, we propose the placement of various real-time jobs in fog computing by utilizing approximate

computations. The primary contributions of our proposed policy are as follows:
a) The workflows are first ranked based on Least Deadline First technique. The constituent tasks are further

prioritized on the basis of higher value of Expected Processing Time which considers both computation

and communication expenses.

b) The computing instances are ordered based on Expected Finish Time, Energy Consumption, as well as

Computational Expense by utilizing Multi Criteria Decision Making technique - Topsis.

c) The best fit idle slot utilization technique is considered to place constituent tasks in the available schedule

holes thereby considering the effect of error proliferation on the computation time of every influenced

task and energy consumption of each computational resource.

d) The proposed technique is contrasted with a Topsis-based baseline strategy and a state-of-the-art strategy.

Experimental outcomes establish that the proposed technique yields considerably enhanced results in

comparison to both policies.

The paper is arranged into six sections: Section 2 discusses some of the latest research works on approximate

computations. Section 3 describes the fog computing infrastructure, the workload model, the approximate

computations and error proliferation model as well as the energy consumption model. The presented

placement methodology is presented in Section 4. Section 5 discusses the utilized assessment parameters and

examines the simulation outcomes. The paper is summarized and concluded in Section 6, providing insights

for further research.

2. Related work

A number of works on approximate computations-based workflow scheduling in non-fog environments have been

proposed in the literature which are as follows:

Feng and Liu [10] devised a real-time placement methodology that makes use of imprecise computations. The

authors demonstrated how input error influenced the static placement of a linear deadline-bound job by scheduling

it on a single processor. The mandatory as well as optional portions of the predecessor task were prolonged to

address and fix the error generated by the parent tasks. That is, the scenario in which an input error could be passed

on to the subsequent child tasks of the workflow was overlooked.

A heuristic for placing real-time jobs with imprecise computations on multiple processor systems was

presented by Ravindran et al. [11]. The authors proposed a simplistic approach to compute collective output error
of exit tasks with the goal of increasing the result quality while accounting for limited computation capability and

energy consumption of fog resources. The authors utilized imprecise computations technique and input error but

error proliferation and its influence on the execution time of every constituent task was not taken into

consideration.

Esmaili et al. [12] introduced a heuristic approach for scheduling time-sensitive tasks by utilizing

imprecise computations on multiple processors. Even with limited energy resources, the proposed approach was

able to find optimal schedules. This proposed strategy was compared with a Mixed Integer Linear Program where

in a few instances, the proposed strategy achieved the same QoS values as those yielded by the latter approach.

While both strategies considered the implications of input error when the results produced by the parent task were

imprecise, the idea behind both was that the input error would invariably be offset by the extension of every

impacted predecessor task's mandatory component. Therefore, both strategies failed to consider how error from

the entry task might proliferate to the exit task.
Stavrinides and Kratza [13-18] presented the placement of multiple real-time jobs with partial

computations. These works considered the impact of input error on immediate child tasks such that it gets

corrected at the immediate child level. Therefore there was no consideration of error proliferation in any of these

proposed solutions.

Numerous research efforts have addressed the issue of workflow scheduling in fog environment. However, we

found that only a few scheduling policies utilized partial computations in the fog environment.

Cao et al. [19] introduced a QoS optimization technique for fog environment that took into account the

reusable nature of IoT devices. These IoT devices were considered to be powered by hybrid energy sources that

included grid electricity and renewable generations. By utilizing approximate computations, the authors designed

a two-phased task placement strategy. Application-level and component-level energy provisioning were carried

out one after the other at the Internet of Things layer to create a local placement solution. Through renewable-

2

adaptive computation offloading, a local-remote placement technique solution was later derived at the fog layer.

However, this strategy considered the workload to be a bag-of-tasks and the impact of error proliferation was not

considered.

Mora Mora et al. [20] presented an approximate computations based task placement strategy for fog-

cloud environment. This technique considered IoT data as bag-of tasks instead of workflows. In addition, this
technique did not consider monotone tasks where the computational volume of the task is divided into mandatory

and optional constituents. The authors assumed few tasks to be mandatory and rest to be optional. Subsequently,

input error proliferation impact was not taken into consideration.

Mo and Kritikakou [21] introduced a mathematical framework that integrates partial computations for

energy-effective placement of deadline-bound jobs in a cyber-physical ecosystem in fog environment. Due to the

problem being complex, it was initially expressed as an MINLP (Mixed Integer Non-Linear Programming)

problem which was further linearized to MILP (Mixed Integer Linear Programming) problem. This work

considered workload as workflow jobs but it did not consider initial IoT data required for entry tasks of the

workflow. Additionally, the error proliferation impact was also not taken into consideration.

Specifically, we found only one study related to partial computations that considers the impact of end-to-end error

proliferation in workflow processing in fog computing environment.

Stavrinides and Karatza [4] proposed a heuristic based deadline aware policy that utilized partial
computations and depicted the impact of error proliferation in a workflow. This work showed the impact on the

computation expense of every impacted constituent task in the workflow but overlooked the impact of error

proliferation on the energy consumption of the fog computing resources.

In this policy [4], the tasks are prioritized according to the lower value of the deadline i.e. task with a lower

deadline is given higher priority. In case when the deadlines of the tasks match then the task with a higher

computational volume is given higher priority i.e. the communication expense of the task is not considered for the

ranking of tasks. Expected Processing Time Calculation is an important metric that is generally considered for

the ranking of tasks [28]. It needs to be calculated based on computation as well as communication expenses.

Next, this methodology aims at reducing the Finish Time (or response time) of workflows without considering

the computation expense of fog computing instances while allocating the task to a computing instance. The

scheduling technique should take into account the computation expense of the processors since the fog nodes have
limited processing capacities. Another vital factor in fog infrastructure is energy consumption in addition to

response time which is not considered in [4]. Also, this policy uses a first-fit idle slot utilization strategy which

may not be an ideal choice to utilize available schedule holes. Additionally, this policy is a single objective

optimization problem that aims only at minimization of the response time of the workflow. All these identified

drawbacks are the motivation for this work.

Therefore, we propose a Topsis-based Partial Computation (TPC) technique which is a multi-objective

optimization technique that takes into consideration the optimization of energy consumption as well as response

time and simultaneously aims at improving schedule hole utilization and overall result precision of the workflows

by eliminating the drawbacks recognized in the state-of-the-art work [4]. In our presented methodology, all the

workflow jobs for execution are acquiesced to an intermediary fog node which acts as a fog scheduler. It obtains

the status of all the available fog computational resources. The proposed application scheduling strategy assigns

the acquiesced applications to appropriate fog resources in such a manner that finds the right balance between the
response time of real-time applications and the energy consumption of fog computing instances. Further, the

presented policy employs the best-fit idle slot utilization strategy in place of the first-fit to improve the overall

system performance.

3. The system and workload model

This section describes the system model which is a fog-IoT environment, workload model and energy

consumption model employed in this proposed work.

3.1 System Model

The proposed work considers a fog-enabled IoT system which is a two-layer architecture: Fog nodes at the topmost

layer and end-user devices at the lowermost layer. The IoT-fog ecosystem is shown in Fig. 1. The bottom or
terminal layer is constituted by IoT devices, e.g., sensors, smart vehicles, smartphones, home appliances, and

wearable devices [22, 27]. These devices communicate with upper-level fog resources for application processing

by sending requests and data.

In this study, IoT devices are considered as data generation sources that lack the capability to execute the produced

data. The fog computing layer is typically deployed close to IoT devices. It is constituted by nodes residing close

to the network edge e.g. access points, base stations, routers, and switches with restricted processing, transmission,

and transient storage capability [23].

Specifically, the fog environment consists of a set R = {r1, r2, …, r|R|} of |R| physical hosts with heterogeneous

processors. A pool of 𝑣𝑖 VMs is provided by every physical host ri. Jointly, the fog layer provides a set M

3

={v1
r1 , . . . , v

|M|

r|R|
} of |M| = ∑ 𝑣𝑖riεR fog VMs where every fog virtual machine is assigned a vCPU. Every virtual

CPU (vCPU) and therefore, every virtual machine (VM) has a queue of allocated tasks that must be completed.

Fig.1 IoT-Fog ecosystem

To get the required services, users can connect to the fog nodes. The fog resources are anticipated to lie one or

two hops distant from the users to satisfy stringent latency requirements [24].

The rate of data transmission (tIoT) amongst the Internet of Things tier and fog tier follows uniform

distribution in the following interval:

 𝑡𝐼𝑜𝑇~𝑈[𝜏𝐼𝑜𝑇 . (1 − 𝑇𝐼𝑜𝑇 /2), 𝜏𝐼𝑜𝑇 . (1 + 𝑇𝐼𝑜𝑇/2)] (1)

where 𝜏𝐼𝑜𝑇 and 𝑇𝐼𝑜𝑇 depict the mean data transmission rate amongst the Internet of Things tier and fog tier, and

heterogeneity grade of bandwidth of the network connecting both layers respectively. The virtual machines in the

fog tier are linked via a wireless network connecting both layers over the Internet.

The rate of data transmission (𝑡𝑖𝑗
𝑓𝑜𝑔

) between two fog virtual machines (VMs) 𝑣𝑖
𝑓𝑜𝑔

 and 𝑣𝑗
𝑓𝑜𝑔

 follows

uniform distribution in the following interval:

 𝑡𝑖𝑗
𝑓𝑜𝑔

~U[𝜏𝑓𝑜𝑔 . (1 − 𝑇𝑓𝑜𝑔/2), 𝜏𝑓𝑜𝑔 . (1 + 𝑇𝑓𝑜𝑔/2)] (2)

where 𝜏𝑓𝑜𝑔 and 𝑇𝑓𝑜𝑔 depict the mean data transmission rate among the fog nodes and heterogeneity grade of the

virtual fog network respectively. It should be noted that the variable names use superscripts to distinguish between
the variables associated with each layer. The fog resource queueing model (adopted from [4]) is illustrated Fig. 2.

Fig. 2 Fog resource queuing model

Task scheduling on the fog layer virtual machines (VMs) is done by a central scheduler known as fog broker

operating on a specific computing node in the fog layer. It collects user requests, controls resources

on fog nodes, and generates optimal schedules for input workflows.

3.2 Workload Model

This section describes the computational and communication characteristics of the workflow as well as the
approximate computations and error proliferation model used in this work.

4

3.2.1 Computational and Communication Characteristics

The data produced by IoT layer devices are transmitted to the second layer where real-time workflows process it.

A sample diagram of the workflow is shown in Fig. 3.

A directed acyclic graph (DAG) G = (N, E), where N denotes the set of graph nodes and E denotes the set of
directed edges connecting the nodes, is used to describe each workflow. Every node signifies a workflow task ni,

while, a directed edge eij connecting these workflow tasks ni and nj signifies the data that needs to be conveyed

from a predecessor task ni to a successor task nj. A workflow's constituent tasks are assumed to be non-preemptible

since preemption might result in a decrease in performance for real-time tasks [6].

Every task ni is associated with a weight wi that represents its computational volume i.e. the count of clock cycles

needed to process the task’s instructions. It follows an exponential distribution around the mean 𝑘̅. The

computational expense of the task ni on a VM vmv is determined by:

Comp(ni, vmv) = wi/fv (3)

where fv is the frequency at which VM vmv operates. Every edge eij from a task ni to task nj is associated with a

weight wij that depicts its communication volume, i.e. the amount of data (in GigaBytes) needed to be transmitted

from task ni to nj.

Fig. 3 Computational and Communication Characteristics of Workflow

It follows an exponential distribution around the mean 𝑞̅. Data transfer from task ni (placed on VM vmp) to task

nj (placed on VM vmq), incurs an edge communication expense which is defined as:

 𝐶𝑜𝑚𝑚((𝑛𝑖 , 𝑣𝑚𝑝), (𝑛𝑗 , 𝑣𝑚𝑞)) = 𝑤𝑖𝑗/(𝑡𝑝𝑞
𝑓𝑜𝑔

) (4)

where 𝑡𝑝𝑞
𝑓𝑜𝑔

 is the data transmission rate of the virtual connection amongst the virtual machines (VMs) vmp and

vmq.

Every job’s entry task needs input data generated by the Internet of Things layer. An entry task ni’s input data size

di has mean 𝑑 ̅. The communication expense experienced by input data transmission from the Internet of Things

layer devices to a task ni placed on a fog virtual machine vmv is given by:

 Comm(ni, vmv) = di /tIoT (5)

where tIoT is the data transfer rate between the IoT and fog layer.

The path length in the graph is determined by adding up the computational expense of all the tasks and the

communication expense of all the edges on that path which includes the cost of transferring initial input data to

the entry task. The critical path length (CPL) refers to the maximum path length in a graph. Every real-time job

has a fixed deadline, denoted as D, by which the execution of all of its constituent tasks must be finished. It is

defined by:

D = AT + RL (6)

where AT denotes the workflow’s arrival time and RL is its relative deadline limit, which follows uniform
distribution in the interval [CPL, 2CPL]. In the time-sensitive setting being studied, the deadline of every

workflow must be adhered to, or else its results would go futile. Thus, in such a scenario, the job is otherwise,

regarded as lost.

3.2.2 Approximate Computations and Error Proliferation Model

This section describes the approximate computations and error proliferation model considered in this work. Every

workflow submitted to the fog orchestrator is bounded by a deadline which must be satisfied for the results to be

5

meaningful. A job is regarded as lost if all of its constituent tasks do not get completed by its deadline. To address

this issue, approximate computations can be employed which trades off result precision for timeliness i.e. this

method allows a job to return results that are not precise but yet acceptable in quality in case when its deadline

cannot be satisfied. This technique assumes workflow’s constituent tasks to be monotone i.e. computational

volume wi of every constituent task ni comprises of two parts: a mandatory portion mpi and an optional portion

opi.

 𝑤𝑖 = 𝑚𝑝𝑖 + 𝑜𝑝𝑖 (7)

where, 0 ≤mpi≤ wi.
When the respective mandatory portion of a task has completed its execution, then the constituent task is deemed

complete. Depending on the central scheduler’s decision, the task can either finish the execution of the entire

optional portion, partial optional portion or it may omit its entire optional portion. The outcome of a partly

executed task ni is inaccurate and thus, the task generates an output error. Since the predecessor task’s outcome is

utilized as input by its successors, therefore, input error is present in the input data of the successors. Additionally,

there's a possibility that the child task's incoming error is passed on to its outcome if it is unable to rectify the error
through additional computations, and as a result, its input error is passed on to its output which is governed by the

task’s input error proliferation factor.

Therefore, the output error of a task ni is computed as:

 𝑂𝐸𝑖 =
𝛿𝑖

𝑜𝑝𝑖
+ 𝜑𝑖 × 𝐼𝐸𝑖 (8)

where 𝛿𝑖 is the unexecuted portion of the task’s optional portion opi, whereas 𝜑𝑖 is the task’s input error

proliferation factor (IEPF). The value of 𝜑𝑖 is dictated by p (i.e. proliferation probability of input error) which

takes values in the range [0,1]. For a task ni, the input error is taken to be equivalent to the mean output error of

its predecessors as shown below:

 𝐼𝐸𝑖 = ∑
𝑂𝐸𝑖

|𝐹𝑖|𝑛𝑗𝜖𝐹𝑖
 (9)

where Fi is the set of the predecessors nj corresponding to successor ni. There is a direct impact of a task’s input

error on its execution time. To tackle the error impact and generate a satisfactory end outcome, additional

instructions and therefore clock cycles (computations) are needed. As a result, the task’s mandatory portion is

extended. In particular, the mandatory portion extension of a task ni because of its input error is given by:

 𝑚𝑝𝑒𝑖 = 𝑚𝑝𝑖 × 𝐼𝐸𝑖 (10)

The task’s mandatory portion extension is summed with its primary mandatory portion. It is crucial to note that

the task’s optional portion is not impacted by its incoming error.

The result precision with respect to task ni is given by:

 𝑅𝑃𝑖 = 𝑅𝑃𝑇 + (1 − 𝑅𝑃𝑇)(1 − 𝑂𝐸𝑖) (11)

where RPT depicts the result precision threshold, below which a task’s results are unacceptable.

The result precision of a task lies in the range [RPT, 1], i.e.:

 𝑅𝑃𝑇 ≤ 𝑅𝑃𝑖 ≤ 1 (12)

The result precision of a workflow is determined by taking average of the result precision of its exit tasks, i.e.:

 RP = ∑
𝑅𝑃𝑖

|𝑁𝑒𝑥𝑖𝑡|𝑛𝑖∈𝑁𝑒𝑥𝑖𝑡 (13)

where Nexit denotes the set of workflow exit tasks.

From equations (8) and (11) it follows that if an input error proliferates into a task’s output, the outcome of the

task will remain inaccurate even after the task's entire extended computational volume has been executed. Hence,

the discrepancy in the input of a task because of its incoming error cannot always be recompensed by carrying out

supplementary computations. Therefore, it is not always possible to make up for a task's input error discrepancy

by doing more computations.

When there is no proliferation of input error into the task's output then result precision threshold is determined by
dividing the task's mandatory portion by its computational volume.

 𝑅𝑃𝑇 =
𝑚𝑝𝑖

𝑤𝑖
⁄ (14)

As per this imprecise computations and error proliferation model, whenever the result of a constituent task of a

workflow is imprecise, the resulting error can spread beyond just the directly connected child tasks ultimately

impacting the overall outcome of the workflow.

The error proliferation among the workflow tasks is quantified by the input error proliferation index which is

calculated as shown below:

IEPI =
|𝐸𝑒𝑟𝑟|+|𝑁𝑒𝑥𝑖𝑡

𝑒𝑟𝑟 |

|𝐸|+|𝑁𝑒𝑥𝑖𝑡|
 (15)

6

where Eerr depicts set of edges that proliferate input error from a predecessor to a successor, 𝑁𝑒𝑥𝑖𝑡
𝑒𝑟𝑟 depicts the set

of exit tasks which yield outcome comprising proliferated input error, E denotes the set of edges, while, Nexit
denotes the set of exit workflow tasks.

Subsequently, in the imprecise computations scenario, upon reaching the deadline, the job is assumed to be

completed if all the remaining constituent tasks are exit tasks and all of them have finished the execution of their

respective mandatory constituent tasks. Despite the job result being imprecise, the result quality is still acceptable.

3.3 Energy Consumption Model

In this section, we compute the energy consumed by all the VMs during both busy and idle times. The expected

energy consumption due to the tasks scheduled on VM vmj is given as follows:

 EECj
Busy

 = ∑ (allocijniεG:GεE × Comp(ni, vmj) × ECRatej
Busy

) (16)

where, 𝑎𝑙𝑙𝑜𝑐𝑖𝑗 = 1, if task is scheduled on VM vmj (and 0 otherwise) and Comp(ni,vmj) is the computation

expense of task ni on vmj. It is important to compute the energy consumption due to idle time slots that may not

be utilized for the execution of any task.

𝐸𝐸𝐶𝑗
𝑖𝑑𝑙𝑒=[∑ (𝑎𝑙𝑙𝑜𝑐𝑖𝑘

𝑣𝑘𝜀𝑉

𝑛𝑖𝜀𝐺:GεE × Comp(𝑛𝑖 , 𝑣𝑚𝑘)) − ∑ (𝑎𝑙𝑙𝑜𝑐𝑖𝑗𝑛𝑖𝜀𝐺:GεE × Comp(𝑛𝑖 , 𝑣𝑚𝑗))] ×

𝐸𝐶𝑅𝑎𝑡𝑒𝑗
𝐼𝑑𝑙𝑒 (17)

 where, ∑ (𝑎𝑙𝑙𝑜𝑐𝑖𝑘
𝑣𝑘∈𝑉

𝑛𝑖∈𝐺:GεE × 𝐶𝑜𝑚𝑝(𝑛𝑖 , 𝑣𝑚𝑘)) gives the total computation expense of all tasks ni of the workflow

G such that G ε E, where, E depicts the ensemble of completed workflows.

Therefore, the total energy consumption of a VM vmj is given as:

 EECj = 𝐸𝐸𝐶𝑗
𝐵𝑢𝑠𝑦+ 𝐸𝐸𝐶𝑗

𝐼𝑑𝑙𝑒 (18)

Thus, the total energy consumption of all VMs is given by the following equation:

 TEC = ∑ 𝐸𝐸𝐶𝑗𝑣𝑗𝜀𝑉 (19)

4. The Proposed Model

To schedule workflow tasks submitted at the fog orchestrator, a dynamic two-state strategy is implemented which

entails a Task Prioritization state and a Computational Resource Selection state. To determine the sequence of

execution of the workflow tasks, the algorithm first computes their ranks. Subsequently, a suitable fog VM is

chosen for each task based on the most commonly employed MCDM technique - TOPSIS.

The proposed policy ranks the workflows based on the Least Deadline First strategy followed by the calculation

of the Expected Processing Time of workflow tasks to decide their scheduling order. The execution sequence of
tasks has a substantial effect on the performance of the scheduling technique. Next, the proposed policy utilizes

the most commonly employed MCDM technique TOPSIS in order to determine the processor on which the task

will be scheduled for execution. The proposed policy considers Expected Finish Time, Computational Resource

Computation Expense, Energy Consumption as well as best fit policy for occupancy of available idle slots (which

may appear in the processor’s schedule) while selecting the appropriate processor for task scheduling in order to

meet the QoS criteria.

4.1. Task Prioritization

The task prioritization phase involves assigning priorities to the constituent tasks in order to determine their

sequence of execution, mostly to optimize scheduling during the computational resource selection phase. To
achieve this, the workflows in the fog scheduler’s global waiting queue are assigned ranks based on their end-to-

end deadline D. The workflow with the least deadline is assigned the topmost priority. Workflows are therefore

ranked using the Least Deadline First (EDF) criteria. Then, we assign priorities to the workflow’s constituent

tasks on the basis of their Expected Processing Times (EPT), which is the critical metric that signifies the time by

which the task is expected to be completed.

The Expected Processing Time of a constituent task ni is computed as follows:

𝐸𝑃𝑇(𝑛𝑖) = [𝐸𝑃𝑇(𝑛𝑝) + 𝐸𝐶𝐸(𝑛𝑖) + 𝐷𝑇𝐸(𝑛𝑝, 𝑛𝑖)𝑛𝑝 𝜖 𝐹𝑖

 𝑚𝑎𝑥] (20)

where, 𝐸𝐶𝐸(𝑛𝑖) is the Average Expected Computation Expense of task ni and is equal to wi/favg

and 𝐷𝑇𝐸(𝑛𝑝 , 𝑛𝑖) is the time taken to convey data from predecessor task np to ni. Its value is equal to wpi/ 𝑡𝑎𝑣𝑔
𝑓𝑜𝑔

.

If ni is an entry task (i.e. ni 𝜀 𝑁𝑒𝑛𝑡𝑟𝑦) then its Expected Processing Time is equal to the Data Transfer Expense

from the IoT layer which is computed as follows:

7

 𝐸𝑃𝑇(𝑛𝑖) = 𝐸𝐶𝐸(𝑛𝑖) + 𝐷𝑇𝐸(𝑛𝑖) (21)

where, 𝐷𝑇𝐸(𝑛𝑖) is the time taken to convey initial IoT data to the fog layer and is equal to di/𝑡𝐼𝑜𝑇 .

4.2 Computational Resource Selection

The task ni with the maximum rank is chosen for execution from the global queue that can only start to execute
when all the predecessors of ni have finished execution and the target execution node has acquired the necessary

input data of ni. MCDM approaches prove to be very useful when VM instances need to be ordered based on

multiple metrics. Several Multi Criteria Decision Making techniques such as ANP (Analytic Network Process),

AHP (Analytical Hierarchy Process), TOPSIS, etc. can be utilized to associate ranking with the alternatives (i.e.

VMs). TOPSIS is beneficial over other MCDM techniques [25] since TOPSIS generates hypothetical best as well

as worst results. It then ranks the available alternatives based on their proximity to the best and the worst results.

Additionally, TOPSIS is simplistic, easily understandable, and the most commonly used MCDM technique [28].

Of paramount importance is the low computational complexity of TOPSIS, which facilitates the designing of

placement policy with lower computational complexity required for the fog computing environment.

To rank the various available VMs, multiple metrics such as Expected Finish Time, Processor Computation

expense and Energy Consumption are taken into consideration. To look for a suitable idle slot within the schedule
of the same VM, the difference between available slot size and effective slot occupancy is considered.

The fog scheduler selects a ready task (ni) from the global queue as per the task ranking and assigns the

task to the virtual machine (VM) that can reduce the finish time as well as increase the Energy Savings of the

computational instances.

The steps performed for suitable VM selection are as follows:

1. The Estimated Energy Consumption due to the allocation of task ni on VM vmk is computed as follows:

 𝐸𝐸𝐶𝑖𝑘= Comp(𝑛𝑖 , 𝑣𝑚𝑘) × 𝐸𝐶𝑅𝑎𝑡𝑒𝑘
𝐵𝑢𝑠𝑦

 (22)

The Expected Finish Time of task ni on vmk is calculated as follows:

 𝐸𝐹𝑇(𝑛𝑖 , 𝑣𝑚𝑘) = 𝑚𝑎𝑥{𝑡𝑑𝑎𝑡𝑎_𝑎𝑣𝑎𝑖𝑙(𝑛𝑖 , 𝑣𝑚𝑘), 𝑡𝑣𝑚_𝑎𝑣𝑎𝑖𝑙(𝑛𝑖 , 𝑣𝑚𝑘)} + 𝐶𝑜𝑚𝑝(𝑛𝑖 , 𝑣𝑚𝑘) (23)
where, the term 𝑡𝑑𝑎𝑡𝑎_𝑎𝑣𝑎𝑖𝑙(𝑛𝑖 , 𝑣𝑚𝑘) signifies the time at which the ready task’s input data will reach vmk. If ni

belongs to a set of workflow entry tasks then the term 𝑡𝑑𝑎𝑡𝑎_𝑎𝑣𝑎𝑖𝑙(𝑛𝑖 , 𝑣𝑚𝑘) depicts its preliminary input which

needs to be transmitted to the fog tier from the IoT tier. In rest of the scenarios, the term 𝑡𝑑𝑎𝑡𝑎_𝑎𝑣𝑎𝑖𝑙(ni , vmk)

depicts the data produced by predecessors of ni. Considering the state of the local queue of vmk at the moment,

the term 𝑡𝑣𝑚_𝑎𝑣𝑎𝑖𝑙(𝑛𝑖 , 𝑣𝑚𝑘) gives an estimate of the time when vmk will be available to process the task ni.

Considering the state of the vmk local queue at the moment

To ascertain the value of the term 𝑡𝑣𝑚_𝑎𝑣𝑎𝑖𝑙(𝑛𝑖 , 𝑣𝑚𝑘), following steps are performed:

1. Based on the priority of task ni, it is first scheduled at the potential position in the local queue of vmk.

2. Next, we determine whether a schedule hole exists in the processor vmk’s schedule to check if task ni can

be scheduled before its potential position given that task ni’s required input data is already available at

vmk and task nh scheduled at the front of vmk’s local queue is still waiting for its requisite input data from

other processing nodes or the IoT data sources. It is to be noted that a schedule hole appears in the

processor’s schedule when vmk is idle i.e. no task is being executed at that moment.

 𝑠ℎ = 𝑡𝑑𝑎𝑡𝑎_𝑎𝑣𝑎𝑖𝑙(𝑛ℎ , 𝑣𝑚𝑘) − 𝑡𝑝𝑟𝑒𝑠𝑒𝑛𝑡 (24)

3. If a schedule hole exists then we attempt to place the ready task ni in the schedule hole by doing the

following:

3.1 First, we find out the schedule holes where the complete task can fit i.e.

 𝑠ℎ ≥ 𝑤𝑖/𝑓𝑘 (25)

where, wi depicts the task ni’s computational volume and fk shows the vmk’s operating frequency.

In case multiple schedule holes exist, then ni is inserted in the schedule hole where the difference

between available schedule hole size and task ni’s computational expense is the least.

3.2 In case complete task ni cannot be accommodated in the identified schedule holes then, we try to

place a segment of the ready task ni by using partial computations. Particularly, we assess whether

the minimum plausible fraction of the task ni can fit into the schedule hole i.e.

 𝑠ℎ ≥ (𝑤𝑖 − 𝛿𝑖
𝑚𝑎𝑥)/𝑓𝑘 (26)

Subsequently, we determine whether the aggregate average extra computation time imposed due to

the mandatory portion extension of task ni's immediate successor tasks is equal to or lesser than the

8

saved execution time from the unexecuted optional portion of ready task ni which is computed as

shown below:

 𝛿𝑖
𝑚𝑎𝑥/𝑓𝑘 ≥ ∑ ∑

(𝑚𝑝𝑗×𝐼𝐸′𝑗)
𝑓𝑙

⁄

|𝑉|𝑣𝑚𝑙∈𝑉𝑛𝑗𝜖𝐶𝑖
 (27)

In addition, we also check whether the aggregate average extra energy consumption levied due to

the execution of the mandatory portion extension of task ni's child tasks is equal to or lesser than

the energy consumption from the unexecuted optional portion of ready task ni as shown below:

 (𝛿𝑖
𝑚𝑎𝑥/𝑓𝑘) ∗ 𝐸𝐶𝑅𝑎𝑡𝑒𝑘

𝐵𝑢𝑠𝑦
 ≥ ∑ ∑

(𝑚𝑝𝑗×𝐼𝐸𝑗
′)

𝑓𝑙
⁄

|𝑉|𝑣𝑚𝑙𝜖𝑉 ∗𝑛𝑗𝜖𝐶𝑖
 𝐸𝐶𝑅𝑎𝑡𝑒𝑙

𝐵𝑢𝑠𝑦
 (28)

 where Ci depicts the child tasks’ set nj corresponding to the parent task ni.

𝐼𝐸𝑗
′denotes the probable input error corresponding to the child task n j which is computed as:

𝐼𝐸𝑗
′ = 𝐼𝐸𝑗 +

𝛿𝑖
𝑚𝑎𝑥

𝑜𝑝𝑖
⁄ + 𝜑𝑖×𝐼𝐸𝑖

|𝐹𝑗|
 (29)

where IEj signifies child task nj’s current input error while Fj represents the set of nj’s predecessor tasks. Only a

portion of the ready task ni can be introduced in the schedule hole if conditions (26), (27), and (28) are met. In

this scenario, the portion of the task that would be processed corresponds to its computational volume 𝑤𝑖
′ that

would fit in the schedule hole i.e.

 𝑤𝑖
′ = 𝑠ℎ × 𝑓𝑘 (30)

Among the identified schedule holes, the one with the maximum capacity (schedule hole size) is chosen to
schedule the ready task ni so that its maximum portion can be executed in an attempt to increase the result precision

of task ni and reduce its output error.

After getting the Expected Finish Time and Expected Energy Consumption values for all VMs, alternative matrix

(A) is obtained with Expected Finish Time, Expected Energy Consumption, and Processor Computation expense

as VM dependent metrics. Then, Topsis is applied on this alternative matrix (A). The steps followed for Topsis

are described below:

Step 1: The matrix A is normalized using Eq. (31) where 𝑎𝑖𝑗
′ is the element of the normalized matrix 𝐴′.

 𝑎𝑖𝑗
′ =

𝑎𝑖𝑗

√∑ 𝑎𝑖𝑗
2𝑛

𝑖=1

 (31)

Step 2: To represent the significance, every metric is assigned a weight. Every column of normalized matrix 𝐴′ is
multiplied with its corresponding weight to get Weighted normalized matrix B.

 𝑏𝑖𝑗 = 𝑤𝑗 × 𝑎𝑖𝑗
′ (32)

where, i={1, 2, …, n}, ∑ 𝑤𝑗 = 1𝑘
𝑗=1 , wj represents jth VM dependent metric’s weight.

In the proposed work, every metric is allocated a fixed equal weight in the fog environment as all the

VMs need to be examined based on the same standard. Since three metrics are taken into consideration, therefore,

w1 = w2 = w3=0.33.

Step 3: Using the formulas given in Eqs. (33) and (34), Positive Ideal Solution (PIS+), and Negative Ideal Solution

(NIS-), are obtained from the matrix.

 𝑃𝐼𝑆+ = [𝑏1
+ , . . . , 𝑏𝑘

+] (33)

 𝑁𝐼𝑆+ = [𝑏1
− , . . . , 𝑏𝑘

−] (34)

This step attempts to determine the best a the worst value of every metric. For each metric in B, PIS+ depicts the

vector corresponding to the best value while NIS- depicts the vector corresponding to the worst value.

Step 4: Calculate the Euclidean distance of every VM from the PIS and NIS i.e. Si
+ and Si

− respectively.

 𝑆𝑖
+ = √∑ (𝑏𝑗

+ − 𝑏𝑖𝑗)
2𝑘

𝑗=1 (35)

 𝑆𝑖
− = √∑ (𝑏𝑗

− − 𝑏𝑖𝑗)
2𝑘

𝑗=1 (36)

Step 5: For each VM, determine its relative closeness, or rating of vm (RVi) from the ideal solution using 𝑆𝑖
+ and

𝑆𝑖
−.

 𝑅𝑉𝑖 =
𝑆𝑖

−

𝑆𝑖
++𝑆𝑖

− (37)

9

The set of VMs can now be ranked in descending order based on the rating of each VM i.e. RVi and the task is

assigned to the fog VM having maximum value of RVi.

5. The Performance Study

The proposed work is contrasted with a baseline-Topsis based multi-objective optimization strategy (i.e. BMO)
which utilizes schedule holes according to best fit policy only when complete task can occupy a schedule hole

and a state-of-the-art work [4] for the placement of workflows by utilizing approximate computations and Topsis.

The shortcomings of [4] have been recognized and mentioned in Section 1. This section demonstrates the efficacy

of the presented strategy in relation to Baseline policy and the state-of-the-art technique [4].

For comparison, the presented scheduling technique, Baseline technique and the state-of-the-art technique [4] are

observed under varying values of RPT (result precision thresholds) and p (i.e. proliferation probabilities of input

error). In particular, we examined the efficacy of the presented strategy over Baseline policy and state-of-the-art

work [4] for each potential pair of the following values of these two attributes, RPT ={0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9} and p={0, 0.35, 0.7,1}.

5.1 Performance Metrics

The following metrics are used to assess the efficiency of the proposed approach:

1. SLA Violation Ratio : It is calculated as the ratio of the count of jobs that were unable to accomplish their

execution within their deadline - and therefore, were discarded - to the count of total jobs that reached at

the fog scheduler.

2. WA-RP: It is the weighted average of the result precision of completed jobs where the result precision of

every completed job was weighted by the count of its exit tasks.

3. AV-RT: It is the average response time of the completed jobs.

4. AP-TSG: It is the average percentage of constituent tasks of completed jobs that were assigned to the

schedule holes for their execution by the fog scheduler.

5. AV-IEPI: It is the average input error proliferation index of completed jobs.

6. P-PCG: It is the percentage of completed jobs which on reaching the deadline had at least one partly

completed exit task, therefore, generated imprecise yet acceptable quality results.

7. TEC: It gives the total amount of energy consumed by the fog resources in executing the completed jobs

during the observed simulation duration.

5.2 Simulation Experiments

In order to assess the performance of the proposed policy, iFogSim [26] is utilized to simulate the Fog

environment. For our simulation experiment, we considered |N|=10 physical nodes in the fog environment offering
|V|= 64 heterogeneous virtual machines in total. The values of workload and other simulation parameters used in

the proposed model are shown in Table 1.

5.3 Performance Evaluation

In this section, the proposed policy Topsis based Partial Computations technique (i.e. TPC), is compared to a

Topsis based baseline multi-objective optimization policy (i.e. BMO) and a state-of-the-art Heuristic based Partial

Computations technique (i.e. HPC) [4]. In Fig. 4, TPC, BMO and HPC are compared under various RPT (Result

Precision Threshold) and p (error proliferation) values on the basis of the SLA Violation Ratio parameter.

Table 1 Simulation input parameters

IoT Layer

Mean data transfer rate of IoT-fog network 𝜏𝐼𝑜𝑇 = 50 Mbps

Heterogeneity grade of IoT-fog network 𝑇𝐼𝑜𝑇=0.5

Fog Layer

Count of physical nodes |N|=10

Count of fog VMs |V|=64

Operational frequency of fog VM vCPU f ={2.5 – 3.8} GHz

Mean data transfer rate in fog network 𝜏𝑓𝑜𝑔 = 1 Gbps

Heterogeneity degree of fog resources 𝑇𝑓𝑜𝑔 = 0.5

Fog VM Energy Consumption Rate during idle time ECRateIdle = [25-40]

Fog VM Energy Consumption Rate during task

execution

ECRateBusy = [105-130]

Workload Characteristics

10

Number of DAGs [40-100]

Minimum count of tasks in a workflow Wmin=10

Maximum count of tasks in a workflow Wmax=32

Mean input data size for entry task 𝑑 ̅ =1 GB

Communication to Computation Ratio 2

Mean computational volume of constituent task 𝑘 ̅= 8.93×1011 clock cycles

Mean communication volume of edge 𝑞̅ = 44.74 GB

Result precision threshold RPT ={0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

Proliferation probability of Input error p ={ 0, 0.35, 0.7, 1}

It is evident from Fig. 4 that for all values of p and RPT, the proposed approach TPC outperformed the baseline

policy (BMO) and the state-of-the-art technique (HPC). There was a significant decline of 9.93% and 36.5%

compared to HPC and BMO respectively in the SLA Violation ratio as depicted in Table 2. Since, BMO did not

utilize approximate computations, therefore, it could utilize schedule holes only when entire task could occupy a

schedule hole. In comparison to HPC, this decrease was more significant, particularly, for low result precision

values because the proposed methodology incorporated the best fit policy due to which at lower RPTs it could

place more tasks in the schedule holes than state of the art policy HPC as evident from Fig.5. Hence, scarcer

workflows lost their deadline in TPC as compared to HPC and BMO.
The variation in schedule hole utilization between the two scheduling methods TPC and HPC became

less noticeable for higher result precision thresholds. Overall, still, TPC approach made use of more schedule

holes than HPC. This is shown in Fig. 5. Further, according to the simulation findings shown in Fig. 4, increase

in the p values resulted in a greater number of jobs failing to meet their deadline. However, the proposed technique,

TPC, met more deadlines as compared to HPC and BMO, even in the instances when input error proliferation

remained constant throughout the constituent tasks of the job (i.e. p=1). This demonstrates that TPC was less

susceptible to the proliferation of input errors across the workflow tasks.

The proposed policy (TPC) could place a lesser number of tasks in schedule holes for larger p values, as

can be seen in fig. 5. This is because there was a greater likelihood of an increase in the average additional

processing time and average additional energy consumption due to the proliferation of input error which is why

fewer constituent tasks satisfied the requirements in (26), (27) and (28) during the selection of the potential VM.

Fig. 4 SLA Violation ratio percentage under different values of input error proliferation

probability (p) and Result Precision threshold (RPT)

Nevertheless, TPC used more schedule gaps than both HPC and BMO scheduling methodologies even for the

highest p value (i.e. p=1). This was because it took advantage of the best fit idle slot utilization which let the fog

orchestrator to insert more partial tasks in the holes as opposed to HPC’s first fit policy whereas BMO could not

take place partial tasks in the available schedule holes due to which it could utilize lesser number of schedule

holes than TPC.

Table 2: SLA Violation Ratio Percentage Decrease

RPT
TPC vs HPC TPC vs BMO

p=0 p=0.35 p=0.7 p=1 Average p=0 p=0.35 p=0.7 p=1 Average

0.1 22.79 20.05 150 14.05 18.02 79.05 77.97 75.19 73.21 76.36

0.2 19.69 16.94 21.08 17.11 18.70 71.09 68.31 68.00 64.14 67.89

0.3 13.05 17.25 14.86 12.97 14.54 59.03 57.51 54.03 48.96 54.88

0.4 13.32 14.19 11.51 14.38 13.35 45.97 44.34 42.29 43.92 44.13

0

10

20

30

40

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

SL
A

 V
io

la
ti

o
n

 R
at

io
 (%

)

RPT

BMO HPC(p=0) TPC(p=0) HPC(p=0.35) TPC(p=0.35) HPC(p=0.7) TPC(p=0.7) HPC(p=1) TPC(p=1)

11

0.5 6.27 7.81 11.06 10.09 8.81 34.05 33.15 32.35 31.86 32.85

0.6 8.66 6.89 6.06 6.11 6.93 24.88 21.99 23.45 23.14 23.37

0.7 6.55 5.32 4.21 2.98 4.77 21.61 19.67 17.76 18.66 19.42

0.8 2.35 5.22 1.25 4.30 3.28 6.32 8.48 6.85 9.42 7.77

0.9 1.04 1.58 0.70 0.70 1.01 1.04 2.74 1.63 2.08 1.87

Overall Avg. 9.93 Overall Avg. 36.50

Figure 6 shows a comparison of all orchestration techniques in terms of the weighted average result precision

parameter. For lower RPTs and higher p values, the result precision of the accomplished workflows was lower
(although over the mandatory level) for both HPC and TPC. However, the proposed policy could yield a better

weighted average result precision due to the use of best fit strategy. However as RPT increased, the difference

between the two policies became less noticeable. This was caused by the fact that the optional portion of the tasks

got smaller at higher RPT values and as a result, the percentage of the optional portion that the proposed policy

could discard was also less.

It can also be observed from the simulation findings in Figs. 4 and 6 that TPC traded-off lesser value of result

precision for timeliness in comparison to HPC. In contrast to the decline in missed deadlines, the decline in job

result precision was of less significance for TPC than baseline policy BMO and state of the art technique HPC.

Fig.5 Average percentage of tasks occupying schedule holes vs. different values of input error proliferation

probability (p) and Result Precision threshold (RPT)

The performance of the scheduling methods TPC, HPC and BMO concerning the average response time is

displayed in fig. 7. Due to better utilization of available schedule holes in TPC, there was a significant difference

between response time values among the two policies TPC and HPC for lower RPTs. However, for moderate to

higher RPT values, the execution time of the workflows and therefore, the response time of the workflows got
increased. This was because lesser tasks could be positioned in schedule holes when the RPT values were raised

(Fig.5). It can also be observed that TPC strategy resulted in a slight higher value of response time than HPC

policy for higher values of result precision thresholds as the former incorporates optimization of Energy

consumption along with response time minimization while the latter only aims at reduction of response time.

2

6

10

14

18

22

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 p
er

ce
n

ta
ge

 o
f

ta
sk

s
p

la
ce

d
 in

 s
ch

ed
u

le
 h

o
le

s
(%

)

RPT

BMO HPC(p=0) TPC(p=0) HPC(p=0.35) TPC(p=0.35) HPC(p=0.7) TPC(p=0.7) HPC(p=1) TPC(p=1)

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9W
ei

gh
te

d
 a

ve
ra

ge
 r

es
u

lt
 p

re
ci

si
o

n

RPT
BMO HPC(p=0) TPC(p=0) HPC(p=0.35) TPC(p=0.35)

12

Fig.6 Weighted average result precision vs. different values of input error proliferation

probability (p) and Result Precision threshold (RPT)

Moreover, in a real-workload scenario, meeting deadline is utmost important. This does not always imply

decreasing the response time of the workload [6]. Therefore, in contrast to the state-of-the-art policy, the presented

technique’s reduction in the SLA violation ratio is much more significant than slight higher value of response

time of the workflows since the proposed policy also increases Energy Savings significantly. Specifically, TPC

increased Energy Savings by 12.54% and 29.33 % in comparison to HPC and BMO respectively as shown in Fig

8. For lower result precision thresholds, energy savings in TPC are higher compared to HPC and BMO. This is

attributed to the efficient utilization of schedule holes in TPC. Even for moderate to high values of RPT, when the

proportion of computational volume that could be discarded got lesser, TPC was able to save significantly higher

amount of energy than HPC and BMO.

Fig. 7 Average response time vs. different values of input error proliferation

probability (p) and Result Precision threshold (RPT)

The percentage of partly completed workflows is displayed in Fig. 9. A workflow is said to be partly completed

when its exit tasks cannot accomplish their entire execution prior to the workflow's deadline. For lower RPT

values, because of the better utilization of schedule holes by the in-between workflow tasks in the proposed policy,
there was a higher likelihood that their exit tasks would be finished ahead of their deadline. Due to this, when the

RPT value was lower, the number of partly executed workflows was lesser for the presented technique. In contrast,

when the RPT value was medium to high, the percentage of partly completed workflows reduced. This was

because, for higher RPT values, fewer intermediate tasks could be inserted into schedule holes (Fig.5) due to

which the response time of the workflow jobs increased (Fig.8). When a workflow job reached its deadline, the

probability of its remaining unexecuted tasks being exclusively exit tasks was very low.

Fig. 8 Total Energy Consumption vs. different values of input error proliferation

probability (p) and Result Precision threshold (RPT)

92

96

100

104

108

112

1 2 3 4 5 6 7 8 9

A
ve

ra
ge

 r
es

p
o

n
se

 t
im

e
(m

in
)

RPT
BMO HPC(p=0) TPC(p=0) HPC(p=0.35) TPC(p=0.35) HPC(p=0.7) TPC(p=0.7) HPC(p=1) TPC(p=1)

4

8

12

16

20

24

28

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

To
ta

l E
n

e
rg

y
C

o
n

su
m

p
ti

o
n

 (k
W

h
)

RPT
BMO HPC(p=0) TPC(p=0) HPC(p=0.35) TPC(p=0.35) HPC(p=0.7) TPC(p=0.7) HPC(p=1) TPC(p=1)

13

Even if all the remaining workflow tasks belong to the set of exit tasks, it was less probable to satisfy upper result

precision standards set by upper RPT values. As a result, not many workflows were partly completed and therefore

exceeded their deadline. However, the number of partly completed workflows was higher in the case of TPC than

HPC which also confirms that the SLA Violation ratio was lower in TPC (Fig. 4).

Fig. 9 Percentage of partly completed jobs vs. different values of input error proliferation

 probability (p) and Result Precision threshold (RPT)

Fig. 10 shows the comparison of both scheduling strategies with respect to the weighted average input error
proliferation index. The value of IEPI in the case of TPC is higher because it utilized more schedule holes due to

the utilization of best fit strategy. However, with an increase in RPT values, lesser tasks could be positioned in

schedule holes which resulted in a decrease in the input error proliferation index for both HPC and TPC. Therefore,

the difference between IEPI values of TPC and HPC gets lesser with an increase in RPT values.

Fig. 10 Average input error proliferation index vs. different values of input error

proliferation probability (p) and Result Precision threshold (RPT)

6. Conclusion:

In this work, we examined the orchestration of several real-time IoT jobs in a heterogeneous fog computing

infrastructure by leveraging approximate computations. The impact of approximate computations has not been

much explored to achieve timeliness for real-time jobs in a fog computing environment. None of the research

works in fog computing studied the effect of input error proliferation on processing time and energy usage of

computational resources simultaneously. Towards this end, we proposed a multi-objective optimization approach

that aims at reducing workflow response time and the number of deadline misses while simultaneously increasing
the energy savings. The proposed policy employed the most commonly used MCDM technique Topsis to schedule

the workflow tasks on suitable fog computational resources. To rank the VMs, different vm dependent metrics

such as Expected Finish Time, Processor Computation expense, and Energy Consumption are considered. The

best fit idle slot utilization technique is employed to make effective use of the available schedule holes. The

simulation results confirmed that the proposed policy outpaced the baseline as well as state-of-the-art policy

regarding the SLA violation ratio (i.e. deadline miss ratio) and overall result precision. In addition, the proposed

policy significantly increased energy savings for a relatively insignificant rise in response time. Explicitly, the

proposed policy provided an average SLA Violation ratio decrease of 9.93%, and 36.5% while simultaneously

increasing Energy Savings by 12.54% and 29.33% compared to the state-of-the-art policy and baseline policy

respectively. Moreover, the experimental findings demonstrate that the proposed technique was more resistant to

the impact of error proliferation athwart the workflow tasks.

0.5

2

3.5

5

6.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
er

ce
n

ta
ge

 o
f

p
ar

tl
y

co
m

p
le

te
d

 jo
b

s
(%

)

RPT

HPC TPC

0

0.1

0.2

0.3

0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 In
p

u
t

Er
ro

r
P

ro
lif

er
at

io
n

 I
n

d
ex

RPT
HPC TPC

14

In future, we aim at integrating proposed technique into a four-tier environment where mist as well as cloud

resources will be available to process varied types of workloads. In addition, error proliferation impact on

workflow processing cost can also be observed.

7. References

1. Soori, Mohsen, Behrooz Arezoo, and Roza Dastres. "Internet of things for smart factories in industry 4.0, a

review." Internet of Things and Cyber-Physical Systems 3 (2023): 192-204.

2. Nabavi, S., Wen, L., Gill, S. S., & Xu, M. (2023). Seagull optimization algorithm based multi-objective VM

placement in edge-cloud data centers. Internet of Things and Cyber-Physical Systems, 3, 28-36.

3. Elazhary, H. (2019). Internet of Things (IoT), mobile cloud, cloudlet, mobile IoT, IoT cloud, fog, mobile edge,

and edge emerging computing paradigms: Disambiguation and research directions. Journal of network and

computer applications, 128, 105-140.

4. Stavrinides, G. L., & Karatza, H. D. (2021). Orchestrating real-time IoT workflows in a fog computing

environment utilizing partial computations with end-to-end error proliferation. Cluster Computing, 24(4),

3629-3650.

5. Wang, N., Varghese, B., Matthaiou, M., & Nikolopoulos, D. S. (2017). ENORM: A framework for edge node

resource management. IEEE transactions on services computing, 13(6), 1086-1099.

6. Buttazzo, G. C. (2011). Hard real-time computing systems: predictable scheduling algorithms and

applications (Vol. 24). Springer Science & Business Media.

7. Wainer, G., & Moallemi, M. (2020). Designing real‐time systems using imprecise discrete‐event system

specifications. Software: Practice and Experience, 50(8), 1327-1344.

8. Chen, Y., & Tsai, W. T. (2014). Service-oriented computing and web software integration: from principles to

development. Kendall/Hunt Publishing Co.

9. Lin, K. J., Natarajan, S., & Liu, J. W. S. (1987). Imprecise results: Utilizing partial computations in real-time

systems (No. NAS 1.26: 180561).

10. Feng, W. C., & Liu, J. S. (1997). Algorithms for scheduling real-time tasks with input error and end-to-end

deadlines. IEEE Transactions on Software Engineering, 23(2), 93-106.

11. Ravindran, R. C., Krishna, C. M., Koren, I., & Koren, Z. (2014). Scheduling imprecise task graphs for real-

time applications. International Journal of Embedded Systems, 6(1), 73-85.

12. Esmaili, A., Nazemi, M., & Pedram, M. (2019). Energy-aware scheduling of task graphs with imprecise

computations and end-to-end deadlines. ACM Transactions on Design Automation of Electronic Systems

(TODAES), 25(1), 1-21.

13. Stavrinides, G. L., & Karatza, H. D. (2010). Scheduling multiple task graphs with end-to-end deadlines in

distributed real-time systems utilizing imprecise computations. Journal of Systems and Software, 83(6), 1004-

1014.

14. Stavrinides, G. L., & Karatza, H. D. (2011). The impact of input error on the scheduling of task graphs with

imprecise computations in heterogeneous distributed real-time systems. In Analytical and Stochastic Modeling

Techniques and Applications: 18th International Conference, ASMTA 2011, Venice, Italy, June 20-22, 2011.

Proceedings 18 (pp. 273-287). Springer Berlin Heidelberg.

15. Stavrinides, G. L., & Karatza, H. D. (2012). Scheduling real-time DAGs in heterogeneous clusters by

combining imprecise computations and bin packing techniques for the exploitation of schedule holes. Future

Generation Computer Systems, 28(7), 977-988.

16. Stavrinides, G. L., & Karatza, H. D. (2015, August). A cost-effective and qos-aware approach to scheduling

real-time workflow applications in paas and saas clouds. In 2015 3rd International Conference on Future

Internet of Things and Cloud (pp. 231-239). IEEE.

17. Stavrinides, G. L., & Karatza, H. D. (2018, August). Energy-aware scheduling of real-time workflow

applications in clouds utilizing DVFS and approximate computations. In 2018 IEEE 6th international

conference on future internet of things and cloud (FiCloud) (pp. 33-40). IEEE.

18. Stavrinides, G. L., & Karatza, H. D. (2019). An energy-efficient, QoS-aware and cost-effective scheduling

approach for real-time workflow applications in cloud computing systems utilizing DVFS and approximate

computations. Future Generation Computer Systems, 96, 216-226.

19. Cao, K., Zhou, J., Xu, G., Wei, T., & Hu, S. (2019). Exploring renewable-adaptive computation offloading for

hierarchical QoS optimization in fog computing. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 39(10), 2095-2108.

20. Mora Mora, H., Gil, D., Colom López, J. F., & Signes Pont, M. T. (2015). Flexible framework for real-time

embedded systems based on mobile cloud computing paradigm. Mobile information systems, 2015.

21. Mo, L., & Kritikakou, A. (2019). Mapping imprecise computation tasks on cyber-physical systems. Peer-to-

Peer Networking and Applications, 12(6), 1726-1740.

22. Bittencourt L, Immich R, Sakellariou R, Fonseca N, Madeira E, CuradoM, Villas L, da Silva L, Lee C, Rana O

(2018) The internet of things, fog and cloud continuum: Integration and challenges. Internet of Things 3:134–

155

15

23. Mahmud, R., Ramamohanarao, K., & Buyya, R. (2018). Latency-aware application module management for

fog computing environments. ACM Transactions on Internet Technology (TOIT), 19(1), 1-21.

24. Mehta, R., Sahni, J., & Khanna, K. (2023). Task scheduling for improved response time of latency sensitive

applications in fog integrated cloud environment. Multimedia Tools and Applications, 82(21), 32305-32328.

25. BehzadianM, Otaghsara SK, YazdaniM, Ignatius J (2012) A state of the-art survey of TOPSIS applications.

Expert Syst Appl 39(17): 13051–13069

26. Gupta, H., Vahid Dastjerdi, A., Ghosh, S. K., & Buyya, R. (2017). iFogSim: A toolkit for modeling and

simulation of resource management techniques in the Internet of Things, Edge and Fog computing

environments. Software: Practice and Experience, 47(9), 1275-1296.

27. Mehta, R., Sahni, J., & Khanna, K. (2018). Internet of things: Vision, applications and challenges. Procedia

computer science, 132, 1263-1269.

28. Ijaz, S., Munir, E. U., Ahmad, S. G., Rafique, M. M., & Rana, O. F. (2021). Energy-makespan optimization of

workflow scheduling in fog–cloud computing. Computing, 103, 2033-2059.

29. Yao, S., Hao, Y., Zhao, Y., Shao, H., Liu, D., Liu, S., ... & Abdelzaher, T. (2020, August). Scheduling real-time

deep learning services as imprecise computations. In 2020 IEEE 26th international conference on embedded

and real-time computing systems and applications (RTCSA) (pp. 1-10). IEEE.

16

