
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
60	
61	
62	
63	
64	
65	

International Journal of Computing and Digital Systems
ISSN (2210-142X)

E-mail: Shayma.21csp70@student.uomosul.edu.iq

 http://journals.uob.edu.bh

LWLRD: New lightweight encryption algorithm for

Low recourse devices

Shayma shakeeb mohammed
1
, Yaseen Ismaiel

2

1, 2 Department, of Computer Science, Mosul University, Mosul, Iraq

Abstract: In resource-constrained situations, the demand for secure yet lightweight cryptographic algorithms is particularly

high, especially for applications such as mobile payments. This work offers a unique encryption algorithm that aims to find

a balance between strong security and economic performance. Our method employs a unique 5-bit S-box derived from the

Cube tent chaotic function, a previously unexplored source of S-box production. We carefully chose an S-box with ideal

cryptographic features, including low differential approximation probability (DAP), linear probability (LP), and high

nonlinearity, which improves resistance to various attacks. To improve security, we use a dynamic P-box formed by a

logistic map, with the initial value taken from the secret key. This assures that the P-box configuration is unique to each

key, removing fixed patterns that attackers could exploit. Furthermore, we offer a better key generation approach based on

the PRESENT algorithm, but with increased randomness and complexity to make the system more resistant to key recovery

attacks. Our extensive security and performance study proves the algorithm's efficacy. The encryption procedure has a

relatively short execution time of 1.3 milliseconds, and the memory footprint is small at 0.003969 MB. These findings

demonstrate the algorithm's applicability for resource-constrained situations, making it a suitable choice for protecting

sensitive data in mobile and embedded devices.

Keywords: lightweight encryption, s_box, p_box, chaotic functions

1. INTRODUCTION

Cryptography is the foundation for the secure

exchange of information, protecting individuals,

organizations, and governments from the dangers

posed by malevolent actors. As our reliance on

digital communication and data storage grows, so

will the need for strong cryptographic solutions.[1]

[2]

Lightweight cryptography is a novel method that

seeks to address the difficulty of Creating fast and

efficient security solutions in resource-constrained

environments. These options include creating new

cryptographic primitives and protocols. as well as

adapting and changing existing cryptosystems.

When designing lightweight cryptography, three

critical characteristics must be optimized: security,

performance, and cost. The number of bits in a

cryptographic key is commonly used to measure

security. Increasing the key size can improve

security. Performance is assessed by the total

number of clock cycles required to complete an

operation, which is proportional to throughput and

energy consumption. The cost, evaluated in terms

of energy or space, is dictated by the specific

hardware structure utilized. However, because of

the trade-offs between these three aspects,

optimizing all three at the same time in a single

design is extremely challenging. Designers must

carefully balance competing security,

performance, and cost criteria when creating

successful lightweight cryptographic solutions for

resource-constrained contexts.[3] [4]

Low-resource computer devices have limited

hardware capabilities, including CPU, power,

memory storage, and energy. These devices are

commonly used in embedded systems, Internet of

Things (IoT) applications, and other constrained

settings where cost, size, and power consumption

are critical factors. The key challenges in

developing software for low-resource systems

include optimizing code for efficient memory and

CPU usage, reducing battery consumption, and

managing limited connectivity and peripheral

IJCDS 1571060959

1

2

http://journals.uob.edu.bh

resources. Ciphers developed for resource-

constrained devices are lightweight and can be

implemented using software or hardware to

maximize resource consumption.[5]

This research offers a new substitution-

permutation network (SPN) cipher optimized for

low-resource devices. The goal is to find the right

balance between rigorous security and lightweight

performance.

2. RELATED WORK

Many lightweight algorithms have been proposed

over the years. Thakor 2023 [6] proposed a new

lightweight cryptographic method, AUM,

specifically for resource-constrained IoT devices.

It solves the issues of cost, performance, and

security by introducing a 32-bit block size and key

size method with a novel 5-bit S-box architecture.

Using the simple algorithm to generate random

subkeys. AUM intends to efficiently encrypt short

communications (<2Kb) in IoT devices such as

RFID tags, smart cards, sensors, and actuators.

Khompysh et.al.2023 [7] proposed ISL-LWS

lightweight encryption algorithm. It processes a

64-bit input with an 80-bit key, using a 4-bit s_box.

The SL-LWS algorithm outperforms other popular

lightweight algorithms such as Present and Speck

in terms of encryption speed and key generation

time. It offers excellent data security on resource-

constrained devices by providing a high level of

diffusion and confusion through its linear and non-

linear transformations.

Abd Al-Rahman et.al.2022 [3] proposed a Hybrid

Lightweight Cipher Algorithm that includes two

types of encryption Feistel or SPN the chosen

encryption type depends on the secret key. The

Hybrid Lightweight Cipher Algorithm's SPN

component analyzes 64-bit input data blocks with

a 64-bit secret key and a 4-bit S-box for

replacement. The algorithm customizes the

number of rounds in the SPN structure (10 to 20)

to meet security and performance requirements.

Aboushosha et.al.2020 [8] A Feistel lightweight

cipher algorithm called SLIM has been suggested.

It features a 32-bit block size and an 80-bit key size

via 32 rounds, with 32 subkeys of 16 bits each

created from the 80-bit key. It similarly uses four

4-bit S-box in each round; the cipher is simple to

develop and execute.

BANSOD et.al.2017 [9] proposed (BORON), a

new well-designed ultra-lightweight cipher with

strong cryptographic properties. It prosses a 64-bit

input block with 80/128-bit key size, it utilizes 4-

bit S-boxes and consists of 25 rounds.

Bansod et.al.2016 [10] proposed A PICO is an

ultra-lightweight, low-power encryption that uses

a 64-bit plaintext and a 128-bit key length.

It consists of 32 rounds with a 4-bit s_box

 Bogdanov et al. (2007)[11] introduced the most

hardware and software-efficient method,

PRESENT. There are 32 rounds. It has a 64-bit

input block with an 80-bit/128-bit key size and a

4-bit s_box. Table 1 summarizes the related works

displayed in this paper.

3. CHAOS THEORY

Chaotic systems have aperiodic, seemingly

random activity even though deterministic rules

govern them. This is known as the "butterfly

effect" where small differences in initial

conditions can lead to large variations over time.

Discrete-time chaotic systems are often modeled

using "chaotic maps".

A major benefit of chaotic maps is that

mathematical equations fully determine their

behavior while they produce complex,

unpredictable outputs. Researchers have leveraged

this deterministic chaos property in cryptography.

Incorporating chaotic map outputs into cipher

design can enhance properties like confusion and

diffusion. This helps strengthen security by

making the relationship between ciphertext and

plaintext more difficult to discern without the key.

When combined judiciously with standard

cryptographic primitives, the sensitivity to initial

conditions inherent in chaos theory introduces

additional unpredictability compared to

conventional ciphers. The resulting hybrid ciphers

retain cryptography's desired qualities like

resistance to known plaintext attacks, while

gaining potential robustness from chaos' ability to

amplify minor perturbations in the key, IV, or

plaintext exponentially over iterations. This makes

the systems even harder to analyze or break using

traditional cryptanalysis techniques.[12]

A. logistic map

A mapping of discrete time that depicts how a

population changes over time is called the logistic

map function. The following formula (equation 1)

2

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 3

Table 1: lightweight algorithm summary

defines it.

𝑥𝑛+1 = 𝑟𝑥𝑛(1 − 𝑥𝑛)
where 𝑥𝑛 represents the population size at time n

, xn+1 represents the population size at the

following time step, and r is a growth rate

parameter ranging from 3.5 to 4. Figure 1

illustrates the logistic map's bifurcation

diagram.[13] [14]

Figure 1: logistic map bifurcation diagram [13]

B. Cubic-Tent map

Aouissaoui.et.al [15] The proposed one-

dimensional chaotic map is the piecewise Cubic-

Tent (CT) map. It consists of the Cubic map and

the Tent map, as shown below (equation 2):

𝑥𝑛+1

=

{

 ((4−

3

4
𝑟)𝑥𝑛(1 − 𝑥𝑛

2) +
𝑟

2
𝑥𝑛)𝑚𝑜𝑑 1 𝑥𝑛 < 0.5

((4−
3

4
𝑟)𝑥𝑛(1 − 𝑥𝑛

2) +
𝑟

2
(1 − 𝑥𝑛))𝑚𝑜𝑑 1 𝑥𝑛 ≥ 0.5

}

The control parameter (𝑟), iteration number (𝑛),

and modulo operation (𝑚𝑜𝑑) are all used. The

modulo operation ensures output data falls inside

the range of [0, 1]. Figure 2 depicts the CT map's

bifurcation diagram, which demonstrates chaotic

behavior over the full interval [0,4], with minor

breaks.

Figure 2: bifurcation diagram of the Cubic-Tent map[15].

C. Generate a random sequence

To generate a random sequence for constructing

s_box and p_box using chaotic functions, the steps

proposed by [16] are as follows:

1. Choose the original number x0, which is the

seed of the chaotic functions. And it is

another key of the algorithm.

2. using the chaotic function n-1 times to create

a sequence {𝑥1, 𝑥2, … ………𝑥𝑛−1}
3. Sorting the previous sequence̗ and creating a

new sequence {𝑥0
′ ,𝑥1

′ ………… . . 𝑥𝑛−1
′ }

4. Find out the position of every element of the

sequence̗ {𝑥0, 𝑥2, … ………𝑥𝑛−1} In the

sequence̗ {𝑥0
′ ,𝑥1

′ ………… . . 𝑥𝑛−1
′ }, then

create a transform sequence 𝑇 =
{𝑡0, 𝑡1, … …… . . 𝑡𝑛−1}, sequence 𝑇 produced

from these steps contain values from 0 to n-1

sorted at random and not serial.

4. PROPOSED LWLRD BLOCK CIPHER

STRUCTURE

The block cipher design operates as a

Substitution-Permutation Network (SPN) and

consists of 16 rounds.

Algorithm SPN/Feistel Key
size

Input size S_box No. of
rounds

AUM [6] SPN 32 bits 32 bits 5 bits 16

Khompysh [7] Feistel 80 bits 64 bits 4 bits 16

Hybrid [3] SPN/Feistel 64 bits 64 bits 4 bits 10 to 20

SLIM [8] Feistel 32 bits 80 bits 4 bits 32

BORON [9] SPN 64 bits 80/128 bits 4 bits 25

PICO [10] SPN 64 bits 128 bits 4 bits 32

PRESENT [11] SPN 64 bits 80/128 bits 4 bits 32

3

4

http://journals.uob.edu.bh

It encrypts a 64-bit input block using an 80-bit

secret key. As shown in the block

diagram(Figure 3), each round begins by

XORing the round input with a subkey derived

from the main key via the key generation

function which is an improvement of the Present

key generation algorithm, choosing the 80-bit

key size according to the NIST recommendation

report[8]. Next, a confusion step applies a 5-bit

substitution box (S-box) to the middle 60 bits of

the state. These bits are divided into 12 sections

which each undergo S-box substitution.

Additionally, the first and last 2 bits are swapped

with each other, choosing 5-bit s_box because it

is moderate in security and cost between 8-bit

s_box (high cost with high security) and 4_bit

(low cost and low security)[17]. This layer is

followed by a diffusion layer where a

permutation box (P-box) rearranges the entire

64-bit state, the p_box sequence is different

every time the initial secret key is changed.

These round operations of subkey XOR, S-box

substitution, and P-box diffusion are repeated 16

times on the evolving ciphertext state. After the

final round, another subkey is XORed with the

output to produce the resulting encrypted

ciphertext block. The generate round key's

function handles expanding the main key into the

required set of 16 round keys plus one final key.

The block diagram of LWMP is illustrated in

Figure 3. This fully specifies the proposed cipher

as an iterative SPN utilizing cryptographic

primitives like s_boxes, permutations, and key

additions across multiple rounds.

 The operation of each round is described in detail

in the following sections.

A. s_box generation

The proposed S-box for the cipher has a size of 5

bits (1D matrix of 32 elements) and is constructed

using a deterministic chaotic generator.

Specifically, the Cubic-Tent map (equation 2) with

parameter r=2 is utilized to generate the S-box

values randomly. As described in section 3. A.

Figure 3 block diagram of LWLRD

The chaotic map iterates through 2.63×10^35

possible permutations of the 32 unique 5-bit values

from inputs to outputs. This provides an enormous

key space that helps obscure the relationship

between plaintext and ciphertext.

Ninety randomly generated S-boxes were

analyzed to evaluate their cryptographic properties

and security characteristics. The optimal choice

balancing factors like nonlinearity, strict avalanche

criterion, and resistance to differential and linear

cryptanalysis were selected for use in the cipher's

substitution layer.

This S-box, presented in Table 2, will introduce

confusion into the cipher by mapping each 5-bit

input block to a pseudo-randomly determined 5-bit

output value according to the fixed but secret S-

box table. Its generation via chaotic dynamics adds

another layer of complexity compared to a

traditional lookup-based S-box design.

Table 2: the proposed s_box
X 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(x) 19 16 1A B 4 1E 10 1C 2 14 17 A F 1B 01 13

X 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S(x) 09 0E 00 12 08 0D 07 0C 06 05 1F 11 1D 03 15 18

4

International Journal of Computing and Digital Systems
ISSN (2210-142X)

E-mail: Shayma.21csp70@student.uomosul.edu.iq

 http://journals.uob.edu.bh

B. p_box generation:

The P-box used in the diffusion layer of the

cipher algorithm is a 64-element bit permutation

generated through a deterministic chaos function.

Specifically, the logistic map (equation 1) with a

parameter of r=4, which produces fully chaotic

behavior, is used to randomly construct the P-box

values.

The initial condition x0 input to the logistic map is

derived directly from the cipher initial key. This

ties the generation of the P-box to the secret key

and ensures it will be different for any change to

the key. Using the key as x0 provides an additional

source of randomness compared to a fixed initial

value.

For an x0 value of 0, Table 3 shows the resulting

64-bit P-box generated according to the process

above. This P-box will serve to diffuse the bits in

the ciphertext state after each round by rearranging

their positions according to the fixed but key-

dependent mapping defined in the table. When

combined with the mixing provided by the S-box,

this diffusion layer enhances the cryptographic

strength of the algorithm.

Table 3: the p_box for 𝑥0 = 0

C. key schedule:

Bogdanov et. al.(2007)[11] Proposed a lightweight

block cipher(PRESENT) with a strong key

generation algorithm. PRESENT Key update steps

are summarized as follows

1. [k79k78 . . . k1k0] =[k18k17... . .k20,

k19]

2. [k79k78k77k76] = S[k79k78k77k76]

3. [k19k18k17k16k15] =

[k19k18k17k16k15] ⊕ round counter

The PRESENT key generation algorithm begins

with Applying 61 bits shift to the left, applying

PRESENT s_box substitution to the left-most four

bits and the round_counter value i is exclusive-

ored with bits k19k18k17k16k15 of K. Figure 4

depicts these steps.

Patel. Lamkuche. (2021) [18] designed a deep

learning model to attack the PRESENT key, and

try to retrieve the main key from the final round

key, Approximately half of the final round key bits

may be predicted properly. This implies that these

key

schedules are quite adept at evading some sort of

deep-learning analysis.

To increase the security in balance with time.

Therefore, the proposed LWLRD key generation

algorithm is derived from the PRESENT key

updating algorithm with some changes as follows:

1. [k79k78 . . . k1k0] =

[k50,k51.K2,k1,K0,K79,K78,……..K52,K51]

2. [k79……….K75] = S [k79…………K75]

3. [K55………K50] = S [K55…………K50]

4. [K30……….K25]=S [K30……….…K25]

5. [k19…….…..k15] = [k19…………….16k15]

⊕ round counter

The proposed algorithm begins with the right

circular shift of the initial key by 50 bits, the 5-bit

s_box is called 3 times in different places, and

finally XOR between 4 bits (K19…K15] with the

round counter. Figure 5 depicts the LWLRD key-

updating algorithm

X 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P(X) 63 13 14 15 38 47 16 39 34 48 26 52 17 58 40 0

X 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P(X) 7 23 10 35 49 27 53 18 3 43 30 59 41 1 8 56

X 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P(X) 24 61 32 45 11 36 50 5 21 28 54 19 20 4 44 31

X 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P(X) 60 55 29 42 2 9 22 6 57 51 25 62 33 46 37 12

5

6

http://journals.uob.edu.bh

.
Figure 4: PRESENT key update algorithm[11]

Figure 5: proposed LWLRD key update algorithm

5. SECURITY ANALYSIS:

This section describes an analysis of the

suggested algorithm's strength.

A. S_box security analysis:

The S-box is a critical component that gives

confusion property and further ensures

nonlinearity in any SPN-based cryptography

method; hence it receives major attention while

developing any cryptography algorithm. This

section compares security analysis to another.

5 bits s_box which includes, ASCON [19],

SHAMASH [20], ICEPOLE[21], and Thakor [17].

ASCON, SHAMASH, and ICEPOLE are

authenticated encryption algorithms that use 5-bit

s_boxs. Thakor proposed a new 5-bit s_box using

chaotic functions.

• Nonlinearity:

The S-box serves as the cipher's nonlinear

component, causing confusion through its

transformations. An S-box with strong

nonlinearity (NL) causes significant data

diffusion.

The proposed S-box design employs a chaotic

function to generate a fully random substitution

structure, making it extremely difficult to

determine any correlating relationship between

input and output values in algebraic or analytic

form. Nonlinearity is measured using Hamming

distances (H_d) between input-output pairs, where

H(x_i,y_i)=#(x_i≠y_i) [6]. Higher H_d values

indicate higher nonlinearity. Table 4 shows the

hamming distance for the proposed s_box. Figure

6 shows that the proposed s_box has an average

hamming distance of 2.78125 when compared to

the other s_boxes. As can be observed, the

proposed s_box has a higher nonlinearity than the

others.

Table 4 Hamming distance of proposed s_box

input output Hamming

distance

(𝐻𝑑)
0 00000 25 11001 3

1 00001 22 10110 4

2 00010 26 11010 2

3 00011 11 01011 1

4 00100 4 00100 0

5 00101 30 11110 4

6 00110 16 10000 3

7 00111 28 11100 4

8 01000 2 00010 2

9 01001 20 10100 4

10 01010 23 10111 4

11 01011 10 01010 1

12 01100 15 01111 2

13 01101 27 11011 3

14 01110 1 00001 4

15 01111 19 10011 3

16 10000 9 01001 3

17 10001 14 01110 5

18 10010 0 00000 2

19 10011 18 10010 1

20 10100 8 01000 3

6

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 7

21 10101 13 01101 2

22 10110 7 00111 2

23 10111 12 01100 4

24 11000 6 00110 4

25 11001 5 00101 3

26 11010 31 11111 2

27 11011 17 10001 3

28 11100 29 11101 1

29 11101 3 00011 4

30 11110 21 10101 3

31 11111 24 11000 3

Average 2.78125

Figure 6 The nonlinearity comparison between s_boxs

• Linear approximation probability (LP):

In cryptography, the Linear Approximation

Probability (LP) metric is used to measure the

nonlinearity of a substitution box (S-box). It

quantifies the maximum imbalance in the S-box's

input and output bits using linear approximations.

The LP is calculated by evaluating all potential

input differentials (Δx) and output differentials

(Δy) and calculating the highest likelihood of a

linear relationship between them.

Specifically, the LP is defined as:

𝐿𝑃 = max
∆𝑥,∆𝑦≠0

|
#{𝑥 ∈ 𝑋|𝑥. ∆𝑥 = 𝑆(𝑥). ∆𝑦}

2𝑛
−
1

2
|

Where:

• X is the set of all possible n-bit inputs

• S(x) is the S-box function that maps

each input to an output

• |#| denotes the cardinality (number of

elements) of a set

• n is the number of input bits

A lower LP value indicates greater nonlinearity in

the S-box, making it more resistant to linear

cryptanalysis attacks. The LP metric provides a

method to objectively evaluate the security and

effectiveness of an S-box design in maintaining

the nonlinearity required for strong encryption

and decryption against such attacks.[6] [22] [23].

The LP for the suggested s_box is 0.25. Figure 7

displays the LP of the proposed and other existing

s_boxes; as can be seen, the proposed s_box has

the same LP value as the other existing s_boxes.

Figure 7 the LP of the proposed and others s_boxs

• Differential approximation probability

(DAP):

Differential Approximation Probability (DAP) is a

statistic used to assess a substitution box's (S-box)

susceptibility to differential cryptanalysis. It

measures the S-box's differential uniformity by

calculating the highest likelihood of a specific

output difference given an input difference. To

calculate the DAP, all conceivable input

differences (Δx) and output differences (Δy) are

considered, and the highest probability of seeing a

specific output difference for a given input

difference is determined. The DAP can be defined

mathematically as follows:

𝐷𝐴𝑃 = 𝑚𝑎𝑥
∆𝑥0,∆𝑦

(
#{𝑥 ∈ 𝑋|𝑆(𝑥) ⊕ (𝑆(𝑥 ⊕ ∆𝑥) = ∆𝑦))

2𝑛
)

Where:

• X is the set of all possible n-bit inputs

• S(x) is the S-box function

• ⊕ denotes bitwise XOR

• |#| represents the cardinality (number of

elements) of a set

A lower DAP value indicates higher resistance to

differential cryptanalysis since fewer predictable

7

8

http://journals.uob.edu.bh

output differences correspond to an input

difference. S-boxes with low DAP exhibit better

uniformity in their input-output behavior, making

them more robust against attacks exploiting

differential characteristics. Therefore,

cryptographic algorithms prefer S-boxes with low

DAP to enhance security.[6] [22] [24], Table 5

displays the differential distribution table of the

proposed s_box, as seen the maximum value is 6

so, the DAP is equal to 0.187 which is considered

a pretty good value: It indicates that the S-box is

relatively unpredictable. Figure 8 displays the

comparison between the proposed s_box and the

DAP value of other s_boxs

Figure 8 The DAP comparison

• strict avalanche criterion (SAC):

The avalanche effect happens when a little change

in input bits causes a substantial change in output

bits. This attribute is critical for cryptographic

functions such as block ciphers because it

improves diffusion - the spreading of the influence

of particular input bits across many output bits.

The strict avalanche criteria (SAC) is a measure

of a function's avalanche properties. It requires

that at least half of the output bits change on

average when a single input bit is flipped. In other

words, the output must have at least n/2 bits that

differ from the input.

Efficient S-box design plays a key role in helping

block ciphers achieve strict avalanches. S-boxes

that satisfy SAC on their own provide strong

diffusion to ciphertext bits from any input change.

This improves the overall diffusion characteristic

of the cipher and makes it significantly harder for

attackers to deduce relationships between

plaintext and ciphertext through differential

analysis. To calculate the SAC value, assume a 5-

bit input 𝑋 and a sequence of input vectors, 𝑋1,

𝑋2, …,𝑋5, obtained by modifying the 𝑗th bit

exclusively.

The equivalent 5-bit output vectors, 𝑌1, 𝑌2, …,

𝑌5, can be assigned using a substitution function,

𝑌𝑗 = 𝑆(𝑋𝑗). To compute an avalanche vector, 𝑉𝑗,
just XOR the output vectors 𝑌 and 𝑌𝑗. To generate

a 5 × 5 dependency matrix, 𝐴, add the 𝑖th bit of 𝑉𝑗
to 𝑎𝑖, 𝑗, where 𝑎𝑖,𝑗 is the 𝑖th member of the matrix

𝐴. Repeat the previous procedures for each vector

𝑋, then divide each element of matrix A by 2𝑛

(where 𝑛 is the number of input/output bits) to

calculate the SAC matrix. [6] [25] [26]. Table 6

displays the SAC matrix for the proposed S-box.

The proposed S-box has an average SAC of 0.52

(52%), close to the optimal value of 0.5,

indicating a strong avalanche impact. This

signifies that the proposed S-box meets the SAC

condition. Figure 9 compares the proposed S-

box's SAC to that exists. Table 7: Security

Analysis Comparison of the Exciting S_Boxes.

Table 6: SAC matrix of the proposed s_box

Figure 9: SAC

Table 7 The exciting s_boxes security analysis

 nonlinearity LP DAP SAC

Proposed 2.781 0.25 0.1875 0.52

Thakor 2.625 0.25 0.25 0.51

ASCON 2.5 0.25 0.25 0.57

SHAMASH 2.5 0.375 0.25 0.43

ICEPOLE 1.531 0.25 0.0625 0.56

B. Key schedule evaluation:

The proposed key updating algorithm is derived

from the present key updating algorithm.

Therefore, in this section comparisons are made

between the two algorithms

0.5 0.625 0.625 0.5 0.5

0.5 0.375 0.5 0.625 0.5

0.625 0.625 0.5 0.625 0.375

0.75 0.625 0.5 0.5 0.375

0.375 0.375 0.25 0.5 0.75

8

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 9

• Bit Differences between Round Keys

The goal of this test is to evaluate the relationship.
between the round keys in a cryptographic

algorithm. The test involves XORing consecutive

round keys to determine the number of bit

differences between them[27]. The test uses an

initial key, k0, which is an 80-bit value set to

0x00000000000000000000000000000000. The

table below shows the number of bit differences

between consecutive round keys for the

"PRESENT" and the "proposed LWLRD" keys.

The results (Table 8, Table 9) indicate that the

"PRESENT" key schedule algorithm has a low

number of bit differences (Below 10) in the first 5

rounds. However, the " proposed LWLRD " key

schedule algorithm shows a greater number of bit

differences, with at least 10 bits differing between

consecutive round keys starting from the first

round.

This analysis is important because the round keys

in a strong cryptographic algorithm should exhibit

a high degree of avalanche effect. That is, small

changes in the initial key should result in large,

unpredictable changes in the subsequent round

keys. A higher number of bit differences between

consecutive round keys is a desirable property, as

it helps to ensure the key schedule is resistant to

attacks that exploit weaknesses in the key

expansion process. The observed differences

between the "PRESENT" and " proposed

LWLRD " key schedules suggest that the "

proposed LWLRD " key schedule may provide

better security properties in terms of key schedule

strength.

C. Block cipher security analysis

this section contains the analysis of 16 round

block cipher

Table 8: the key generated from the PRESENT key updating algorithm with the bit difference

Table 5: differential distribution table (DDT) of proposed s_box

32 0

0 0 0 2 0 2 0 2 0 0 0 2 2 2 2 2 0 2 4 0 2 0 2 0 0 0 2 0 0 2 2 0
0 2 2 2 0 0 0 0 4 2 0 0 0 0 2 2 0 0 0 0 4 2 0 0 0 2 0 2 2 2 2 0
0 0 0 2 2 2 0 0 2 0 2 0 2 0 4 0 0 0 2 0 0 0 2 2 2 0 4 2 2 0 0 0

0 2 0 2 0 0 2 2 2 2 4 0 0 2 0 2 0 0 0 0 0 0 2 2 0 2 0 2 0 2 2 0
0 0 0 0 6 2 4 4 0 0 0 2 2 0 0 0 0 0 2 0 0 2 0 0 2 2 0 4 0 0 0 0
0 0 4 2 0 0 0 2 2 2 2 0 0 0 2 0 0 2 2 2 0 2 0 0 2 0 0 0 0 2 2 2

0 0 0 0 2 6 2 0 0 2 0 0 4 2 0 2 2 2 0 0 0 2 0 0 0 0 2 0 2 0 2 0
0 2 2 2 0 2 0 0 0 0 0 4 0 2 2 4 0 2 2 0 2 2 0 0 0 0 0 2 0 0 0 2
0 0 0 2 0 0 0 0 2 0 0 2 2 4 0 0 4 4 0 0 2 0 0 0 0 2 0 0 2 2 0 4

0 0 0 0 0 2 2 2 0 0 0 0 0 2 2 2 0 0 0 0 0 2 2 2 2 0 2 0 2 2 0 6
0 2 0 0 2 2 0 0 0 2 0 2 0 0 2 0 2 4 0 4 2 0 0 2 4 0 0 0 0 0 0 2
0 0 0 0 0 0 2 2 2 0 4 0 0 4 2 0 0 0 0 0 2 2 4 0 4 0 0 2 0 2 0 0

0 0 2 0 0 0 0 2 0 2 4 4 0 2 0 0 2 0 0 4 0 0 2 0 2 2 2 0 2 0 0 0
0 2 0 0 0 2 0 0 2 2 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 0 0 0 4 2 0 0

0 2 2 2 4 0 0 0 0 2 4 0 0 0 2 2 0 2 2 0 0 0 0 2 0 2 0 2 0 0 2 0
0 0 0 0 2 0 0 0 2 0 0 2 2 0 0 0 4 2 2 2 2 0 0 2 4 2 2 2 0 0 0 0
0 0 0 0 0 0 6 2 2 2 0 2 2 0 0 0 0 0 2 0 0 2 2 2 0 2 0 2 2 0 0 2

0 0 0 4 2 4 0 0 0 0 0 0 0 0 0 2 2 4 2 2 0 0 0 0 2 2 2 0 2 2 0 0
0 0 4 0 0 0 0 0 2 0 0 4 2 0 4 0 0 0 2 2 4 0 2 2 0 2 0 0 0 2 0 0
0 0 4 0 0 0 0 2 0 2 0 0 0 2 2 0 4 2 2 0 0 0 0 2 0 0 0 2 0 2 4 2

0 2 2 0 0 0 0 0 0 2 4 0 4 0 0 2 2 0 0 0 2 0 2 2 0 0 0 0 2 2 2 2
0 0 0 0 2 0 2 2 0 2 4 0 4 0 0 0 2 0 4 0 0 0 2 2 0 2 2 0 0 0 2 0
0 2 0 2 4 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 6 2 4 0 0 2 0 0 0 6 0

0 0 0 0 2 4 2 2 0 0 0 2 0 0 0 0 0 0 0 2 0 0 2 2 2 2 4 0 0 2 0 4
0 0 2 2 0 2 0 2 2 2 2 2 2 2 0 0 2 0 0 2 4 0 0 0 0 0 0 0 2 2 0 0
0 0 2 0 2 0 6 2 2 2 0 0 0 2 2 0 0 2 0 0 0 0 0 2 0 0 0 0 2 0 4 2

0 2 0 4 0 0 0 0 2 2 0 2 2 2 0 0 2 0 0 2 2 0 0 0 0 2 0 2 4 0 0 2
0 4 2 0 2 0 4 0 0 0 2 0 0 2 0 4 2 0 0 2 0 4 0 0 0 2 0 2 0 0 0 0
0 6 2 2 0 0 0 0 0 0 0 2 0 2 0 2 0 0 2 4 0 0 0 0 2 0 2 2 2 0 2 0

0 0 0 0 0 2 0 4 4 2 0 0 2 0 2 4 0 0 0 0 0 0 2 0 2 2 0 2 0 2 0 2
0 4 2 2 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 2 0 4 2 0 0 2 6 2 0 2 0 0

9

International Journal of Computing and Digital Systems
ISSN (2210-142X)

E-mail: Shayma.21csp70@student.uomosul.edu.iq

 http://journals.uob.edu.bh

Table 9: the key generated from the LWLRD key updating algorithm with the bit difference

• avalanche criteria

The avalanche test is satisfied if at least 50%

of the output bits change when changing one

bit of the input (either the plaintext or the

key). This threshold is necessary to ensure

that the cryptographic function is sensitive

enough to detect slight changes in the input,

rendering it resistant to various

cryptanalysis approaches. To be considered

no Generated key (present key schedule algorithm) No of bit difference

(𝒌𝒊𝑿𝑶𝑹 𝒌𝒊+𝟏)
I=0,1,…..n-1

0 00

1 1100100000000000000100 4

2 1100100000000000001110010000000000000010000000000000000000000000 4

3 1100100000000000001010010000000000000111001000000000000001000000 5

4 1100100000000000010110010000000000000101001000000000000011100100 7

5 0100100000000001010010010000000000001011001000000000000010100100 7

6 0100100000000011111010010000000000101001001000000000000101100100 8

7 0100100000000010111110010000000001111101001000000000010100100100 7

8 0100100000000101000010010000000001011111001000000000111110100100 12

9 0100100000010100000110010000000010100001001000000000101111100100 12

10 0100100000111110001010010000001010000011001000000001010000100100 15

11 0100100000101111001110010000011111000101001000000101000001100100 11

12 0100100001010000010010010000010111100111001000001111100010100100 18

13 0100100101000001010110010000101000001001001000001011110011100100 17

14 0100101111100010011010010010100000101011001000010100000100100100 21

15 0100101011110011011110010111110001001101001001010000010101100100 15

no Generated key (present key schedule algorithm) No of bit

difference

(𝒌𝒊𝑿𝑶𝑹 𝒌𝒊+𝟏)
I=0,1,…..n-1

0 00

1 1100100000000000000100000110010000000000000000000011001000000000 10

2 0010100000000000001000000110011100100000000000000111001110010000 12

3 0010111001000000001100000110010010100000000000001011001110011100 11

4 0010111001110010010000000101100010111001000000001111001110010010 17

5 0010111001001010010100000110100010111001110010010011001101100010 16

6 0010110110001011111100000010110010111001001010010111001110100010 15

7 0010111010001011111011001001000010110110001011111111001010110010 19

8 0010101011001011000100101111100010111010001011111000101001000010 22

9 1111000100001011111100101110000010101011001011000111110111100010 26

10 1010111110001011000000101101011111000100001011111111110110000010 26

11 1010111000001010000000101011101010111110001011000011110101011111 23

12 1010110101111100100000101110001010111000001010000011110011101010 20

13 1010101110101011001100101010011010110101111100100011110110001010 24

14 1010111000101011011000101110011010101110101011001111110010011010 19

15 1010101001101011101011110000101010111000101011011011110110011010 18

10

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 11

secure, a cryptographic function must meet

two important qualities known as the

avalanche criterion. [28] [29]. These criteria

are:
1. Fixed Key and Differing Plaintext:

This criterion uses a fixed key, and

multiple plaintext inputs are tested.

Each pair of input plaintexts should differ

in exactly one bit. The resulting ciphertexts

for these input pairs should have a

significant number of bits (at least 50%)

that differ.

2. Fixed Plaintext and Differing Key:

In this criterion, a fixed plaintext is used,

and multiple keys are tested.

Each pair of keys should differ in exactly

one bit.

The resulting ciphertexts for these key

pairs should have a significant number of

bits (at least 50%) that differ.

To satisfy these criteria choose the initial plaintext

= 0x0000000000000000(64-bit)

An initial key =

0x00000000000000000000000000000000 (80

bit), using hamming distance to calculate the

difference between two ciphertexts. Table 10 and

Table 11 display the result of hamming distance

after performing the two avalanche criteria. As

seen the proposed cipher algorithm (LWLRD)

satisfies the avalanche test after 10 rounds.

Table 10: fixed key with different plaintext

 After 10

rounds

After 16

rounds

Minimum bit

difference

22 24

Maximum bit

difference

41 41

Average bit

difference

(after 64-bit

flipping)

0.488

0.497

Table 11: fixed plain with different key

 After 10

rounds

After 16

rounds

Minimum bit

difference

25 26

Maximum

bit difference

39 40

Average bit

difference

(after 80-bit

flipping)

0.503

0.508

• National Institute of Standards and

Technology (NIST) test group:

The NIST (National Institute of Standards and

Technology) test suite is a widely used collection

of statistical tests for determining the randomness

of binary sequences, such as ciphertext in

cryptography. The NIST test suite consists of

numerous statistical tests, each of which returns a

p-value.

The p-value expresses the likelihood that a

perfectly random sequence would have a test

statistic at least as extreme as the one observed for

the sequence under test. If the p-value is greater

than or equal to 0.01, the sequence is regarded to

have passed the test, implying that it is most likely

random. In contrast, if the p-value is less than

0.01, the sequence is judged to have failed the test,

implying that it is not random enough. [27]

The suggested algorithm was tested using the

NIST test suite, with the results shown in Table

12. The table demonstrates that the proposed

algorithm passed all 12 random tests with p-values

greater than the 0.01 criterion. These findings

demonstrate that the ciphertext generated by the

proposed method is extremely random, passing all

12 statistical tests in the NIST test suite.

6. PERFORMANCE EVALUATION:

This section evaluates the proposed LWLRD

algorithm in terms of execution time, throughput,

and memory consumption. We compare LWLRD

to the PRESENT cipher block to determine its

relative efficiency.

All experiments were conducted on a Laptop

having Intel(R) Core(TM) i5-3427U CPU @

1.80GHz, 2301 MHz, 2 Core(s), 4 Logical

Processor(s) with 12 GB RAM on Windows 10

Pro, 64-bit operating system. The two algorithms

are developed using Python 3.12.3

A. Execution time

The execution time for cipher blocks refers to the

time necessary to process a block of data using an

encryption algorithm. The execution time depends

on the cipher type, block size, and the hardware or

software platform employed.[30]. Table 13

compares the proposed algorithm to the

11

12

http://journals.uob.edu.bh

PRESENT algorithm; the difference is rather

minimal.

B. Memory usage

The memory required to store encrypted data,

known as the cipher block's memory usage,

depends on factors such as the encryption

method, the data size, and the system's hardware

and software [31]. Table 14 shows that the

proposed LWLRD algorithm has a relatively

small memory footprint, indicating efficient

memory usage. While there is a slight difference

in memory consumption compared to an existing

PRESENT algorithm, this difference is not

significant.

 Table 12: NIST suit test

Test name P_value Conclusion

Frequency (Monobit) Test 0.2040841777655733 pass

Frequency Test within a Block 0.2040841777655733 pass

Runs Test 0.9597443417058545 pass

Test for the Longest Run of Ones in a Block 0.5390898267391488 pass

Discrete Fourier Transform (Spectra) Test 0.5999691396040943 pass

Non-overlapping Template Matching Test 0.9999999999999261 pass

Serial Test 0.4989610874592239 pass

Approximate Entropy Test 1.0 pass

Cumulative Sums Test (Forward) 0.2550069993732869 pass

Cumulative Sums Test (Backward) 0.4078904265537182 pass

Random Excursions Test 0.9996100613790039 pass

Random Excursions Variant Test 0.4795001221869535 pass

Table 13: time needed to perform LWMP algorithm compared with PRESENT

Algorithm Encryption + Key

Generation

(millisecond)

Decryption + Key
Generation

(millisecond)

Key
Generation

(millisecond)

Encryption
+decryption

+key
generation

LWLRD

(16 rounds)

1.3

2.31

0.21

3.03

PRESENT

(32 rounds)

1.06

1.83

0.14

2.85

Table 14: memory usage (megabyte)

 Encryption +key

generation

Decryption +key

generation

Key generation Encryption

+decryption +key
generation

Proposed

LWMP
(16

rounds)

 0.003969 MB

0.003969 MB

0.001068 MB

0.004005 MB

PRESENT

(32

rounds)

0.002162 MB 0.002162 MB 0.001782 MB 0.002198 MB

12

International Journal of Computing and Digital Systems
ISSN (2210-142X)

E-mail: Shayma.21csp70@student.uomosul.edu.iq

 http://journals.uob.edu.bh

C. Throughput

Throughput is a measure of how many units of

information a system can handle in a particular

period. The throughput of the encryption can be

calculated as in equation [32] [33]:

Throughput =
Tp

Et

were

Tp: Total plain text encrypted

Et: Encryption time (second)

Table 15 shows the throughput of the proposed

LWLRD compared with the PRESENT algorithm

The throughput values shown in the table were

calculated by averaging the results of 300 separate

runs of the algorithm. Each run consisted of 100

iterations, and the average throughput was

calculated across all 300 runs

Table 15 throughput of LWLRD and PRESENT

 Blocks(64bit)
/seconds

Bits/seconds Kilobits/seconds

LWLRD
(16

rounds)

890.86 57015.27 55.679

PRESENT

(32
rounds)

1434.57 91812.9 90.129

7. CONCLUSION:

This paper has presented LWLRD, a novel

lightweight cipher block designed to address the

growing demand for secure and efficient

cryptographic solutions in resource-constrained

environments. LWLRD leverages the inherent

properties of chaotic functions to achieve a robust

balance between security and performance.

The meticulously designed 5-bit S-box, derived

from a comprehensive analysis of cubic tent

functions, exhibits high nonlinearity while

minimizing Linear Probability (LP) and

Differential Approximation Probability (DAP)

values, enhancing resistance against linear and

differential cryptanalysis. The dynamic diffusion

layer, generated from the initial secret key, further

strengthens the cipher's security by ensuring a

non-fixed structure that further enhances security

by introducing unpredictability and complexity.

The suggested key generation technique, an

improved variant of the PRESENT approach,

provides flexibility in accommodating keys of

varied sizes while incurring low-performance

overhead. LWLRD's robustness and randomness

have been confirmed by rigorous testing,

including avalanche and NIST statistical

randomness tests. The performance evaluation

reveals its efficiency in terms of

encryption/decryption execution time,

throughput, and memory use.

8. REFERENCES:

[1] M. Sajjad, T. Shah, and R. J. Serna,

“Designing Pair of Nonlinear Components of

a Block Cipher over Gaussian Integers,”

Comput. Mater. Contin., vol.75, no.3,

ISSN:1546-2226(online), 2023, doi:

10.32604/cmc.2023.035347.

[2] J. H. Zadeh and A. G. Bafghi, “Evaluation of

Lightweight Block Ciphers in Hardware

Implementation: A Comprehensive Survey,”

2016.

[3] S. Q. Abd Al-Rahman, O. A. Dawood, and A.

M. Sagheer, “A Hybrid Lightweight Cipher

Algorithm,” Int. J. Comput. Digit. Syst., vol.

11, no. 1, pp. 463–475, Jan. 2022, doi:

10.12785/ijcds/110138.

[4] C. E. Shannon, “Communication Theory of

Secrecy Systems*,” Bell Syst. Tech. J., vol.

28, no. 4, pp. 656–715, Oct. 1949, doi:

10.1002/j.1538-7305.1949.tb00928.x.

[5] C. Pei, Y. Xiao, W. Liang, and X. Han,

“Trade-off of security and performance of

lightweight block ciphers in Industrial

Wireless Sensor Networks,” EURASIP J.

Wirel. Commun. Netw., 2018, doi:

10.1186/s13638-018-1121-6.

[6] H. M. Z. Al Shebli and B. D. Beheshti, “Light

Weight Cryptography for Resource

Constrained IoT Devices,” in Proceedings of

the Future Technologies Conference (FTC)

13

14

http://journals.uob.edu.bh

2018, vol. 880, K. Arai, R. Bhatia, and S.

Kapoor, Eds., in Advances in Intelligent

Systems and Computing, vol. 880. , Cham:

Springer International Publishing, 2019, pp.

196–204. doi: 10.1007/978-3-030-02686-

8_16.

[7] A. Khompysh, N. Kapalova, O. Lizunov, D.

Dilmukhanbet, and S. Kairat, “Development

of a New Lightweight Encryption Algorithm,”

Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 5,

2023.

[8] B. Aboushosha, R. A. Ramadan, A. D.

Dwivedi, A. El-Sayed, and M. M. Dessouky,

“SLIM: A Lightweight Block Cipher for

Internet of Health Things,” IEEE Access, vol.

8, pp. 203747–203757, 2020, doi:

10.1109/ACCESS.2020.3036589.

[9] G. Bansod, N. Pisharoty, and A. Patil,

“BORON: an ultra-lightweight and low power

encryption design for pervasive computing,”

Front. Inf. Technol. Electron. Eng., vol. 18, no.

3, pp. 317–331, Mar. 2017, doi:

10.1631/FITEE.1500415.

[10] G. Bansod, N. Pisharoty, and A. Patil,

“PICO : An Ultra Lightweight and Low Power

Encryption Design for Ubiquitous

Computing,” Def. Sci. J., vol. Vol. 66, no. No.

3, 2016, doi: DOI : 10.14429/dsj.66.9276.

[11] A. Bogdanov et al., “PRESENT: An

Ultra-Lightweight Block Cipher,” in

Cryptographic Hardware and Embedded

Systems - CHES 2007, vol. 4727, P. Paillier

and I. Verbauwhede, Eds., in Lecture Notes in

Computer Science, vol. 4727. , Berlin,

Heidelberg: Springer Berlin Heidelberg, 2007,

pp. 450–466. doi: 10.1007/978-3-540-74735-

2_31.

[12] R. S. Salman, A. K. Farhan, and A.

Shakir, “Creation of S-Box based One-

Dimensional Chaotic Logistic Map: Colour

Image Encryption Approach,” Int. J. Intell.

Eng. Syst., vol. 15, no. 5, pp. 378–389, Oct.

2022, doi: 10.22266/ijies2022.1031.33.

[13] S. Chen, S. Feng, W. Fu, and Y. Zhang,

“Logistic Map: Stability and Entrance to

Chaos,” J. Phys. Conf. Ser., vol. 2014, no. 1,

p. 012009, Sep. 2021, doi: 10.1088/1742-

6596/2014/1/012009.

[14] M. S. Fadhil, A. K. Farhan, and M. N.

Fadhil, “Designing Substitution Box Based on

the 1D Logistic Map Chaotic System,” IOP

Conf. Ser. Mater. Sci. Eng., vol. 1076, no. 1,

p. 012041, Feb. 2021, doi: 10.1088/1757-

899X/1076/1/012041.

[15] I. Aouissaoui, T. Bakir, A. Sakly, and S.

Femmam, “Improved One-Dimensional

Piecewise Chaotic Maps for Information

Security,” J. Commun., vol. Vol. 17, No. 1,

Jan. 2022, doi: 10.12720/jcm.17.1.11-16.

[16] Yang, G., & Zhou, Y. (2009). LSB

Algorithm Research Based on Chaos. 2009

Ninth International Conference on Hybrid

Intelligent

systems. doi:10.1109/his.2009.201

[17] V. A. Thakor, M. A. Razzaque, A. D. Darji,

and A. R. Patel, “A novel 5-bit S-box design

for lightweight cryptography algorithms,” J.

Inf. Secur. Appl., vol. 73, p. 103444, Mar.

2023, doi: 10.1016/j.jisa.2023.103444.

[18] N. K. Patel and H. S. Lamkuche, “Deep

Learning Based Analysis of Key Scheduling

Algorithms of Advanced Ciphers,” Cryptol.

EPrint Arch., May 2021, [Online].

Available: https://eprint.iacr.org/2020/981.

[19] C. Dobraunig, M. Eichlseder, and F. M.

Schläffer, “ASCON v1.2: Lightweight

Authenticated Encryption and Hashing,”

Journal of Cryptology. Accessed: Jul. 01,

2021. [Online]. Available:

https://doi.org/10.1007/s00145-021-09398-9

[20] D. Penazzi and M. Montes, “Shamash (and

Shamashash) (version 1),” Lightweight

Cryptogr. Stand. Process Round, vol. 1, 2019.

[21] P. Morawiecki et al., “ICEPOLE: High-

Speed, Hardware-Oriented Authenticated

Encryption,” in Advanced Information

Systems Engineering, vol. 7908, C. Salinesi,

M. C. Norrie, and Ó. Pastor, Eds., in Lecture

Notes in Computer Science, vol. 7908. ,

Berlin, Heidelberg: Springer Berlin

Heidelberg, 2014, pp. 392–413. doi:

10.1007/978-3-662-44709-3_22.

[22] N. Siddiqui, “A Novel Approach to Building

Substitution-Boxes with Dihedral Group,”

vol. 4, no. 12, 2023.

[23] N. F. Mohd Esa, S. F. Abdul-Latip, and N. A.

Abu, “A New Design of Substitution Box

with Ideal Strict Avalanche Criterion,”

Malays. J. Math. Sci., vol. 16, no. 4, pp. 697–

715, Dec. 2022, doi: 10.47836/mjms.16.4.04.

[24] M. Usama, O. Rehman, and S. Rizvi, “An

efficient construction of key-dependent

substitution box based on chaotic sine map"

2019, International Journal of Distributed

Sensor Networks.

Available:https://doi.org/10.1177/15501477

19895957

14

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 15

[25] J. C. H. Castro, J. M. ´ ´ıa Sierra, and A.

Seznec, “The strict avalanche criterion

randomness test,” Mathematics and

Computers in Simulation., vol. 68, no. 1,

2005, DOI: 10.1016/j.matcom.2004.09.001.

[26] D. Upadhyay, N. Gaikwad, M. Zaman, and S.

Sampalli, “Investigating the Avalanche

Effect of Various Cryptographically Secure

Hash Functions and Hash-Based

Applications,” IEEE Access, vol. 10, pp.

112472–112486, 2022, doi:

10.1109/ACCESS.2022.3215778.

[27] M. Imdad, S. N. Ramli, and H. Mahdin, “An

Enhanced Key Schedule Algorithm of

PRESENT-128 Block Cipher for Random

and Non-Random Secret Keys,” Symmetry,

vol. 14, no. 3, Art. no. 3, Mar. 2022, doi:

10.3390/sym14030604.

[28] K. Mohamed, M. N. M. Pauzi, F. H. H. M.

Ali, and S. Ariffin, “Analyse "On Avalanche

Effect In Cryptography Algorithm",” Eur.

Proc. Multidiscip. Sci. EpMS, 2021, doi:

10.15405/epms.2022.10.57.

[29] R. Verma and A. K. Sharma, “Cryptography:

Avalanche effect of AES and RSA,” Int. J.

Sci. Res. Publ. IJSRP, vol. 10, no. 4, 2020,

doi: 10.29322/IJSRP.10.04.2020.p10013.

[30] M. MANAA and R. H. JWDHA, “A

proactive data security scheme of files using

minhash technique,” J. Theor. Appl. Inf.

Technol., vol. 96, 2018.

[31] B. A. Buhari, A. A. Obiniyi, K. Sunday, and

S. Shehu, “Performance Evaluation of

Symmetric Data Encryption Algorithms:

AES and Blowfish,” Saudi J. Eng. Technol.,

vol. 04, no. 10, pp. 407–414, 2019, doi:

10.36348/SJEAT.2019.v04i10.002.

[32] S. Kansal and M. Mittal, “Performance

evaluation of various symmetric encryption

algorithms,” International Conference on

Parallel, Distributed and Grid Computing,

Solan, India: IEEE, 2014, pp. 105–109. doi:

10.1109/PDGC.2014.7030724.

15

