
1	  
2	  
3	  
4	  
5	  
6	  
7	  
8	  
9	  
10	  
11	  
12	  
13	  
14	  
15	  
16	  
17	  
18	  
19	  
20	  
21	  
22	  
23	  
24	  
25	  
26	  
27	  
28	  
29	  
30	  
31	  
32	  
33	  
34	  
35	  
36	  
37	  
38	  
39	  
40	  
41	  
42	  
43	  
44	  
45	  
46	  
47	  
48	  
49	  
50	  
51	  
52	  
53	  
54	  
55	  
56	  
57	  
60	  
61	  
62	  
63	  
64	  
65	  

Exploring Novel CNN Architectures for Weed Seedling Recognition in  

Precision Agriculture 

Monisha Ra*, Tamilselvan KS b, Vaishnavi T c, Sharmila A d 

aDepartment of ECE, KPR Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India – 641 407.  

e-mail id: 21ftec004@kpriet.ac.in 

ORCID ID: 0000-0002-4591-897X 

bDepartment of ECE, KPR Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India – 641 407.  

e-mail id: tamilselvan@kpriet.ac.in  

ORCID ID: 0000-0001-8364-0596 

cDepartment of IT, Kongu Engineering College, Erode, Tamil Nadu, India – 638 060.  

e-mail id: vaishnavi.it@kongu.edu  

dDepartment of ECE, Bannari Amman Institute of Technology, Coimbatore, Tamil Nadu, India – 638 401. 

e-mail id: sharmilaa@bitsathy.ac.in 

ORCID ID: 0000-0002-6029-4376 

*Corresponding author –Monisha R. 

Abstract 

Precision agriculture (PA) aims to maximize crop yields while minimizing inputs like water, fertilizer, and 
pesticides. To achieve this, PA relies on advanced technologies such as sensors, drones, and satellite imagery to 
monitor crops and optimize inputs. However, weeds pose a significant challenge, competing with crops for vital 
resources and thereby reducing production output. For weeds to be managed and controlled effectively, they 
must be categorized accurately. Effective weed management requires understanding each weed's 
characteristics, which can be challenging with traditional methods. In our research, a comprehensive 
investigation of 14 hybrid ResNets and 2 SqueezeNets architectures to classify multiclass weed seedlings was 
conducted. They include ResNet(18, 34, 50, and 101), XResNet(18, 34, 50, and 101), XSEResNet(18, 34, 50, and 
101), SqueezeNet (1.0, 1.1). The results demonstrate that the ResNet 101 model achieves superior performance 
with 90% accuracy, surpassing other architectures. It is a deep architecture that can capture more complicated 
associations in data, which explain its greater performance. Moreover, it was observed that the XSEResNets 
exhibit a smoother loss curve, which could be attributed to its channel weighting mechanism. This 
comprehensive analysis establishes ResNet 101 as the most effective pre-trained CNN model within the Fast.ai 
library for weed seedling classification in PA applications, provided sufficient computational resources are 
available. 

Keywords: Fast.ai, Precision agriculture, ResNet, SqueezeNet, Weeds. 

1. Introduction 
By 2050, there will be 9.7 billion people on the earth, according to the United Nations [1]. Food consumption 
has increased owing to the rapidly expanding human populace. This population growth, coupled with increasing 
urbanization and changing dietary habits, will put significant pressure on the agricultural sector to produce more 
food while minimizing environmental impact. There is an urgent need for application of non-invasive modern 
technologies to better meet the food demand in the upcoming future. To sustain and improve agricultural 
production, the sector must embrace ingenious technological advancements like Computer Vision, Internet of 
Things (IoT), etc.  
Since the past few years, there have been numerous contributions integrating cutting edge technologies into 
Precision Agriculture (PA). PA is often defined as the highest degree of exactness considering multiple aspects 
of crop cultivation [2]. It is an approach that combines various techniques for acquiring and examining field data, 
processing and utilizing it appropriately for the task at requirement [3]. Nowadays, Artificial Intelligence (AI) and 
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machine learning algorithms are being coalesced with sensors, drones, etc for real-time deployment in farming 
sites for a variety of applications to maximize plant yield. Raw information like soil moisture, water content, leaf 
health, and nutrient values, etc can be obtained through these appliances and they can be processed to make 
timely decisions. The precise crop management leads to reduced utilization of fertilizers and pesticides and is 
cost-effective. Precision agriculture focuses on enhancing crop yield thereby creating a sustainable environment 
in the long term.  
Weed management, through which the hindrances produced by these risky crops are removed, is one of the 
main aspects covered by PA. Weeds contend with crops for water, nutrition, and sunlight and tend to overgrow 
them [4 and 5]. They affect plant growth slowly and steadily, where its damages can be incurable in the latter 
stages. Moreover, consumption of certain species of weeds by animals results in an unfavorable odor in their 
milk. In addition, some weed species are toxic to cattle, therefore it's critical to handle them cautiously to protect 
both people and animals. They also impose additional costs on farmers, primarily in terms of the labor and time 
required to control them, as well as the economic losses caused by diminished harvest rates and standards. 
Small-scale farmers may find it especially difficult to manage weeds effectively because they lack the tools, 
resources, and technology needed. By changing the quality of the soil, upsetting native plant populations, and 
causing erosion, they can also have an effect on the ecology and the surrounding environment. 
These situations emphasize the necessity for early weed and crop distinction. Earlier mechanical methods 
including hand weeding and tillage were used for curbing the weed growth. Later gardening strategies like cover 
cropping and crop rotation, and chemical methods like herbicides and pesticides were undertaken. Every 
method has its own shortcomings when not used appropriately. Although cultural and mechanical weed 
management techniques have their uses, they can also have certain drawbacks in real-world applications, such 
as being labor-intensive and ineffective [6]. Additionally, because weeds swiftly regenerate from tiny fragments 
or root systems, they can lessen the efficiency of mechanical and cultural weed control measures [7]. Tilling and 
other mechanical weed-control techniques can reduce soil fertility and porosity, impede water infiltration, and 
increase the risk of water pollution by causing soil erosion and compaction.  
Chemical treatments, such as herbicide application, are designed particularly to eliminate or manage weeds. It 
can be used broadly to control a wide range of weeds or narrowly to target specific weed species. Herbicides, 
when used correctly, can be a helpful tool for farmers to manage weeds more effectively and efficiently than 
they could with alternative methods. However, herbicides have the potential to contaminate soil and water, 
harming unintentional plants and animals and hastening the degradation of the ecosystem. There are worries 
about the potential health risks that agricultural workers and farmers may face from chemical exposure. 
Moreover, herbicide-resistant weeds might arise due to misuse or improper application, making long-term 
suppression of weeds more difficult. 
AI is more desirable than conventional weed-control methods in many ways. First, analyzing vast volumes of 
data and pinpointing particular locations where weeds are growing may offer accurate and focused weed 
control. This lowers the quantity of chemicals used and the possibility that crops may be harmed by herbicide 
applications made only when necessary by farmers. Second, weed control can be achieved more effectively and 
economically using AI-powered devices since they can operate more quickly and constantly than conventional 
mechanical approaches. By doing this, farmers can safeguard their crops from weed infestations and save time 
and money. Thirdly, they limit the usage of chemicals, which may have negative environmental consequences, 
and encourage sustainability in agriculture. Farmers can embrace a more economic and ecologically responsible 
approach to agriculture by utilizing AI-powered weed management techniques. Finally, these systems can adjust 
to shifting environmental factors like crop development phases, soil moisture content, and weather patterns. 
This implies that the system can optimize weed management techniques in real-time, improving overall 
outcomes and increasing the farmer's yield. 
In a nutshell Deep Learning, or DL for short, is a subset of Machine Learning (ML) that uses neural networks to 
learn from data. This approach works especially well for tasks like speech recognition, image identification, 
natural language processing, and predictive modeling, where a lot of data can be used to train the network to 
identify patterns and make precise predictions. As the big data age has grown, DL has developed more complex 
network structures, powerful feature learning, and expressiveness than traditional ML techniques. Since its 
inception, the models trained by the DL algorithms have excelled in numerous challenging identification tasks in 
computer vision [8]. Convolutional Neural Networks (CNNs), for example, have recently acquired popularity in 
activities involving identification and categorization due to their reliance on automatic extraction of features [9-
11]. Additionally, DL methods have made important strides that have led to challenges and competitions in 
picture classification tasks [12-14]. Providing an all-inclusive method for weed detection that is both early and 
automatic is the driving force behind the current work. Fast AI, one of the most well-known open-source DL 
libraries that aims to democratize AI by making DL accessible to everyone, regardless of their background or 
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expertise [15]. It is important for weed classification as it provides a powerful and accessible platform for 
developing DL models that can accurately and efficiently classify different weed species. 
Prior research in weed classification primarily employed traditional convolutional neural network (CNN) 
architectures [16-25]. This study investigates the application of more recent and potentially superior CNN 
models, particularly those that can be compared against compact architectures when dealing with limited 
datasets. While the performance of these models has been explored in various computer vision tasks, their 
application in weed classification remains relatively underexplored. To address this gap, we conduct a 
comprehensive evaluation of 14 state-of-the-art CNN models on a multiclass weed seedling image dataset. The 
investigated models encompass ResNet (18, 34, 50, and 101), XResNet (18, 34, 50, and 101), XSEResNet (18, 34, 
50, and 101), SqueezeNet (1.0, 1.1). A rigorous comparison by analyzing their parameters, outputs, and 
performance metrics including loss curves, confusion matrices, and classification reports was implemented.  

2. Background 
Crop and weed discrimination are still an exigent issue to deal with. Several researchers classified weed species 
in natural corn fields using shallow and DL models [16-17]. In [16], images of weeds were captured at distinct 
stages of growth from the fields. They acquired the region of interest from the images during processing and 
categorized the narrow and wide leaves by employing proposed models. It was inferred that CNNs outperformed 
the shallow networks with an accuracy of 97%. In [17], the authors incorporated a range of ML and DL 
approaches for weed classification. They discussed the challenges involved while processing in terms of dataset 
size, variability in images, and inter-class similarity. The review highlighted that CNN has shown remarkable 
success in weed classification, but they require large datasets and computational resources. Classification of 
weeds on the site amid cultivable crops is a notable area of research in agriculture. In [18], the suggested method 
classified the weeds concerning color and texture by employing VGG16 and support vector machine classifiers. 
The Relief algorithm extracted the attributes and the classifiers were able to predict the four distinct weeds from 
six different species of crops. In [19], the authors analyzed 35 state-of-the-art CNN methods for weeds grown in 
cotton fields. They classified a weed dataset with 5187 images and introduced a new cosine similarity metric to 
evaluate the performance of the 35 models. ResNext 101 had a good F1 score with 10 models achieving an F1 
score above 98%. Identifying the appropriate weed as an individual or in a cluster and treating it with non-toxic 
substances is the precise weed treatment technique [20]. Spotting distinct weeds and treating the weeds on the 
variety is proposed in [21]. Certain types of weeds respond to particular herbicides alone. Despite utilizing the 
same herbicide, the weed-specific spraying of herbicides proffers acceptable results in the treatment of weeds. 
For this, the authors have deployed a SAMBot, an autonomous weed detection robot using MobileNetv2 model 
for classification with the shortest decision making time. In [22], an active learning method based on dissimilarity 
for integrated weed identification using a dataset of images of crop fields with weeds and crops was presented. 
A small initial set of labeled images was employed for training a classifier, and then the classifier selected the 
unlabeled images with the most information for annotation by an expert. The selected images were then labeled 
and added to the training set, and the revised training set was used to retrain the classifier. [22] outperformed 
traditional active learning and random sampling approaches in weed identification, achieving high accuracy rates 
with fewer labeled images. The trained model was transferred to NVIDIA Jetson nano for real-time weed 
detection. [23] employed a model that indicated the weeds of appropriate species in the input feeds and 
forecasting them. The system outperformed the existing models in predicting the presence of solitary weeds. 
DL models inclusive of VGG 16, ResNet, DenseNet proffered efficacy in distinguishing the weeds of numerous 
species. [24] employed a random forest classification approach, where the study extracted features such as 
texture, shape, and spectral information from the images and used them to train the classifier [24]. The study 
also reported low commission and omission errors, indicating that the method can accurately detect alligator 
weed in the images. Another leap was weed localization and segmentation using a single-stage object detection 
DL module was deployed with an inference speed of 1.25x on a hardware device [25]. 

3. Materials and Methods 
3.1 Dataset 

The comparative analysis was performed on a subset of the publicly available V2 Plant Seedlings Dataset from 
Kaggle [26]. The utilized subset encompasses six classes of weeds in their seedling stage with RGB images. The 
class contains some of the most commonly occurring weeds in large arable lands. Figure 1 gives the image 
samples of each crop included in the dataset.  
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Fig 1 Samples of weed seedlings in the dataset 

The dataset comprised 2,911 images with an uneven number of samples in every class, thus making it an 
imbalanced dataset. The class distribution and leaf characteristic appearance of every weed species member 
are given in Table 1. Google Colab in a laptop with Microsoft Windows 10 Pro and an Intel Core i7 processor was 
used to implement the architectures. 

Table 1 Weed characteristics and class distribution. 

Class Scientific name Leaf Characteristics Total images 

Black grass Alopecurus 
myosuroides 

Short, flat, bluish-green, and hairless. 
typically rolled, rough, and having a 
clearly discernible keel 

309 

Charlock Alopecurus 
myosuroides 

a wide, rounded tip with shallow ridges 
running around its edges 

452 

Fat hen Chenopodium 
album 

toothed borders, which are comparatively 
wide 

538 

Loose silky-bent Apera spica-venti Sharp, slender, coarse, and hairless. 
rolled. 

762 

Shepherd's-Purse Capsella bursa-
pastoris 

The earliest true leaves are whole; later 
leaves are severely lobed or sliced, lance-
shaped, and silvery in appearance. 

274 

Small-flowered 
cranesbill 

Geranium 
pusillum 

The leaves are opposite and have deeply 
and rather thinly cut hairs on the stalks; 
each solitary leaf lobe frequently has 
three smaller lobes. 

576 

 
3.2 Proposed models 

In this study, the performance efficacy of 14 recent CNN-based models for the identification and classification 
of weeds has been investigated. The models utilized in the study are either variants of ResNet with certain 
tweaks or hybrid ResNets. Along with that SqueezeNet, a heavily compressed lightweight model is also studied. 
The following section delves into the method structures. 

3.2.1 ResNet 
Generally, in deep learning, it is said that the deeper the network, the higher the accuracy.  As such DL networks 
designed focused on stacking layers and complicating the model. However, it was seen that the network 
performance diminished when a certain threshold for layering was reached. The problem is attributed to the 
gradients becoming zero after complex computations and thus having nothing to learn more from the data. 
Thus, to avoid the vanishing gradient problem, the authors of ResNet introduced residual blocks with skip 
connections [28]. The main idea behind ResNet is to use residual connections, which allow information to stream 
from one layer to another, without passing through all the intermediate layers. To connect layer activations to 
later layers, the skip connection skips over some intermediate levels as shown in Fig 2. Thus, a leftover block is 
produced. To build resnets, these leftover blocks are piled. ResNet's 34-layer simple network architecture is 
inspired by VGG-19, and the shortcut connection is added after that. 
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Fig 2 Residual block 

ResNet makes it possible to train neural networks with hundreds of layers that are incredibly deep while still 
maintaining good accuracy. In the ResNet architecture, a convolutional layer processes the image input first, 
followed by several blocks with residuals. A shortcut link that adds the original input to the convolutional layers' 
output follows each residual block's two or more convolutional layers. This allows the network to learn the 
residual mapping—the difference between the block's input and output. 
To create the final output for classification, ResNet also employs a fully connected layer at the end and an overall 
pooling layer. In general, as the number of layers increases, the network becomes deeper and more complex, 
allowing it to learn complex features and achieve good performance on tasks such as image classification.  

3.2.2 XResNets 
The ResNet model was tweaked as XResNets, which incorporated slight modifications, each variant focusing on 
different layers of the base architecture [29]. These modifications, often referred to as ResNet-B, ResNet-C, and 
ResNet-D, address different aspects of the architecture as shown in Fig 3. ResNet-B and ResNet-D concentrate 
more on retaining more data whereas ResNet-C concentrates on reducing the computational complexity. The 
former has alterations in the downsampling block by changing the strides for the convolution operation. The 
latter replaced the 7x7 convolution with three 3x3 convolutions. Though the variants underperform in accuracy 
when compared to the base model, they highlight the importance of random points in layer selections that could 
affect the overall efficacy. 

 
Fig 3 XResNets 

3.2.3 SE-ResNets 
SE-Nets, squeeze and excitation networks, introduced a method to weigh each channel instead of assigning 
equal weights to all input channels [30]. Basically in CNN’s multi-channel architecture, the top layers are 
responsible for high-level feature extraction whereas the bottom layers extract simple features like edges. To 
avoid sharing the same weights across all input channels, SE-Nets perform the weighing by parameterizing the 
weights at the end of the block. They take in a residual convolutional feature map as input and then apply 
average pooling, which results in reduced dimensions. Later two fully connected layers are used for non-linear 
representation using bottleneck parametrization. The first FC layer is followed by ReLU and the second by the 
sigmoid activation function. The output of these layers is used to calculate the weights of each channel in a 
neural network. 
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Fig 4 SE-Net 

3.2.4 SqueezeNet 
SqueezeNets were developed to design a network that can be deployed in any edge device or computer network 
[31]. They have fewer trainable parameters thus rendering a small network with minimal processing time and 
memory. The two methodologies of the SqueezeNet model are built upon the AlexNet; one with heavy 
compression and the other with a hybrid compression technique. AlexNet has five convolutional layers in 
combination with a pair of max pooling and ReLU layers and three final dense layers. The entire network 
consisted of 61 million parameters. SqueezeNet with its base as AlexNet, is made up of two convolutional layers, 
eight fire modules, three max-pooling layers, and one global average pooling layer as shown in Fig 5. In the fire 
block, an expand layer with a combination of 1x1 and 3x3 convolution filters receives input from a squeeze 
convolution layer, which only has 1x1 filters.  
 

 
Fig 5 (a) SqueezeNet module; (b) with bypass; (c) with complicated bypass  

 
The fire block consists of three hyperparameters: 
The number of filters (all 1x1) in the squeeze layer is denoted by s₁ₓ₁. The expand layer's number of 1x1 filters is 
denoted by e₁₍₁, and the number of 3x3 filters is denoted by e₃₍₃. The sum of these filters is s₁₍₁<(e₁₍₁+e₃₍₃). To 
reduce the amount of input channels for the 3x3 filters, the squeeze layer is used. Here, concat has been used 
to link many layers to improve expressiveness (expressiveness in this context refers to the earlier portions' 
extraction of features and spatial information from the images). Furthermore, no fully connected layer exists. 
This yields a vector that has been flattened and whose dimension is equal to the number of classes. This vector 
is then supplied to the SoftMax layer. The number of parameters is significantly reduced when FC layers are 
absent. 

3.3 Overall methodology 
Fig 6 shows our proposed methodology. First, the training data was pre-processed using various augmentation 
techniques, such as random flipping, and resizing. These pre-processing steps increased the diversity of the 
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training data, making the model more robust and resistant to overfitting. Next, the CNN models’ architecture 
was used for feature extraction and classification, which is commonly used for pre-training applications in 
computer vision. This pre-training step enabled the model to learn features that are useful for classifying the 
seedlings.  

  
Fig 6 Overall flow of the proposed model 

During training, the weights of the new layer were updated using backpropagation and gradient descent, 
optimizing the model for the classification task. Afterward, 14 CNN models were deployed and their accuracy 
alongside loss values was tested on the test dataset. Finally, their results have been compared in terms of 
classification reports and confusion matrices. Throughout the training process, the model was evaluated on a 
validation set to ensure that it is not overfitting to the training data. After the model had been trained and 
validated, it was used to predict the class labels of new images. This process involves passing the image through 
the newly trained model, which extracts the features from the image, and then passing these features through 
the new layer to obtain the predicted class label. The hyperparameters used for all models are discussed in Table 
2. 

Table 2 Hyperparameters 

Parameters Values 
Loss function Categorical 

cross-entropy 

Optimizer  Adam 

Learning rate 0.001 

Epochs 50 

Image size 64×64 

Batch size 60 

Library Fast.ai 

 
4 Performance Evaluation Metrics 
A range of performance evaluation criteria have been utilized to appraise the efficacy of the implemented 
models. These include loss curves, confusion matrices, and classification reports. The training curves in Figure 9 
show how the models' classification performance has increased with increasing epochs. Loss curves that reach 
the local minima, have a smoother form, and exhibit the least amount of zigzag or fluctuation are assumed to 
yield the best results. The anticipated category labels and the actual label are compared using a two-dimensional 
array known as the confusion matrix. As Table 3 illustrates, a confusion matrix consists of four sectors, or 
quadrants. This facilitates tracking the number of images that the models accurately and inaccurately categorize. 
Figure 10 displays the CNN models' Precision, Recall, and F1 score values from the classification report. An 
illustration of a confusion matrix that can be obtained from a binary classification task is shown below: 
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Table 3 Confusion matrix 

Ac
tu
al 

Predicted 

 Positive Negative 

Positive TP FN 

Negative FP TN 

 

Precision = 
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
  ---(1)                                                                      

Recall = 
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
  ---(2) 

F1 Score = 
2∗(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
  ---(3) 

True Positive (TP): The model accurately estimates a positive class. 
False Positive (FP): The model misidentifies a positive class. 
True Negative (TN): The model accurately predicts a negative class. 
False Negative (FN): The model mistakenly forecasts a negative class. 
5 Results and Discussion 
In this study, we used a multiclass dataset to compare the performance of 14 cutting-edge CNN models for weed 
seedling classification. The models tested were ResNet (18, 34, 50, and 101), XResNet (18, 34, 50, and 101), 
XSEResNet (18, 34, 50, and 101), and SqueezeNet (1.0, 1.1). The accuracy scores and loss curves provide 
information on each model's correctness and training stability. 
5.1.1. Accuracy Scores and Loss Curves  
The model accuracies obtained after training are given in Table 4. Among all of the investigated CNNs, the ResNet 
architectures fared the best, with ResNet 101 having the maximum overall accuracy (90%). ResNet 50 came in 
close behind with an accuracy of 88%, demonstrating that deeper networks with more layers perform better on 
this classification challenge. In contrast, the XSEResNet models, despite their consistent training procedure, had 
the lowest accuracy ratings. XSEResNet 50 had the lowest accuracy of 77%, indicating that these models may 
need longer training periods or more intensive hyperparameter tuning to realize their full potential. The 
XSEResNet models, while promising because of their continuous drop in loss and constant gain in accuracy, 
require additional research to improve their performance. The SqueezeNet models had juxtaposing results. 
SqueezeNet 1.0 did well reasonably, with an accuracy of 88%; however, SqueezeNet 1.1, a more compact 
version, achieved just 81%. This performance gap can be explained by SqueezeNet 1.1's considerable reduction 
in parameters and processing time, which may limit its capacity to generalize effectively. 

 
Fig 7 Learning curves for ResNets and SqueezeNets 

The loss curves for all the proposed 14 models were plotted after training and are shown in Fig 7 and Fig 8. The 
XSEResNet models had the cleanest loss curves, with few variations or spikes, indicating a consistent training 
procedure. These models demonstrated a gradual decrease in loss and a trend towards a plateau, indicating the 
possibility of improved performance with additional training. In contrast, SqueezeNet variations showed large 
fluctuations in their loss curves, while SqueezeNet 1.0 outperformed SqueezeNet 1.1. SqueezeNet 1.1's compact 
architecture, which was supposed to cut computation time by 2.4 times over SqueezeNet 1.0, is likely to 
contribute to its instability during training and validation. The ResNet models showed significant convergence in 
their training and validation curves. This convergence implies that these models can effectively learn from the 
dataset, capturing the complex properties required for accurate classification. The performance gain from 
ResNet 18 to ResNet 101 implies that deeper architectures are better suited for this kind of classification since 
they can use more layers to understand complicated patterns in the data. 
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Fig 8 Learning curves for XResNets and XSEResNets 

5.1.2. Classification report 
Deeper architectures, such ResNet 101 and XResNet 101, are more effective for classifying weed seedlings, 
offering higher accuracy, better precision, and better recall across most classes, according to the classification 
results for the CNN models. Even with their training stability, the XSEResNet models still need to be further 
optimised in order to improve accuracy. The trade-off between model compactness and performance is obvious 
in the SqueezeNet models, with SqueezeNet 1.0 beating its more compact version, SqueezeNet 1.1. These 
results highlight how crucial it is to strike a balance between model depth, training stability, and compactness 
in order to get the best results possible for precision agriculture applications. 
Black grass has the lowest precision and recall scores among the others. XSEResNet 18 showed the least 
precision value for black grass with 0.48 followed by XResNet 18 with 0.49. The precision values reach as high as 
1.00 in Shepherd’s purse for all XResNet variants and ResNet 50. The recall showed the lowest value 37 for 
XSEResNet 64 and SqueezeNet 1.1 models indicating the high number of FN which may be due to the unbalanced 
classes. Except for black grass all the F1-scores were above 0.60 for each class. While evaluating the model based 
on F1 score, it can be seen that this score balances the precision and recall metrics, since both the metrics could 
result in a less overall accuracy score. Overall it can be seen that the models performance were affected due to 
the absence of fine-tuning the hyperparameters and an uneven number of images in each class in the dataset. 
5.1.3. Confusion Matrices  
It's interesting to see that different models display efficiency across various classes. The confusion matrices for 
all 14 models are displayed in Fig 9 and Fig 10. They are used for telling the properly classified and misclassified 
items apart in each class. For all the models it can be seen that there is a confusion between Black grass and 
Loose silky-bent. Apart from them, Shepherd's purse is miscalculated as Small flowered cranesbill in all the 
models. The dataset has the least amount of images from Shepherd's purse compared to others making this an 
unbalanced dataset. In SqueezeNet 1.1 Shepherd’s purse is confused with 9 images each with Fat hen and Small 
flowered cranesbill. XSEResNet models misidentifies the most of Shepherd's purse as Small flowered cranesbill 
with the minimum being 9 images. The third pair that gets most confused is the fat hen and charlock resulting 
in less precision and recall for many models. 

Table 4 Model accuracy 

Model Accuracy Model  Accuracy 

ResNet 18 87 XResNet  101 87 

ResNet  34 87 XSEResNet  18 80 

ResNet  50 88 XSEResNet  34 81 

ResNet  101 90 XSEResNet 50 77 

XResNet  18 82 XSEResNet  101 78 

XResNet  34 85 SqueezeNet 1.0 87 

XResNet  50 85 SqueezeNet 1.1 81 
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Finally, the superior performance of the ResNet architecture provides us with an understanding of the 
importance of complicated architectures for extracting complex features. To put it briefly, the leftover 
connection blocks greatly facilitate the layers' acquisition of identity functions. Consequently, ResNet reduces 
the percentage of test errors while increasing the efficiency of deep neural networks with more neural layers. 
The accuracy of residual neural networks was found to be higher than that of traditional deep neural networks 
in a number of benchmark datasets. Due to the skip connections, vanishing gradients are avoided and gradients 
can flow through the model more directly, resulting in faster convergence. Additionally, this results in quicker 
training and cheaper resource usage. ResNets' structure allows these models to learn broader patterns in the 
data rather than concentrating on attributes unique to a certain dataset. As a result, the model is more broadly 
applicable and produces superior outcomes with unknown data. 

 
Fig 9 Confusion matrices for ResNets and SqueezeNets 

 

 
Fig 10 Confusion matrices for XResNets and XSEResNets 

6 Conclusion 
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The study conducted in this research demonstrated the effectiveness of the proposed 14 approaches using 
ResNet and SqueezeNet for weed identification. The overall accuracy for ResNet was found to be 88%, which 
was the highest among other models tested. The easiest approach, which doesn't require a specialist, is to 
observe the field for the emergence of weeds in a computerized manner and use those images to automatically 
identify the sort of response. Hence, a study on novel CNN architectures on a weed dataset with 2911 images 
was conducted. from the results obtained, the ResNet 101 architecture performed the best with 90% accuracy. 
These tests were conducted only for 50 epochs, whereas there is a high potential that there will be an 
improvement in accuracy and other metrics if the experiments were performed for longer epochs. After inferring 
the potential of these networks for weed eradication, they can also be applied to other applications such as 
disease detection, yield prediction, etc. Future works will be focused on increasing the efficiency of the 
XSEResNet models without comprising the compact structures. The models used in this study are primarily based 
on the default architectures; no special adjustments have been made to take into consideration the dataset that 
has been obtained. Perhaps by improving the current models and making a few more architectural modifications 
even higher scores could be attained. It is also possible to test the model's deployment on edge devices. These 
are all jobs that will be included in future work. 
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