
1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

14	

15	

16	

17	

18	

19	

20	

21	

22	

23	

24	

25	

26	

27	

28	

29	

30	

31	

32	

33	

34	

35	

36	

37	

38	

39	

40	

41	

42	

43	

44	

45	

46	

47	

48	

49	

50	

51	

52	

53	

54	

55	

56	

57	

60	

61	

62	

63	

64	

65	

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. #, No.# (Mon-20..)

E-mail:author’s email

 http://journals.uob.edu.bh

Analysis of Offline-First App Technology in Raspberry Pi

Edge Computing for Post-Disaster Hospital Situation
Zulkifli Tahir1, Muhammad Niswar2 Wardi3, Andi A.P. Alimuddin4, Tyanita Puti Marindah

Wardhani5, & Laura N. Nainggolan6

1,2,4,5,6 Department of Informatics, Faculty of Engineering, Universitas Hasanuddin, Indonesia

3Department of Electrical Engineering, Faculty of Engineering, Universitas Hasanuddin, Indonesia
(zulkifli, niswar, wardi, aisprayogi, tyanitaputi)@unhas.ac.id, nainggolan15d@student.unhas.ac.id]

*Corresponding author: Zulkifli Tahir

Received ## Mon. 20##, Revised ## Mon. 20##, Accepted ## Mon. 20##, Published ## Mon. 20##

Abstract: The occurrence of disasters has a significant influence on hospitals. The accessibility of the hospital emergency

information system may be compromised due to an inconsistent network connection. In order to address this requirement, it is necessary
to develop a website system that is capable of functioning in situations where the network connection is limited or unavailable,

sometimes referred to as offline functionality. Progressive Web Apps (PWA) is the theory of creating web-based applications that are

user friendly, even in situations where the internet connection is limited or there is no internet connection at all by utilizing Service

Workers. This offline functionality solution is achieved by combining Service Workers technology with React JavaScript for frontend
development and cloud Firestore for backend data storage. This research conducts a comparative analysis between online programs

versus programs that utilize Service Workers. Additionally, this device incorporates a Raspberry Pi server to support the edge

computing architecture. The findings indicate that web Service Workers exhibit a notably quicker average access time and average

browser processing time in comparison to their counterparts. The throughput test indicate that the inclusion of the integrated web
Service Workers leads to a higher volume of requests being generated within a certain time period compared to the scenario where the

Service Workers is not utilized. The hospital emergency information system has demonstrated its capacity to operate consistently and

efficiently by leveraging various technologies.

Keywords: Disaster, Hospital Emergency Information System, Progressive Web Apps, Edge Computing, Offline web system

1. INTRODUCTION

According to the global Risk Report 2023,

Indonesia is in second place among the countries

most at risk of disasters among 193 countries. This

ranking is based on the global risk index, which

measures the vulnerability of a country to various

types of disasters. In the case of Indonesia, its world

risk index is recorded at 41.46 [1]. In a

comprehensive manner, the National Agency for

Disaster Management in Indonesia, classifies ten

distinct types of disaster risks prevalent in the

country. These include earthquakes, tsunamis,

volcanic eruptions, floods, flash floods, landslides,

droughts, forest and land fires, extreme weather

events, and extreme waves [2]. Indonesia has

garnered significant international attention in the past

two decades due to the severe catastrophes that have

caused extensive destruction to its geographical area

[3].

Disaster occurrences give rise to diverse forms of

damage, such as harm to electricity infrastructure, the

destruction of the Base Transceiver Station (BTS)

network, and the occurrence of blackouts or

disconnections in the communications network. The

occurrence of the disaster had a detrimental impact

on the Hospital. Hospital systems will experience

limited accessibility after a disaster due to factors

such as disrupted network connectivity, or even loss

of internet connectivity, and problematic electrical

infrastructure. This is the importance of addressing

public health problems efficiently through the use of

an effective health information system that is able to

manage data efficiently after a disaster occurs [4].

Therefore, technological advances are needed that

IJCDS 1571055093

1

2 Author Name: Paper Title …

http://journals.uob.edu.bh

can facilitate development systems that are able to

effectively overcome the challenges that arise after

disasters.

Previous studies have demonstrated successful

implementation of a dependable offline web system

suitable for utilization by small and medium-sized

industries [5][6] and by e-commerce system [7][8].

Offline solutions for adaptive distance learning have

been utilized by other researchers as well [9]. In the

present study, the implemented solution utilizes

offline-first app technology, employing the PWAs

with Service Workers, React JavaScript, Node

JavaScript frameworks, and both online-offline

Firebase API databases. Our proposed system has

been built using Edge Computing architecture. These

technologies are combined and utilized to increase

the resilience of hospital emergency information

systems after a disaster occurs. By utilizing this

technology, website speed can be increased while

accessibility can be maintained in conditions of

unstable or even interrupted internet connectivity.

PWAs represent a contemporary phenomenon

within the notable progression of web applications

[10]. It refers to web apps that leverage contemporary

web capabilities in order to offer users an experience

similar to that of a native app [11]. PWAs is equipped

with a web application manifest, which enables them

to be easily integrated and accessed immediately

from the home screen of a user's device [12]. PWAs

is also utilized for the purpose of developing cross-

platform software that is compatible with various

platforms, including personal computers, tablets,

smartphones, and other similar devices for

agricultural and health systems [13][14]. Several

widely used frontend frameworks, such as React,

Preact, Vue, Angular, and Ionic, include built-in

support for PWAs [15]. Furthermore, PWAs exhibit

the advantageous characteristic of swift loading

times, irrespective of the prevailing network

conditions. The ability to cache material for offline

access and provide push notifications is made

possible by the assistance of Service Workers [16].

Service Workers is a category of Web Workers,

which are scripts that operate in the background of a

user's web browser [17]. Service Workers are

JavaScript files that operate on a separate thread from

the main thread running the browser. It is responsible

for managing network requests, caching data,

retrieving resources from the cache, and facilitating

the transmission of push notifications [18]. Web

assets have the capability to be kept as a local cache,

so enabling users to access a satisfactory experience

even in situations where the internet network is

insufficient. Applications have the capability to

persistently store and utilize previously accessed

online pages, as well as offer information regarding

the condition of the internet connection, even in the

absence of an active browser session, hence avoiding

the occurrence of error messages [19]. Service

Workers ensure that they operate on the HTTPS

protocol for secure connections. This system has the

ability to handle network connection requests

originating from the browser and provide responses

using cache data [20].

React JavaScript is a frontend library that was

created by Facebook with the purpose of aiding web

developers in the creation of interactive, stateful, and

user-friendly user interface (UI) components. React

JS is widely regarded as the most optimal library for

efficiently creating intricate UI, ensuring exceptional

performance. React JS uses basic principles with a

component-based architecture [21]. This library also

supports the use of PWA technology [15].

Node.js is a software framework developed for

creating web-based applications using Java Script

programming syntax. Node.js is specifically

designed to enhance the functionality of JavaScript

by allowing it to function as a programming language

that runs on the server side. Node.js includes its own

HTTP library server, allowing it to act as a web

server [22]. So, with Node.js which functions as the

backend it can be run with React which functions as

the frontend [23].

IndexedDB is a type of NoSQL transactional

database system that facilitates efficient retrieval of

persistent data by utilizing JavaScript Object

Notation (JSON) objects. The functionality of this

system can be executed by utilizing JavaScript code,

hence enhancing its usability for web browsers.

IndexedDB offers a significant benefit in terms of its

substantial storage capacity, which commences at 50

MB of data allocation for every origin [24].

IndexedDB is a method for gathering and organizing

data through a web application that possesses offline

capabilities [25].

2

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 3

http://journals.uob.edu.bh

The Firebase Realtime Database is a cloud-hosted

NoSQL database. The real-time database idea

facilitates the synchronization of interconnected

devices and maintains accessibility even in the

absence of network connectivity through the

utilization of a local cache. The Firebase Realtime

Database was designed within the framework of

Google's infrastructure to enable developers to

prioritize the development of high-quality

applications that facilitate seamless movement of

both offline and online data [26].

Edge computing refers to a distributed computing

framework in which data, computing resources,

storage, and applications are situated in a location at

the edge of network. This system is situated either in

proximity to the user or in proximity to the data. This

paradigm places computing resources near areas

where they are needed, minimizing the distance data

is sent over the network and can result in increased

overall network efficiency and performance [27]. An

edge computing prototype with Raspberry Pi has been

used as an edge server in this research. In certain

cases, this strategy of using a Raspberry Pi shows

superior performance when compared to using a

cloud computing system [28].

2. METHODOLOGY

The web-based system that has been developed is

known as the hospital emergency information system. The

primary objective of this system is designed to provide

real-time information and facilitate effective

communication among healthcare professionals inside

hospital settings. The developed system would possess the

capability to gather patient data in challenging network

conditions or in offline scenarios through the utilization of

PWAs technology.

The illustration presented in Figure. 1 provides a visual

representation of the overall structure and layout of the

hospital system that has been developed. The system has

been implemented on a Raspberry Pi 4 device, serving as

a web server. The system has been developed utilizing

React JS, node.js, firebase, and PWAs. Node.js is a widely

employed platform for developing projects, while Nginx

is commonly utilized as a web server. The initial step is

utilizing the create-react-app command to generate a React

JS project. To construct a Service Workers, it is necessary

to install the JavaScript library and the workbox-webpack

node module. Additionally, the Firebase database is

installed. The solution, which has been constructed and

afterwards deployed in nginx as a web server, facilitates

web access on the client side. The user has the capability

to access the hospital emergency information system web

interface by utilizing a web browser, such as Google

Chrome or Firefox, on a network that is shared with the

Raspberry Pi web server.

Hospitals employing web technology commonly have a

shared challenge, namely, their inability to function in the

absence of server or internet network connectivity. The

utilization of Service Workers enables the implementation

of an offline first app model, hence employing web

technologies. The developed system would possess the

capability to operate both in online and offline modes.

The utilization of local databases with NoSQL database,

such as Local Storage and IndexedDB, for offline database

management, along with the integration of Firebase API

as a backend service for online database management. The

two databases will undergo periodic synchronization,

contingent upon the presence of an internet connection.

Figure 2. Data Flow System

The system was developed in accordance with the flow

depicted in Figure. 2. The web application will initiate data

requests that will be received by the Service Workers

operating on the client side. Subsequently, the Service

Workers will verify the operational status of the website,

determining whether it is now accessible or inaccessible.

In the context of a system that runs online, user requests

will be sent to the database server, in this case using

Firebase, which is located on the original server.

Synchronization will occur between data stored in the

local database and data stored in the server database,

depending on whether there is an internet connection or

not. Subsequently, the retrieved request outcomes will be

transmitted back to the web-based application for

presentation within the browser interface. In the event of

the internet being inaccessible, Service Workers assume a

Figure 1. An Overview of the Hospital Emergency System Design

3

4 Author Name: Paper Title …

http://journals.uob.edu.bh

crucial function. The service worker will be operational

and deliver a return value in the form of data that had been

stored in the cache during the initial execution of the

system. Service Workers retrieve data from the local

database and subsequently provide a response to the

website, which is then displayed in the web browser.

3. IMPLEMENTATION AND TESTING

This section details the execution and creation of the

previously planned system utilizing React Js, Node.js,

Service Workers, and the Firebase API Server database

technology. This system is then run on Raspberry Pi

hardware which functions as a web server. The first test

includes performance testing, which specifically focuses

on response time, throughput, and testing web browser

parameters. Next, the second test includes evaluating the

feasibility of the PWA concept using Lighthouse.

A. Hospital Emergency Information System

Implementation

The process of analyzing system requirements was

conducted by interviewing the officers from the

Management Information Systems department at

Hasanuddin University Teaching Hospital in Makassar,

Indonesia. Based on the findings derived from the

conducted interviews, it was determined that the

implementation of a hospital emergency information

system is important in order to ensure post-disaster

accessibility. The interviews yielded the necessary data for

the development of a hospital emergency information

system, specifically encompassing patient forms and

medical records.

The author developed online design for a hospital

emergency information system utilizing the React Js

library to generate code scripts. Additionally, Service

Workers technology was employed to enhance web

accessibility in situations of unreliable or unavailable

network connectivity.

The database structure employed by the hospital

emergency information system website. The research

utilizes a NoSQL database, specifically Cloud Firestore

from Firebase. Cloud Firestore is a data storage system

that organizes data in the form of documents, which are

further sorted into collections. Every document is a form

of data that is characterized by its lightweight nature and

consists of columns that correspond to specific values.

Two distinct sets are utilized in this study, specifically

patients and medical records.

The system depicted in Figure. 3 is constructed utilizing

the React Js library and seamlessly incorporated with a

service worker. The system is capable of functioning both

online and offline, enabling it to perform tasks such as data

entry, data modification, data display, data deletion, and

payment processing even in the absence of an internet

connection.

B. Testing Scenarios

Test scenarios are used to assess and obtain

performance results from hospital emergency information

system applications that use PWA technology. The test

was carried out on a Raspberry Pi device with the

following specifications:

• SoC : Broadcom BCM2711 Cortex-A72 64Bit SoC

@1.5 GHz

• GPU : Videocore VI @500 MHz

• RAM : 4 GB

• SdCard : 16 GB

The performance testing parameters used include

response time, throughput, and execution of browser

operations on the client side. The evaluation of response

time and throughput is conducted by employing the

Figure 3. Service Workers in web application

4

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 5

http://journals.uob.edu.bh

Apache JMeter application and the Google Chrome

extension. Additionally, the examination of browser

processes is carried by utilizing the DevTools feature

provided by Google Chrome. The present study aims to

evaluate the feasibility of PWAs by utilizing the

Lighthouse addon within the Google Chrome browser.

C. Performance Testing Scenarios

The performance test in this study involves two hospital

emergency information system websites that do not

employ Service Workers, as well as another website that

does utilize Service Workers. This system operates on a

Raspberry Pi device that serves as a web server. Client-

side performance experiments are conducted. The testing

encompassed the assessment of average response times

using extensions in Google Chrome and Apache JMeter

software, along with the evaluation of throughput using

Apache JMeter software.

1) Average Response Time Testing

The average response time refers to the calculation of

the sum of the time intervals between client-server

requests, divided by the total number of requests as

expressed by (1).

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
1

𝑛
∑ 𝑎𝑖 =

1

𝑛
(𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛)𝑛

𝑖=1 (1)

n : Number of requests from client to server.

i : Counter number (i = 1,2,…,n) server

a : Time interval for each request by the client

A comparative analysis was conducted to determine the

average response time of systems employing service

workers vs those without Service Workers. This

experiment employs Google Chrome as the web browser,

utilizing the Google Chrome extension called Open

Multiple URLs. This addon allows for the simultaneous

opening of several tabs with the identical URL. The

Reload All Tab extension enables the simultaneous

reloading of all currently open URL tabs, while the page

load time extension offers a method to revert response

timings. Conduct an experiment by sequentially opening

URL tabs ranging from 1 to 65. The process of testing

involves the utilization of two distinct websites, with the

first website employing a Service Workers, while the

second website without the presence of a Service Workers.

Testing is done on the client side. Response time

evaluation also uses Apache JMeter software, which

combines a ramp up duration of 1 and a number of loops

of 1. The threads used come from one user and are in

multiples of 100, ranging from 100 to 1100 threads. The

response time value for each test thread is determined by

performing 10 repetitions, and then calculating the average

of the recorded response times.

D. Throughput Testing

Throughput is a parameter used to analyze the

performance of a web system. Throughput refers to the

quantity of accesses that can be executed within a certain

time period, usually measured in Transactions Per Second

(TPS). Throughput calculation using equation (2).

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑖𝑚𝑒 𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠
 (2)

Evaluation of web system throughput is carried out both

for systems that employ Service Workers and those that do

not. Utilization of Apache JMeter software is used in the

testing process, where a ramp up period of 1 and number

of loops is implemented 1. Threads are started by one user

and increase in multiples of 100, starting from 1 thread to

a maximum of 1100 threads. The throughput value for

each test thread is determined by performing 10

repetitions, and then calculating the average throughput.

The purpose of this assessment is to determine the quantity

of transactions that can be executed within a certain time

period on the Service Workers website according to the

specified number of threads.

E. Browser Testing

The load time of page resources can be measured by

utilizing Google Chrome dev-tools. The Chrome browser

is capable of generating a comprehensive inventory of

server-based resources, including JavaScript, HTML, and

CSS. Additionally, it offers a visual representation of the

access time for each resource through the use of a timeline

graphic model. The duration required for data retrieval

from the server to the browser is represented by a

numerical value known as DomContentLoaded. Similarly,

the duration for the complete retrieval of data from the

server to the browser, indicating the successful loading of

the web page, is denoted by another numerical value called

Load.

The browser testing procedure involves the evaluation

of website load times in the presence and absence of

service workers. This is accomplished by enabling and

disabling the cache feature in Google Chrome dev-tools.

The experiment was conducted by accessing each

webpage a total of 10 times. Subsequently, a computation

is performed to determine the mean value for each

conducted experiment. The dev-tools display for

evaluating DomContentLoaded and Load is depicted in

Figure. 4. The evaluation of cache functionality can be

conducted by using the "disable cache" option to prevent

cache activation, and disabling the "disable cache" option

to enable cache functionality.

5

6 Author Name: Paper Title …

http://journals.uob.edu.bh

Figure 4. Chrome's Dev-tools Display

F. PWAs Concept Testing

In order to assess non-functional needs, the testing

process involved the utilization of the Google Chrome

extension known as Lighthouse. An experimental

investigation was conducted using a Raspberry Pi device.

Lighthouse is an open-source program developed by

Google that serves as a tool for evaluating the PWAs idea.

It encompasses various dimensions like performance,

accessibility, adherence to best practices, search engine

optimization (SEO), and the implementation of PWAs

features. The Lighthouse tool has the capability to operate

within the user's web browser by means of a Google

Chrome extension. Experiments conducted with the

utilization of Lighthouse are executed for a singular trial

on an individual client browser.

4. RESULTS AND DISCUSSION

A. Performance Results

TABLE I. Response time data with Google Chrome Extension

Number of

Requests

With Service

Workers

Without Service

Workers

1 1.16 1.58

5 1.51 1.81

10 1.82 2.40

15 2.87 3.07

20 4.08 4.16

25 5.11 5.26

30 6.03 6.43

35 6.38 6.57

40 6.47 6.71

45 7.08 7.29

50 7.28 7.75

Response time testing when accessing a website

homepage with and without Service Workers on a

Raspberry Pi device was obtained using the Google

Chrome extension. The average response time results

obtained for each experiment are presented in Table I and

depicted in Figure. 5. The findings from this research show

that the average access time for websites equipped with

Service Workers is faster than websites without Service

Workers. This is because Service Workers are able to

manage website asset caches efficiently, enabling faster

performance and incorporating image optimization

capabilities that can reduce bandwidth usage.

Figure 5. Response time graph with Google Chrome

Extension

The outcomes of the response time experiment

conducted on a Raspberry Pi device, involving the access

of web pages with and without Service Workers using

Apache Jmeter software, will yield results for each trial.

These results will include the average response time,

which will be presented in Table II and Figure. 6. Average

access time testing is carried out on each page from 1 to

1100 threads. The findings show that the average access

time for websites equipped with Service Workers is faster

than websites that are not equipped with Service Workers.

The presence of Service Workers in a web application

leads to a reduction in file size, resulting in better response

times when compared to web applications that do not have

Service Workers.

TABLE II. Response time data with Apache JMeter

Number of

Threads

With Service

Workers

Without Service

Workers

1 7.3 11.1

100 8.4 13.1

200 13.9 19.0

300 23.0 54.9

6

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 7

http://journals.uob.edu.bh

400 25.3 57.1

500 50.1 117.9

600 52.1 119.5

700 371.0 401.3

800 404.1 454.0

900 442.2 472.2

1000 511.3 567.7

1100 514.0 606.7

A significant increase in response time occurs when the

number of threads is between 600 and 700. This

phenomenon is caused by the Raspberry Pi CPU reaching

its maximum utilization capacity. Thus, it can be

concluded that the Raspberry Pi device is reliable in

accepting up to approximately 600 threads.

Figure 6. Response time graph with Apache JMeter

Throughput testing for visiting web pages with and

without Service Workers was carried out on a Raspberry

Pi device using Apache JMeter software. The results of

each experiment are presented in Table III and Figure. 7.

The testing process involves evaluating each page in a

range of 1 to 1100 threads.

TABLE III. Throughput data

Number of

Threads

With Service

Workers

Without Service

Workers

1 139 96.01

100 100.4 93.72

200 199 194.16

300 327.6 316.43

400 328.7 323.88

500 480 434.12

600 483.5 464.57

700 559.6 481.94

800 576.1 509.85

900 545.6 525.19

1000 574.6 540.68

1100 588.8 523.45

The experimental graph indicates that the throughput of

a web application without Service Workers is

comparatively lower than that of a web application

utilizing Service Workers. However, the disparity in

throughput may not be substantial. Web applications that

utilize Service Workers demonstrate enhanced

throughput, enabling them to process a greater number of

requests within a specific timeframe.

Figure 7. Throughput graph with Apache JMeter

The figures presented in Figure. 8 and Figure. 9

illustrate the test outcomes of browser processing on a

Raspberry Pi web server, comparing a web without a

Service Workers and a web with a Service Workers. The

two parameters examined in this research are

DomContentLoaded and Load. The experiment was

carried out with a series of tests by visiting the internet

without using cache. Each test was repeated ten times to

obtain a total of ten trials. The average time required for

the browser is calculated to access the online system. After

making ten attempts to access the web without using the

cache, continue visiting the web by storing the cache in the

browser for ten additional attempts as well.

Figure 8. DomContentLoaded Access Time Comparison

Chart

7

8 Author Name: Paper Title …

http://journals.uob.edu.bh

The findings indicate that the average

DomContentLoaded and Load time for each website were

significantly longer when accessed without enabling the

cache. The browser will retrieve data directly from the

server when accessing a website without using cache and

the time required for this process depends on the speed of

the internet connection used and the amount of data on the

server.

Figure 9. Load Access Time Comparison Chart

Activating the cache can significantly reduce access

times for DomContentLoaded and load events on the

website. The data retrieval process can not only be done

on the server, but can also utilize the browser cache to

store and access data more efficiently.

Websites that utilize Service Workers demonstrate

improved access times for DomContentLoaded and Load

events in comparison to websites that do not employ

Service Workers. The Service Workers script executes in

the background, which is different from the usual behavior

of JavaScript. Nevertheless, the disparity in access time

between the two is negligible, as both were developed

using React JS. React JS is a JavaScript package that

employs a Single Page Application (SPA) architecture.

This means that after the initial page load from the server,

subsequent page transitions do not necessitate another

refresh to display the new page. The system exhibits

enhanced performance by eliminating the need for

constant page loading.

Data collection for offline access time commenced

from the second experiment. The initial procedure is

conducted through online means for the purpose of asset

storage. The offline data retrieval process is executed

through the activation of the cache, which is repeated ten

times. The acquired results for offline web access with a

Service Workers are the Load and DomContentLoaded

events, as seen in Figure. 10.

Figure 10. Load access time offline and online with Service

Workers

In the context of an online Service Workers web

condition, the initial loading process results in increased

loading times. During the initial load process, all asset files

are processed and stored in the storage cache, resulting in

significant additional latency. The subsequent procedure

will facilitate the system's continued accessibility in the

absence of a network connection.

In offline conditions, the loading time for data during

web access is observed to be faster compared to online

conditions. This phenomenon occurs due to the Service

Workers’ ability to get assets from the cache and database

stored in local storage when browsing the web in an offline

environment. In the context of online access to the web,

the Service Workers functions by retrieving data from the

server, caching it, and then storing it in both local storage

and the server. The duration of loading time experienced

while online activities is comparatively extended.

B. PWAs Concept Feasibility

The evaluation of PWAs through concept testing is

classified as a non-functional need. The examination

employs the Lighthouse addon, specifically designed for

Google Chrome. Lighthouse is an open-source application

developed by Google that serves as a tool for evaluating

several elements of PWAs, including their performance,

accessibility, adherence to best practices, and SEO.

Lighthouse is a Google Chrome extension that operates

within the user's web browser.

Figure 11. Test Results with Lighthouse

Resulting in the test shown in Figure. 11 on a web-

based hospital emergency information system. The

Lighthouse test gave positive results for the built web

8

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 9

http://journals.uob.edu.bh

application, as it achieved commendable scores across

four different criteria. Specifically, the app demonstrated

strong performance with an average score of 97 out of 100,

demonstrated good accessibility with an average score of

91 out of 100, adhered to best practices with an average

score of 93 out of 100, and excelled in terms of SEO. with

a perfect score of 100 out of 100.

5. CONCLUSION

The performance investigation was conducted to

compare websites that utilize Service Workers with those

that do not, employing the Apache Jmeter tool and Google

Chrome developer tools. Additionally, the notion of

PWAs was examined using the Lighthouse tool on Google

Chrome. The obtained results indicate the following:

The utilization of PWAs enables the hospital

emergency information system website to function offline,

allowing for the storage, modification, deletion, and

retrieval of data from the database even when not

connected to the internet.

The present study examines the disparity in response

time and throughput between web testing conducted with

Service Workers and web testing conducted without

Service Workers on the Raspberry Pi web server. The

utilization of Service Workers leads to enhanced response

times and increased throughput compared to websites that

do not employ Service Workers. In order to enable

efficient processing of substantial requests within a

specified timeframe, it is imperative to incorporate Service

Workers into the web architecture.

According to the conducted experimentation on the

Raspberry Pi web server, it has been observed that

websites incorporating Service Workers exhibit enhanced

load access speed in comparison to websites lacking

Service Workers. The Service Workers process occurs in

the background, thereby improving web performance and

facilitating cache management.

The results of the test findings carried out using

Lighthouse on Raspberry Pi devices obtained Performance

criteria with an average score of 97, Accessibility criteria

with an average score of 91, Best Practice criteria with an

average score of 93, and SEO criteria with an average

score of 93. and SEO with a full score of 100.

The findings of this study demonstrate that the

utilization of these technologies offers numerous benefits

and has the potential to be integrated into hospital

emergency information systems. In our forthcoming

study, we intend to incorporate various cutting-edge

technologies, including the Web Speech API, WebRTC,

WebBluetooth, and others [29]. In the future, our research

will also include exploration of system functional

improvements aimed at increasing the resolution and

performance speed of edge computing devices in disaster

situations, including by utilizing cluster systems,

implementing solar panel electrical connections, and

integrating satellite internet connections.

6. ACKNOWLEDGEMENT

The present study received financial support from

the Basic Research for Higher Education Excellence

or Penelitian Dasar Unggulan Perguruan Tinggi

(PDUPT) Grant.

7. REFERENCES

[1] I. A. Frege et al., WorldRiskReport 2023. 2023.

[2] Badan Nasional Penanggulangan Bencana

(BNPB), “Peraturan Kepala Badan Nasional

Penanggulangan Bencana Nomor 9 Tahun 2008

tentang Prosedur Tetap Tim Reaksi Cepat Badan

Nasional Penanggulangan Bencana,” 2008.

[3] J. Widagdo, D. Putra, B. Syihabuddin, T. Juhana,

E. Mulyana, and A. Munir, Android-based

Disaster Management Application for After-

Disaster Rapid Mobile Assessment. 2021. doi:

10.1109/IoTaIS50849.2021.9359695.

[4] E. Aung and M. Whittaker, “Preparing routine

health information systems for immediate health

responses to disasters,” Health Policy Plan., vol.

28, no. 5, pp. 495–507, 2013, doi:

10.1093/heapol/czs081.

[5] Z. Tahir, A.-R. Dasmito, Adnan, M. Niswar, and

Wardi, “A Reliable Offline Web System for Small

and Medium Industries,” MATEC Web Conf., vol.

331, p. 06007, 2020, doi:

10.1051/matecconf/202033106007.

[6] Z. Tahir, A. A. Ilham, A. P. Alimuddin, M. Z. A.

Suyuti, and Charina, “Reliable and Low-Cost

Digital Transformation Technology Using

Progressive Web Apps in Fog Computing

Architecture for Small and Medium Industries in

Indonesia BT - Advances in Internet, Data & Web

Technologies,” L. Barolli, E. Kulla, and M. Ikeda,

Eds., Cham: Springer International Publishing,

2022, pp. 163–174.

[7] Z. Tahir, A. A. Ilham, M. Niswar, A. Adnan, and

A. Fauzy, Progressive Web Apps Development

and Analysis with Angular Framework and

Service Worker for E-Commerce System. 2021.

doi: 10.1109/ICOCO53166.2021.9673557.

[8] E. Eunike, R. Sanjaya, and A. D. Widiantoro,

“Application of Progressive Web Apps (PWA) on

PT SKA’s E-Commerce Website,” J. Bus.

Technol., vol. 3, no. 1, pp. 14–20, 2023, doi:

10.24167/jbt.v3i1.5263.

[9] M. Pikuliak, I. Lazarovych, and M. Usyk,

“Progressive web technology-based improvement

9

10 Author Name: Paper Title …

http://journals.uob.edu.bh

of the distance learning adaptive system,” Sci. J.

Ternopil Natl. Tech. Univ., vol. 105, no. 1, pp.

118–127, 2022, doi:

10.33108/visnyk_tntu2022.01.118.

[10] M. Squarcina, S. Calzavara, and M. Maffei, “The

Remote on the Local: Exacerbating Web Attacks

Via Service Workers Caches,” Proc. - 2021 IEEE

Symp. Secur. Priv. Work. SPW 2021, pp. 432–443,

2021, doi: 10.1109/SPW53761.2021.00062.

[11] R. Wijaya, P. Crisgar, M. Pakpahan, E.

Syamsuddin, and M. Hasanuddin, Implementation

of Motor Vehicle Tracking Software-as-a-Service

(SaaS) Application Based on Progressive Web

App. 2021. doi:

10.1109/ISESD53023.2021.9501600.

[12] D. M. Case, C. Steeve, and M. Woolery,

“Progressive Web Apps are a Game-Changer! Use

Active Learning to Engage Students and Convert

Any Website into a Mobile-Installable, Offline-

Capable, Interactive App.” pp. 1396–1396, 2020.

doi: 10.1145/3328778.3367007.

[13] I. Bekiaris et al., GRETA: Pervasive and AR

Interfaces for Controlling Intelligent

Greenhouses. 2021. doi:

10.1109/IE51775.2021.9486584.

[14] A. Cesario et al., “Development of a Digital

Research Assistant for the Management of

Patients’ Enrollment in Oncology Clinical Trials

within a Research Hospital.,” J. Pers. Med., vol.

11, no. 4, Mar. 2021, doi: 10.3390/jpm11040244.

[15] V. K. Kotaru, Service Workers,” in Building

Offline Applications with Angular. 2022.

[16] T. A. Majchrzak, A. Biørn-Hansen, and T. M.

Grønli, “Progressive web apps: The definite

approach to cross-platform development?,” Proc.

Annu. Hawaii Int. Conf. Syst. Sci., vol. 2018-

Janua, pp. 5735–5744, 2018, doi:

10.24251/hicss.2018.718.

[17] P. Chinprutthiwong, R. Vardhan, G. Yang, Y.

Zhang, and G. Gu, “The service worker hiding in

your browser: The next web attack target?,” ACM

Int. Conf. Proceeding Ser., pp. 312–323, 2021,

doi: 10.1145/3471621.3471845.

[18] K. Subramani, J. Jueckstock, A. Kapravelos, and

R. Perdisci, “SoK: Workerounds - Categorizing

Service Worker Attacks and Mitigations,” Proc. -

7th IEEE Eur. Symp. Secur. Privacy, Euro S P

2022, pp. 555–571, 2022, doi:

10.1109/EuroSP53844.2022.00041.

[19] S. Ali, C. Grover, and R. Chaudhary, “Progressive

Web Apps (PWAs)---Alternate to Mobile and

Web,” in Emerging Technologies in Data Mining

and Information Security, P. Dutta, S.

Chakrabarti, A. Bhattacharya, S. Dutta, and V.

Piuri, Eds., Singapore: Springer Nature Singapore,

2023, pp. 565–576.

[20] L. Karavashkin, S. Molodyakov, and B.

Medvedev, “Caching Data in a Web Audio

Service Using Progressive Web Apps

Technologies,” in Cyber-Physical Systems and

Control II, D. G. Arseniev and N. Aouf, Eds.,

Cham: Springer International Publishing, 2023,

pp. 372–380.

[21] P. S. Maratkar and P. Adkar, “React JS – An

Emerging Frontend Javascript Library Virtual

DOM React One-Way Data Flow JSX Syntax,”

vol. 4, no. 12, pp. 99–102, 2021.

[22] S. Tilkov and S. Vinoski, “Node.js: Using

JavaScript to Build High-Performance Network

Programs,” Internet Comput. IEEE, vol. 14, pp.

80–83, Jan. 2011, doi: 10.1109/MIC.2010.145.

[23] A. M. Vukicevic, M. Djapan, M. Stefanovic, and

I. Macuzic, “SafE-Tag mobile: A novel javascript

framework for real-time management of unsafe

conditions and unsafe acts in SMEs,” Safety

Science, vol. 120. pp. 507–516, 2019. doi:

10.1016/j.ssci.2019.07.024.

[24] F. Paligu and C. Varol, “Browser forensic

investigations of whatsapp web utilizing

indexeddb persistent storage,” Futur. Internet,

vol. 12, no. 11, pp. 1–17, 2020, doi:

10.3390/fi12110184.

[25] U. S. Nagarakshitha, B. R; Lohith, K. S ; Aarthy,

K. P; Gopkumar, Arjun; Ranjan, “Application of

NoSQL Technology to Facilitate Storing and

Retrieval of Clinical Data Using IndexedDb in

Offline Conditions,” J. Comput. Theor. Nanosci.,

vol. 17, no. 9–10, pp. 4012–4015, 2020.

[26] M. Ohyver, J. V. Moniaga, I. Sungkawa, B. E.

Subagyo, and I. A. Chandra, “The comparison

firebase realtime database and MySQL database

performance using wilcoxon signed-rank test,”

Procedia Comput. Sci., vol. 157, pp. 396–405,

2019, doi: 10.1016/j.procs.2019.08.231.

[27] K. Cao, Y. Liu, G. Meng, and Q. Sun, “An

Overview on Edge Computing Research,” IEEE

Access, vol. 8, pp. 85714–85728, 2020, doi:

10.1109/ACCESS.2020.2991734.

[28] T. Gizinski and X. Cao, “Design, Implementation

and Performance of an Edge Computing Prototype

Using Raspberry Pis,” 2022 IEEE 12th Annual

Computing and Communication Workshop and

Conference, CCWC 2022. pp. 592–601, 2022. doi:

10.1109/CCWC54503.2022.9720848.

[29] A. Talukder and R. Haas, AIoT: AI meets IoT and

Web in Smart Healthcare. 2021. doi:

10.1145/3462741.3466650.

10

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 11

http://journals.uob.edu.bh

Dr. Zulkifli Tahir is an

Assistant Professor in the

Department of Informatics,

Faculty of Engineering,

Universitas Hasanuddin,

Indonesia. His research interests

lie in the areas of Web

Technologies including

progressive web apps, web

server load balancing, and

digital transformation for small

and medium industries; Distributed System, Fog

Computing and Internet of Things (IoT), with a focus on

smart homes, solar panel monitoring, and resource

allocation; and Machine Learning and Artificial Neural

Networks for applications in maintenance decision support

systems, industrial machine fault detection, and

image processing.

Dr. Muhammad Niswar is

an associate professor at the

Department of Informatics,

Faculty of Engineering,

Hasanuddin University,

Indonesia. He graduated

Bachelor of Engineering in

Electrical Engineering (1997)

from Hasanuddin University,

Indonesia. He then

received a Master of

Information Technology (2001) and Ph.D. in Information

Science (2010) from the University of Newcastle,

Australia, and Nara Institute of Science and Technology,

Japan, respectively. His research interests includes

computer networking, internet of things, cloud computing,

cybersecurity, and artificial intelligence.

Dr. Wardi is Dr. Wardi is

Associate Professor in the

Department of Electrical

Engineering, Faculty of

Engineering, Universitas

Hasanuddin and is renowned for

his groundbreaking

contributions in the field of

telecommunications technology.

The primary focus of his study is

on many facets of wireless

communications, namely the capacity and coverage

planning of LTE-A (4.5G) at a frequency of 2300 MHz.

His investigations on the performance of routing protocols

such as OLSR and BATMAN in Multi-hop Ad Hoc

Networks and Mesh Ad Hoc Networks, using Raspberry

Pi as a platform, have resulted in noteworthy contributions

to the field. Dr. Wardi has created a portable IP-based

communication system that utilizes Raspberry Pi as an

exchange. This demonstrates his inventive approach to

practical telecoms solutions.

Andi Ais Prayogi

Alimuddin is a Lecturer in the

Department of Informatics,

Faculty of Engineering,

Universitas Hasanuddin,

Indonesia. His research interests

lie in the areas of information

system security, and educational

game development.

Tyanita Puti Marindah

Wardhani is junior lecturer in

Department of Informatics, Faculty

of Engineering, Universitas

Hasanuddin. She has varied

academic experience in Social
Informatics. Her research interest

includes disaster risk management,

social network and data analysis, big

data, and artificial intelligence
implemented in multidisciplinary

subjects.

 Laura Natalia Nainggolan

is a Bachelor of Informatics

Engineering graduate from

Universitas Hasanuddin,

Indonesia. Her is qualified in

data science and web

development, with licenses and

certifications in areas such as

Data Analysis with Python,

Python for Data Science and AI,

Tools for Data Science, and

HTML Essentials Training. She also holds an EFSET

English Language Certificate (C1 Advanced), which

indicates advanced proficiency in the language. His other

skills include industry knowledge, data analysis, web

development, front-end development, and data

visualization.

11

