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Abstract: 
 
 

About 40% of Indians are directly engaged in agriculture and 20% are indirectly engaged 
in agricultural jobs. The most widely grown crop worldwide is corn which is used in 
numerous agricultural products, including those that can be used to make biofuels, as well 
as in the food chain. In India, a large number of small-scale farmers rely on farming for 
both a living and for meeting their fundamental necessities. Conversely, corn crops are 
susceptible to illnesses that hamper crop yield and farmer income. Temperature fluctuations 
and unfavorable weather patterns cause the disease to spread. With the development of 
digital technology, the use of technology in farming and agricultural operations has 
widened. Farmers can use voluminous volumes of data regarding crop and soil conditions, 
climate change, and other environmental factors to guide their decisions about how to 
handle plants and animals through the use of machine-learning methods in agriculture. A 
modified deep transfer learning is implemented in this work, which classifies three major 
corn diseases and identifies healthy images among them. In this work, the most prevalent 
diseases were taken into account, including blight, gray leaf spot, and common rust. For 
forecasting the classes, Resnet-18, a type of convolutional neural network was deployed. 
The corn leaf image is provided as input and the transfer learning technique was established 
on Resnet-18 and the data was split extensively for multiple scenarios. It is classified into 
four classes and obtained a mean accuracy of 96% than the existing schemes. 

 
Keywords- ResNet-18, Convolutional Neural Network, Leaf diseases, Deep Learning, 

Corn. 

1. Introduction   
 
 

Leaf diseases represent the primary causes of crop failure, resulting in an approximate 

annual global output reduction of US$2000 billion [1,2]. Plant health can be compromised 

by fungal, viral, or bacterial infections, leading to alterations in color, shape, or margins, 

and impacting leaves, fruits, or branches. Therefore, it is crucial to look at potential quick 

IJCDS 1571064098

1

mailto:Priyanka.n@vit.ac.in


detection, control, and treatment solutions. The conventional method of the naked eye 

examination is the primary defense in disease identification, however, it is ineffective 
[3,4,5]. Farmers may also use the incorrect chemical or treatment procedure [6]. This sort of 

infection typically requires analysis and discovery by a plant pathologist, which can be 

expensive, slow to act, or all of the above inaccessible [7, 8]. A crop that is widely grown 

in big amounts is a maze, which is also known as maize. It acts as the basic raw 

component for a various of other products, such as cooking oil, animal feed, flour, 

alcohol, starch, and biofuel, apart from being consumed directly as a food source. 

Alongside rice and wheat, corn stands out as one of the most crucial crops due to its 

substantial genetic variation and capacity for production, thriving across diverse 

environmental conditions [9]. In 2020, there were 1.15 billion tonnes of corn produced 

worldwide [10]. It is inherently vulnerable to a wide range of ailments that can affect the 

plant's leaves, trunk, and fruit at any stage of development. This directly affects corn 

harvest yield, which results in significant financial loss. Food shortages, famine, and 

possibly hunger may occur from the global production of essential crops like corn being 

reduced [11]. The most deadly of these ailments are those that affect the growth of maize 

leaves. In this work, Cercospora Leaf spot, Northern leaf blight and common rust are 

three general leaf disease used [12]. 
 
 

The Cercospora leaf spot is caused by the fungi Cercospora zeina, and Cercospora zeae-

maydis which alters the color and appearance of the leaves. These fungus live on the 

surface of the soil and produce necrotic lesions that range in color from black to grey and 

they demand a warm, moist environment. The administration of an appropriate fertilizer 

is a common treatment, but it has to be used before grain formation [13,14]. Another fungus 

illness brought on by the Exserohilum turcicum fungus is Northern Leaf Blight. Crops that 

are in the process of growing and reproducing could suffer substantial losses if they strike 

during these times. Also, certain meteorological circumstances make it worse and 

deteriorate the growth of crops. The disease manifests itself on the leaves as angular, 

rectangular-shaped dark brown dots. The appropriate chemical agent is used to treat the 

disease [15,16]. On the upper and lower surfaces of maize leaves, common rust manifests as 

dark, reddish-brown blisters and is brought on by the fungus Puccinia sorghi. Acceptable 

chemicals are used to treat it [17–19].  

Modern technology has led to several breakthroughs in agriculture. Specifically, ML 

and DL applications are affected by plant pictures. Convolutional Neural Networks 
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(CNNs) are a type of DL network that utilise an architecture comprising rectified linear 

unit, convolutional, and pooling layers that feed into a fully associated layer. CNNs aim 

to detect image characteristics and associations. The various characteristics that the prior 

layers have uncovered are included in this layer. Despite multiple modifications that could 

affect the input images, CNNs are excellent at recognizing features [20]. When building 

systems based on CNNs, researchers have the option of starting from scratch or applying 

transfer learning. The process of reusing models and applying new approaches to 

innovative applications is called transfer learning. Following this technique, Deep transfer 

learning transforms contemporary models with partial or complete retraining in a way that 

suits the new application. It has the benefit of using earlier layers to identify generic 

properties (such as colors and borders) and tailoring subsequent levels for particular 

applications. 

On the farmer's side, a CNN model is developed that can feed images directly from 

farmers' laptop computers. The model then performs disease detection and applies 

strategies for resizing and normalizing each dataset. Although data augmentation 

procedures are only used on the trained set to enrich the data with the intent that the model 

may generate more accurate findings. The model then displays the disease category as well 

as the confidence percentage and classification time it took to process the image. Farmers 

with minimal resources can now take photos of the infected plant leaves using a web app. 

On the user side, the web application runs on top of the CNN model. The application also 

shows the classification time required to process the image and the confidence percentage. 

In particular, a system is developed which is working locally on the PC of the user. We 

used an open-source dataset from Kaggle that included 4188 images of the three most 

prevalent diseases (common rust, gray leaf spot, and blight) as well as a healthy type. 

Major contributions of the proposed work are, 

• Implementation of a web-based method for real-time identification of leaf 

diseases using transfer learning techniques.  

• A technologically modified CNN model is implemented in which the farmers 

can directly feed images from their system. 

In order to provide a disease detection tool that is both successful and easy to 

use, the Corn Leaf Disease Detection application with Gradio requires a number of 

critical user needs. The proposed structure has the following important features: 
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• Easy-to-use interface: Even for users who are unfamiliar with ML techniques or 

agricultural terminology, the Gradio interface for the disease detection tool is simple to 

use. 

• Quick and accurate results: Users should be able to quickly and accurately obtain 

results for the disease detection tool. The tool should be able to process images quickly 

and provide accurate disease classifications within seconds. 

• Accurate disease classification: The disease detection tool should be able to accurately 

classify corn leaf diseases, even when there are multiple diseases present in the same 

leaf or when the disease is in its early stages. 

• Clear and concise results: The disease detection tool should provide clear and concise 

results that are easy for users to interpret. This may include visualizations or textual 

descriptions of the disease classification. 

• Reliable and secure: Users should be able to trust that the disease detection tool is 

reliable and secure, with no risk of data breaches or other security issues. 

In particular, the Corn Leaf Disease Detection method with Gradio is focused on creating 

a user-friendly and effective disease detection tool that is accessible to an extensive 

range of users 

The rest of this study is outlined as follows. The background, current situation, 

and recent developments for leaf disease detection are included in Section 2 . The 

requirements for deploying the proposed approach into practice are then briefly outlined. 

The proposed approach for addressing the challenge of detecting maize leaf disease is 

discussed in Section 4 along with some discussions. The findings of the simulation and 

testing are exhibited in Section 5, and the conclusion is specified in Section 6. 

 

2. Related works 
  

    The contemporary schemes that are related to corn disease detection and the gaps 

found in the existing models are discussed in this section.  

Rajeev et al. [21] used AlexNet a type of CNN model that has 5 convolution layers and 3 

max pooling layers. In this technique, CNN was able to extract features directly by 
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processing the raw images directly. However, it experienced lower accuracy for a lower 

number of epochs. 

Ali et al. [22] used CNN and image processing techniques for classifying the 

potato images into 5 classes namely Black Leg, Black Scurf, Pink Rot, Healthy, and 

Common Scab. This work utilized around 5000 images and achieved an accuracy of 99-

100% in some of the classes.  But, this technique failed to detect plant images with 

multiple diseases. 

 

      Monzurul et al. [23] used Multi-class support vector machines, imaging, and 

computer vision based on phenotyping were used to classify the potato images. This work 

demonstrated an accuracy of 95% on a dataset of around 300 images and opened the door 

for automated plant disease detection on a larger scale. But this technique used a very 

small dataset and the accuracy obtained is not precise. It was not able to perform with 

imbalanced image classes and also the noisy data provided uncertain results. 

 
To start transfer learning for the categorization of corn illnesses, Wei et al. [24] 

introduced VGGNet, a form of CNN, together with the Adam optimizer. The evaluation 

score for this model is exceptionally high, with a 94.64% recognition rate. In contrast, this 

method was unable to identify plant images with numerous diseases. 

 
Javed et al. [25] proposed a deep learning (DL) model with multiple layers to detect 

illnesses in potato leaves. At first, the YOLOv5 image segmentation algorithm was used 

to separate the leaves from photos of potato plants. To differentiate between matured 

blight and premature blight on potato leaves, a separate DL method was created at the 

second level.Our technique was less parameter-intensive and easier to implement than 

state-of-the-art approaches; it also considered for the effect of environmental variables 

on potato leaf diseases.  

Pan et al. [26] increased their collection of 985 photos of healthy and diseased 

maize leaves to 31,005 images using data augmentation techniques such as image 

scaling, image transformation, image segregation, and resizing an image. The pytorch 

and kerras frameworks were used to implement numerous tested CNN models. With a 

99.94% accuracy rate, the proposed methodology produced excellent results and an 

informative diagnosis of NCLB. Adversarial network-based data augmentation 

approaches can also improve the effectiveness of visual feature detection during the 

training of the DCNN models. 5



 
Divyanth et al.  [27] developed a CNN model In order to identify diseases in 

maize  that combines depth with conventional artificial and feed-forward neural network 

methods. They introduced a new method for detecting and evaluating maize illnesses 

using a two-stage semantic segmentation procedure. During each step, semantic 

segmentation models were trained using various network architectures, including 

SegNet, DeepLabV3+, and UNet. The recognition rate and speed of this method are very 

high. It eliminates interference from the outside environment, quickly and accurately 

detects and identifies information on maize disease, and significantly increases detection 

accuracy. This method should take into account the various traits of diseases at various 

phases of disease development because incorrect decisions could have an impact on the 

recognition rate. 

Malusi et al. [28] used Neuroph to train a convolutional neural network (CNN) 

in order to classify and identify maize leaf diseases.In order to build a more robust CNN, 

the convolution and pooling feature extractions were integrated into the Neuroph library, 

which served as an IDE. However, this approach has difficult outputs of greyscale 

images because its resolution setting is limited to 10*20*3 (height*width*RGB). 

 

Farah et al. [29] suggested using Partial Least Squares (PLS) regression to choose 

characteristics from a deep feature set obtained in an automated crop disease recognition 

system.Compared to the initial feature vectors, it used a fusion procedure that consumed 

longer to execute. The final vector also has a selection that failed to take into account 

some of the key attributes, which results in a very low accuracy. 

 

Manavalan [30] examined around 109 articles that reported on early disease 

detection to upsurge production. The study's findings demonstrate that autonomous 

systems for diagnosing and classifying grain plant diseases are quite an infant stage. 

However, this research had trouble differentiating between diseases with related 

characteristics. 

 

3 Prerequisites 

 The system presumes that input images are of high quality and depict corn leaves. 

It also postulates that input images are correctly labeled according to their corresponding 
6



disease category. The system is constrained by the availability of labeled corn leaf 

images to train the ResNet-18 model.  

3.1. System Requirements 

The hardware requirements for the Corn Leaf Disease Detection project with 

Gradio would depend on the scale of the project and the size of the dataset. The 

application runs on a Central Processing Unit (CPU), but training and inference times 

may be slower compared to running on a Global Processing Unit (GPU). A GPU with 

CUDA support can significantly speed up training and inference times, especially for 

large datasets. The capacity of Random Access Memory (RAM) required depends on 

the dataset size, but at least 8GB of RAM is recommended. Storage requirements are 

determined by the dataset size and the model checkpoints number saved during training. 

 Table 1: The approach for detecting corn leaf disease requires specific software 

Name of the software Descriptions 

Python Python 3.7 

PyTorch Deep learning library 

Gradio Web interface 

NumPy Numerical computing 

Matplotlib Data visualization 

OpenCV Image processing 

Pandas Data manipulation 

Flask Backend server for the Gradio web interface 

TorchVision Image processing 

CUDA Toolkit Optimal performance 

 

A very high network connection is required to install and download the necessary 

libraries and tools. Overall, the Corn Leaf Disease Detection application with Gradio 

executes on a standard computer with a CPU and at least 8GB of RAM. However, for 

optimal performance, a GPU with CUDA support and more RAM would be 

recommended, especially for larger datasets. Table 1 demonstrates the software 

requirements for the Corn Leaf Disease Detection application with Gradio. The software 

requirements for the Corn Leaf Disease Detection project with Gradio are mainly Python 

libraries and tools, along with Flask for the web interface. 
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4. Proposed work 
  A detailed explanation of CNN architecture, the proposed system, and the pre-

trained model which is used is discussed in this section.  

Residual Neural Network (ResNet), a CNN architecture, is utilized to create networks 

that outperform shallower networks by having up to hundreds of convolutional layers. 
This study makes use of ResNet-18, one of the variations that offer the benefit of being 

able to train on over a million photos in the ImageNet database. It consists of 18 layers 

of depth and is constructed with 72 layers. It classifies images into 1000 dissimilar object 

classifications, making it incredibly effective and useful in image classification. This 

enables a larger amount of CNN  layers so that the classification is performed efficiently. 

However, having multiple deep layers leads to a vanishing gradient problem. ResNet's 

main goal is to employ jumping connections, frequently referred to by the terms shortcut 

connections or identify connections and the connections utilize the activation of previous 

layers. These hop from one layer to another creating a shortcut linkage between them. 

These identity mappings initially skip connections, using previous layer activations as a 

result. The skipping procedure compresses the network and henceforth learns earlier. 

After compression is completed, layer expansion occurs allowing the remaining parts of 

the network to train and explore feature space simultaneously. The network's input size 

is 224*224*3, which has been predetermined. The network's intricate layered 

architecture essentially qualifies it as a Directed Acyclic Graph (DAG) network. 

Furthermore, it receives input from numerous layers and outputs to numerous layers. 
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Figure 1: System architecture 

The proposed system architecture for the user-side laptop implementation of the 

maize leaf disease detector is shown in Figure 1. Layer 1 defines the Intermediate 

Representation (IR) model that runs on the device and undergoes training using the 

dataset, in addition to the deep learning model employed by the system (i.e., ResNet-

18). The user interface based on Gradio that offers system users an interactive user 

interface is depicted in Layer 2 of the diagram. A detailed explanation of the architecture 

is given below, 

• User Interface: Users can submit images of maize leaves to the Gradio 

interface's web-based user interface to receive predictions for the disease label 

associated with those images. 

• Application logic: The application logic includes the machine learning model 

that was accomplished to detect several forms of corn leaf diseases. This model 

is loaded into memory when the application starts up and is used to generate 

predictions for new images. 

• Gradio library: The Gradio library provides the backend for the web-based user 

interface. It handles tasks such as uploading images, displaying predictions, and 

managing user interactions. 

• Deep learning libraries: Deep learning libraries such as PyTorch and 

Torchvision are used to construct and train the ML model that controls the 9



application. 

• Deployment platform: The application is deployed on a local machine  

• Data sources: To train the ML model, the application incorporates a dataset of 

labeled images of maize leaves. The application often retrieves this dataset when 

training through a database or file system.  

 

Overall, the system architecture of the Corn Leaf Disease Detection application 

with Gradio is a client-server architecture, where the Gradio interface acts as the client, 

and the application logic and deep learning libraries run on the server side. The 

deployment platform provides the necessary resources to run the application and 

manage user interactions. 

The ResNet-18 model was used for categorizing diseases, followed by the 

proposed CNN that is based on data augmentation. The transfer learning process 

commences when data augmentation enhances the data, which in turn improves the 

generalization and accuracy of the model. Consequently, the ResNet-18 model is used 

for training which in turn accelerates the training process of CNN and uses test data 

feedback network training results. Using a pre-trained model, one can then adapt it to 

a new application by changing the output type and class count, for instance. Initial 

layers in this approach identify common low-level features like colors, edges, and blobs 

before subsequently learning the precise feature the customer needs. This is preferable 

to establishing random beginning weights since it speeds up learning, which is used in 

the current systems. Additionally, it facilitates learning from fewer images. Figure 2 

depicts the process flow of the proposed approach. 

 

Figure 2: The process flow of the proposed disease detection framework 

 

4.1 Distinctive features of the proposed identification technique 
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Some of the main characteristics of the proposed Corn Leaf Disease Detection application 

are listed below: 

• DL model: The application uses a DL model based on the ResNet-18 architecture to 

find maize leaves diseases. An extensive dataset of more than 14,000 images of maize 

leaves was used to train the model, which contributes to its excellent accuracy in disease 

identification. 

• Gradio interface: The project uses Gradio to provide a user-friendly and interactive 

interface for disease detection. The Gradio interface allows users to upload images of 

corn leaves, adjust the threshold for disease detection, and get accurate predictions for 

the category of disease existing in the leaves. 

• Multiple image upload: The Gradio interface supports multiple image uploads, 

allowing users to upload and process multiple images of corn leaves simultaneously. 

This feature can help increase the efficiency of disease detection for large-scale 

agricultural operations. 

• Real-time prediction: The Gradio interface provides a real-time prediction of disease 

presence in corn leaves as users adjust the threshold for disease detection. This feature 

allows users to see how the model responds to different thresholds and gain a better 

understanding of how the model works. 

• Cross-platform: The Gradio interface is cross-platform, which means that it can be 

accessed from any device with a web browser. This feature allows users to access the 

disease-detection interface from a wide range of devices, including smartphones and 

tablets. 

4.2 Non-functional Requirements 

        The system has an extreme accuracy rate in distinguishing corn leaf diseases in 

addition, it classifies corn leaf images in real-time or near-real-time, with minimal delay. 

The system has a user-friendly interface that allows users to easily upload images and 

view the classification results. The system is scalable, allowing for additional disease 

categories to be added in the future. 

• Data Loading and Pre-processing: It involves loading the images and applying some 

pre-processing steps such as resizing, normalization, and data augmentation. The time 

complexity of loading and pre-processing is determined by the integral value of images 11



and the size of each image. For n photos, the time complexity is 𝑂(𝑛)because each image 

is processed once, assuming that each image has an average size of 256*256 pixels. The 

spatial complexity is proportional to the picture size and the number of images. The 

space complexity is 𝑂(𝑛 ∗ 𝑠)where s is the size of each image, assuming that the images 

are stored in memory. The background pre-processing procedure is shown in Figure 3. 

•  

              

Figure 3: Process of data preprocessing 

 

 

 

5.               Results and Discussions 
 

                    This section discusses the evaluation matrix and performance metrics used 

in this work. Detailed requirement analysis for both functional and non-functional is 

performed. 

Based on the RAM capacity that is currently available, the starting batch size 

was set at 32 epochs. For the purpose of training the network, Stochastic Gradient 

Descent (SGD) was utilised, with a learning rate of 0.003. The dataset was partitioned 

into training, validation, and testing sets in order to accomplish data separation. 

Allocating 70% for training, 20% for validation, and 10% for testing was achieved using 

the split folder library. Data augmentation techniques were exclusively applied to the 

training set to enhance the dataset and improve the model's accuracy, while 

normalisation and resizing approaches were applied to all datasets.The following 

equations demonstrate some of the metrics that were used,  
12



• 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + !"
!#
+ 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁                             (1) 

• 𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 = !#
!#$%#

	                                                                (2)       

•    𝑅𝑒𝑐𝑎𝑙𝑙 = !#
!#$%"

                                                                 (3) 

• 𝐹1 = 2 ∗ &'()*+,-∗'()/00
&'()*,-$'()/00

                                                        (4) 

The True Positive (TP) symbol in equations (1-4) denotes a correctly classified leaf image 

among disease states. A False Negative (FN) occurs when a leaf image is incorrectly classified 

as healthy when actually it belongs to a disease category. A False Positive (FP) indicates that a 

healthy leaf image was mistakenly identified as an infection. Additionally, TN stands for "True 

Negative," which is capable of correctly identifying a healthy leaf in an image. Out of all the 

positive images, the true positive rate (TPR) measures the extent to which the model can classify 

a leaf image as belonging to the proper disease class. Sensitivity is another name for TPR. A 

high sensitivity level may lead to a large number of false positives (FP), but it also means that 

leaf images are being recognised as disease representations quickly. Precision measure is 

defined as the percentage of false positives relative to the total number of positives. Divide the 

total number of test images by the sum of TP and TN to calculate the accuracy. The F1 score is 

considered as an easier method to evaluate the model's performance in addressing class 

imblances, especially when dealing with different categories that have uneven image amounts. 

 

• PyTorch: DL model for disease detection in maize leaves is implemented by PyTorch, 

an open-source ML package. 

 

• NumPy: NumPy is a Python library for scientific computing that is used for numerical 

operations on corn leaf images. 

• Gradio: Gradio is a Python library for building and sharing custom machine-learning 

interfaces. It is used to create a user-friendly interface for disease detection in the Corn 

Leaf Disease Detection project. 

• Pillow: Pillow is a Python library for handling and processing image data. Whenever 

images of maize leaves are fed into the DL model, it is used to load and pre-process the 

images. 

13



• Matplotlib: Matplotlib is a Python library for creating visualizations. It is used to 

visualize the corn leaf images and their predicted disease labels. 

• Pandas: Pandas is a Python library for data manipulation and analysis. It is used to 

organize and manipulate the corn leaf image data. 

• Flask: Flask is used to create a server for hosting the Gradio interface.It is python 

webframework 

To guarantee the efficacy and precision of the disease detection model, the Corn Leaf 

Disease Detection application using Gradio includes domain-specific criteria. Some of 

the most important domain criteria for this approach are as follows: 

• Image quality: The accuracy of the disease detection model depends on the quality of 

the input images. To ensure accurate results, the input images should be high-resolution 

and clear, with minimal noise and distortion. 

• Representative dataset: When it comes to disease identification, the quality of the 

dataset means an excellent value. The training dataset should contain examples of all the 

many kinds of diseases that might harm maize crops so that the machine can identify 

them correctly in the leaves. 

•  The open source dataset is available on Kaggle i.e. the corn and maize leaf 

disease dataset which was primarily derived from a bigger dataset namely the plant 

village dataset is used.  It comprises 4188 images divided into 4 classes given in Table 

2. 

Table 2: Classification of images with their count 

Name of the disease Image count 

Blight 1146 images 

Common rust 1307 images 

Gray leaf spot 574 images 

Healthy 1157 images 
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The images have been converted into jpeg format and have 256256-pixel sizes. There is just 

one leaf image in each file and Figure 4 following displays samples of various diseases.

 

                         Figure 4: Sample images illustrating various disease 

The disease detection model must be able to accurately classify corn leaf diseases into 

different categories. To do this, the model must be trained on a taxonomy of corn leaf diseases 

that is accurate and up-to-date. The development and refinement of the disease detection model 

may require input from experts in the field of agriculture and plant pathology. Experts can 

provide insight into the most common and dangerous corn leaf diseases and help identify the 

key features that should be used for detection. As new corn leaf diseases are discovered and 

identified, the disease detection model must be updated to ensure that it can accurately detect 

these new diseases. Real-time updates to the model can help ensure that it remains effective and 

relevant over time. Overall, the Corn Leaf Disease Detection project with Gradio has domain-

specific requirements that are important for ensuring accurate and effective disease detection in 

corn crops. 

      Various DL models could produce different classification results, and need a variety of 

training and validation timeframes, otherwise favor some classes over others. Additionally, 

while some models might be able to generalize to new data, others might not, depending on the 

training set. Moreover, the performance review is the selection of the images for each subset is 

random (e.g., training). The experiment should be repeated until positive findings are obtained, 

although this will not accurately reflect the performance. ML models might also be prone to 

overfitting and underfitting. Resizing and Normalizing methods were applied to all of the 

datasets but data augmentation procedures only pertained to the train set to enrich the data so 

that the model possibly will yield more accurate results. The testing accuracy of the model which 

we were able to achieve was around 96% after running the experiment 30 times.  

15



The proposed application's categorizing report is illustrated in Figure 5 below. Here, 0 

denotes the Blight class, 1 denotes common rust, 2 denotes gray leaf spot, and 3 denotes 

the Healthy class. 

 

                                                    Figure 5: Precision report 

     From the observations, it is proved the proposed application achieved a 100% score 

in a healthy class for all the 3 parameters. The recall, accuracy and F1-score for the 

common rust class were all around 98%, 99%, and 98%, respectively. The class was able 

to acquire a 95% precision score, 90% recall score, and an 92% F1 score of blight.  An 

84% accuracy, 92% recall, and an 88% F1 score of gray leaf spot is achieved. Further 

deep diving into the results Confusion matrix is plotted for the model which is given in 

Figure 6. Figure 5 displays the accuracy, train, and validation losses that were plotted, 

and Table 3 lists the findings. 

 

                                                      Figure 6: Confusion matrix 
16



   
Figure 5: Train accuracy and Loss vs Validation accuracy and Loss 

Table 3: Train Vs Validation Accuracy or Loss 

Name of the disease Parameters Values 

Blight 

Number of true positives  100 

Number of samples classified as Common rust 2 

Number of samples classified as grey leaf spot  13 

Number of samples classified as Healthy 0 

Number of false positives 15 

Accuracy 86% 

Common Rust 

Number of true positives  130 

Number of samples classified as Common rust 1 

Number of samples classified as grey leaf spot  0 

Number of samples classified as Healthy 0 

Number of false positives 1 

Accuracy 99.2% 

Grey leaf spot 

Number of true positives  54 

Number of samples classified as Common rust 2 

Number of samples classified as grey leaf spot  3 

Number of samples classified as Healthy 0 

Number of false positives 5 

Accuracy 91.52% 
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Healthy 

Number of true positives  117 

Number of samples classified as Common rust 0 

Number of samples classified as grey leaf spot  0 

Number of samples classified as Healthy 0 

Number of false positives 0 

Accuracy 100% 

Complete model 

True positives  401 

False positives  21 

Accuracy  95.02% 

 

 

 

Figure 6: Healthy image classified with confidence score of 99 percentile 

 

 

 

                  Figure 7: Blight classified with a confidence score of 80 percentile 
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          Figure 8: Common rust classified with a confidence score of 99 percentile 

 

                           Figure 9: Blight classified with a confidence score of 61 percentile 

 

 

                                                         Figure 10: Blight classified as healthy  

 

Table 4 discusses an extensive examination of the established investigation with other 

existing methodologies. 
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Table 4: The evaluation of the proposed model against existing methods        

EXISTING 

APPROACHES 

OBJECTIVEs  DATASET  

QUANTITY  

TECHNIQUES  ACCURACY 

Padilla-et al.[34] Classification of 
three different 
disease kinds, a 
healthy type, and 
an unidentified 
type 

- CNN employment 
using OpenMP on 
a Raspberry Pi 

Maximum = 93% 

Subramanian-et 
al.[10] 

Classification of 
three disease 
kinds, and a 
healthy type 

18,888 images  VGG16, ResNet50, 
InceptionV3, and 
Xception 

93.92 - 99.9% 

Xu et al.[32] Classification of 3 
types of diseases 
and healthy type 

17,600 
augmented leaf 
images 

VCGNET-16, 
Dense net, Resnet 
50 and TCI 
ALEXNET(Modifie
d Alexnet) 

90% (mean) 

Lu et al.[35] Identify 10 
common rice 
diseases 

500 natural 
images 

Multi-stage-CNN 95.48% 

Proposed work  Classification of 3 
types of diseases 
and healthy type 

4188 
augmented leaf 
images  

Transfer learning 
on ResNet-18 
framework in 
pytorch and 
kerras with gradio 
as frontend   

96% 

        

Padilla et al. [34] devised a system using Raspberry Pi as the hardware 

foundation. Demonstrating the feasibility of creating CNN-based applications with 

modest hardware, they employed OpenMP to enhance performance. Despite achieving 

an accuracy of up to 96%, their test accuracy reached only 93%. 
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Conversely, Subramanian et al. [10] explored multiple approaches to the interaction 

between two CNN models, EfficientNetB0 and DenseNet121. Their efforts yielded 

accuracies ranging from 93% to 99.993%. 

Lu et al. [35] implemented a method to augment the deep learning capability of CNNs, 

achieving significant advancements. Their CNN-based model successfully classifies 10 

prevalent rice diseases through image recognition, boasting an accuracy of 

95.48%.Meanwhile, Xu et al. [32] adapted AlexNet and developed a novel network to 

construct their CNNs, demonstrating innovative approaches in network architecture 

design. 

The comparison of the proposed model with the existing techniques is given in Figure 

11. 

 

  Padilla-et al. [34] achieved recognition rates of 93% Leaf Blight, 89% Leaf Rust, and 

89% Leaf Spot, respectively well our system achieved an accuracy of 86% for Blight, 

99.2% for common rust, and 91.5% for grey leaf spot the mean accuracy is plotted in 

the above graph. Xu et al. [32] tried out 4 models i.e. VCGNET-16, Dense net, Resnet 

50, and TCI ALEXNET, and respectively achieved a mean accuracy of 90%. 

Subramanian-et al. [10] tried out the experiment in phases and the minimum accuracy 

achieved was 93% and the maximum achieved was 99%. Lu et al.[35]  implemented  a 

technique to enhance the deep learning ability of CNNs and achieved an accuracy of 

95.48% whereas our system achieved a mean accuracy of 96% which is better than these 

existing systems                                  
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5.1 Complexity Analysis 

• Model Training: Using the pre-processed data, the ResNet-18 model is trained. It takes 

a long time to train a model, according on the epoch count, batch size, and amount of 

the training dataset. The time complexity is O(en/b).  if the model is trained for e epochs 

with a batch size of b and the training collection contains n images. The magnitude of 

the model parameters and the batch size impact the space complexity. With the model 

kept in memory during training, the space complexity is O(mb), where m is the number 

of parameters. 

• Model Evaluation: It involves evaluating the trained model on the validation set to 

measure its accuracy. Size of the validation set and processing time for each image 

determine the corresponding temporal complexity of the evaluation model. The time 

complexity is O(m) if the validation set contains m images and processing each image 

takes O(1) time. Both the size of the validation set and the amount of memory required 

for keeping the model's predictions determine the space complexity.. Assuming that the 

predictions are stored in memory, the space complexity is O(m). 

• Inference: It involves using the trained model to make predictions on new images. The 

time complexity of making predictions depends on the size of the input image and the 

time taken to process each image. Assuming that each image takes O(1) time to process, 

the time complexity is O(1) per image. The space complexity is based upon both the 

dimensions of the model parameters and the dimensions of the input image.The time 

complexity, assuming the model is kept in memory during inference, is O(m+s), where 

m is the number of parameters and s is the size of the input image. 

The total time complexity of the proposed system is O(e*n/b), where e is the epoch 

count, n is the picture count, and b is the batch size. Since there are a finite number of 

parameters in the final model, their magnitude determines the space complexity, which 

is O(m). Number of layers and size of each layer are the major factors that define the 

time complexity of the DL model used for disease diagnosis. For a single image, the 

temporal complexity of inference using the ResNet-18 model utilised in this study is 

O(n2), where n is the number of layers. The time it takes to handle user queries and react 

with predictions, process and post-process images, and so on all contribute to the 

application's time complexity. Gradio can handle multiple user requests concurrently, 

but the overall response time may depend on the number of concurrent requests and the 

available resources. The space complexity of the application is mainly determined by 
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the DL model size and the image number that is processed. The ResNet-18 model size 

is  44 MB, which is relatively small compared to some other deep-learning models. The 

space required for image pre-processing and post-processing may also depend on the 

size and resolution of the input images and the number of images being processed 

concurrently. 

6. Conclusion and future works  

For both commercial and small-scale farming, corn is a key component of the diets of 

hundreds of millions of people worldwide. Furthermore, it creates the foundation for 

numerous industrial goods and biofuels. Yet, the effects of climate change on drought, 

severe weather, and unseasonably warm temperatures have severely impacted the 

world's agricultural output. Moreover, plant diseases can destroy maize yields and result 

in large financial losses. These reasons advance the requirement for incorporating 

technological advancements in various farming measures to preserve plants and 

provision farmers with the detection and restrain of diseases. In this paper, we intended 

to identify common maize illnesses from leaf images using DL algorithms. The 

performance evaluation's findings show that there is a significant amount of potential 

for creating and implementing commercial applications that meet the standards for 

accuracy and usability. Such measures could significantly assist farmers overcome 

maize diseases and preserve their standard of life. The investigation carried out in this 

work can be conceivably improved through an enhanced addition process with more 

images from the dataset's four classifications. Real-world input photos, for instance, 

could be of any type. of background, which may not be identical to or consistent with 

the current dataset. 
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