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Abstract: With the world population projected to reach 9.8 billion by 2050, sustainable food production has become a significant
concern. Adverse climatic changes and increasing pressure on food security have led to the search for innovative and effective
agricultural methods. Traditionally, farming has not kept pace with increased demand without stressing the environment. The proposed
system implements transformational agriculture through real-time monitoring and control infrastructure that picks up from the very
basics of a greenhouse climate monitoring system using sensors to actuators. The new greenhouse system will be powered by solar
energy—with a solar tracker—for running its operations and rainwater for irrigation, coupled with the trend of modernity in the form
of a user-friendly mobile application. On this Monitoring Dashboard, there is the possibility of real-time control over temperature,
humidity, light intensity, and soil moisture to arrive at optimal conditions for the crops. This system will be complete with a subsystem
on crop recommendation and disease detection, making it comprehensive in agriculture. Rigorous simulations were performed on the
model, and the resulting accuracy in crop recommendation and crop disease detection were 97.27% and 97.50%, respectively, quickly
proving the effectiveness of smart greenhouse monitoring driven by IoT and machine learning. Such a solution can be expected to
realize its objective: producing enough food for the increasing population without ruining planetary health.
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1. INTRODUCTION

According to the Food and Agriculture Organization
of the United Nations (FAO) [1], world food production
has to be increased 70% by 2050. The alarming pattern
has emerged due to the world’s population growth, fast
industrialization, and changing climatic conditions; there
is a consistent global decline in agricultural land. The
requirement for more agricultural yields and hygienic, clean
food sources is constant and growing in the face of this
difficulty [2]. Meeting this demand, however, turns out to
be a complex undertaking when one considers the existing
status of agriculture and the possible consequences of such a
significant rise. The challenge is boosting agriculture yields
while utilizing a restricted amount of land. Reducing the use
of dangerous chemicals in agriculture, such as pesticides,
to make agricultural products safe for human consumption
is another issue [3]. Using Advanced Farming technologies,
an intelligent greenhouse system may be developed to solve
this issue, increasing agricultural productivity even on a
small amount of land. This study explores a comprehensive
solution to the urgent global challenge at hand by promoting
the integration of four innovative farming methodologies:
Advanced Crop Management, Vertical Farming [4], Hy-

droponics [5], and Horizontal Farming. Integrating these
cutting-edge methods is the basis of a comprehensive plan
to bring in a revolutionary period of sustainable agricul-
ture. Also, incorporating these methodologies represents
a transformative paradigm shift in agriculture, aligning
with sustainability principles and responsible resource man-
agement. By merging these advanced practices, farmers
can enhance productivity, mitigate the adverse effects of
conventional agriculture on the environment, and contribute
to the long-term preservation of natural resources. As a
critical element of this integrated strategy, the paper em-
phasizes the inclusion of greenhouses [6] in particular. In
addition to protecting crops from bad weather and allowing
for year-round agriculture, greenhouses offer a regulated
environment [7]. In addition to lengthening the growing
seasons, this controlled environment makes it easier to
use resources optimally, reduce waste, and increase crop
production efficiency. The system offers unique benefits
from Hydroponics vertical and horizontal farming. Because
it maximizes land utilization, horizontal farming is an
excellent option for areas with a shortage of arable land
[8]. Vertical farming, on the other hand, uses vertical space
to cultivate crops in stacked levels, thereby increasing
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production [9]. While Hydroponics promotes water effi-
ciency and nutrient management by doing away with the
requirement for soil [10]. On the other hand, this integrated
farming system’s sustainability factor is significantly in-
creased by utilizing advanced crop management techniques
and strengthening them with automation from sensors,
crop recommendation systems, and crop disease detection
technologies, this integrated farming system’s sustainability
factor is significantly increased. Precision farming, data-
driven decision-making, and creative cultivation techniques
work with automated processes in this new paradigm to
enable farmers to maximize crop yields while minimizing
environmental effects and optimizing resource use. The
exponential rise in global population combined with the
transformational effects of industrialization and observable
changes in climatic patterns presents a worrisome picture:
by 2050, it is predicted that the world’s food consumption
will have increased by an astounding 70%. This astounding
estimate raises concerns about the availability of arable land
in the future, which is crucial for maintaining agricultural
output. It is a warning sign. These problems’ ominous
presence highlights the pressing need for creative answers.
We must create plans that will increase agricultural yields,
ensure the security of our food supplies, and strategically
reduce the negative environmental effects associated with
food production. As this situation develops, there is an
increasing demand for innovative, sustainable solutions.
This study delves into a pioneering approach amalgamating
four cutting-edge agricultural methodologies: hydropon-
ics, horizontal farming, advanced crop management, and
vertical farming. This convergence signifies a significant
paradigm shift in agriculture, aligning its trajectory with
sustainability principles and prudent resource management.
The amalgamation of these modern techniques holds the
promise of manifold advantages: vertical farming optimizes
space utilization by cultivating crops in stacked layers, sub-
stantially augmenting production capacity; hydroponics, by
eliminating soil requirements, champions water efficiency
and precise nutrient control; horizontal farming maximizes
land efficiency, particularly beneficial in regions with lim-
ited arable land; advanced crop management, complemented
by sensor automation and disease detection technologies,
contributes to heightened sustainability and productivity.
Central to this comprehensive strategy are smart greenhouse
systems, serving as the linchpin. These structures act as
shields against adverse weather and facilitate year-round
agriculture. Resource optimization, waste reduction, and
increased crop productivity thrive within these controlled
environments. Moreover, the fusion of hydroponics, vertical
and horizontal farming within greenhouses amplifies their
benefits, augmenting land usage while extending growing
seasons. Furthermore, this integrated farming approach un-
derscores the criticality of precision farming techniques and
data-driven decision-making. Automated processes, along-
side innovative cultivation methods, empower farmers to
maximize crop yields while minimizing environmental im-
pact and optimizing resource utilization.

This comprehensive study advocates a fundamental
shift in agricultural practices by advocating for integrating
advanced farming methodologies within innovative
greenhouse systems. This transformative approach
addresses the imminent surge in food demand and
aligns with sustainability goals, fostering the long-term
preservation of natural resources and environmental well-
being. The objectives of our study endeavor encompass
a diverse range of innovative pursuits, aiming to redefine
greenhouse farming practices through the infusion of
advanced technologies and sustainable methodologies.

The paper’s significant contributions are outlined below:

e We have studied existing greenhouse farming systems
and formulated a robust solution to address the chal-
lenges identified in prior research.

e We developed a machine learning-based Crop Rec-
ommendation System with significant potential to
transform the agricultural sector.

e We have utilized resource-constrained deep-learning
models to identify potential health risks in plants.
Our proposed disease detection system is specifically
designed for deployment in resource-constrained IoT
devices with limited computational power.

e We have measured the performance of both the
crop disease detection and recommendation systems
through rigorous simulations. Additionally, we pro-
vided a comprehensive performance comparison.

e We’ve designed and developed a user-friendly mobile
application for easy access to the greenhouse sys-
tem. It features a unified dashboard for monitoring
the greenhouse, crop recommendations, and disease
detection systems.

The study is organized in the following manner: Section
2 looks into earlier studies, laying the groundwork for
our study in the larger context. In section 3, we me-
thodically explain the materials and procedures, offering a
complete review of our approaches. Section 4 highlights the
enlightening findings from several detailed tests. Section
5 concludes the study by discussing the essence of the
proposed study, culminating in final thoughts.

2. LITERATURE REVIEW

Integrating machine learning, convolutional neural net-
works (CNNs), and their applications in intelligent green-
houses and precision agriculture is a practical strategy to ad-
dress existing issues and boost the production of agricultural
products. This section explores ongoing research beyond
IoT to cover CNNs, machine learning, and its applications
to intelligent greenhouses and precision agriculture. This
section thoroughly reviews the literature, evaluating and
analyzing numerous studies, research papers, and technical
applications. It illuminates the path of development, scope
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of application, and transformative impact of machine learn-
ing and IoT on contemporary farming methods. Chakraborty
et al. in [11] advises leveraging IoT-enabled environmental
monitoring and irrigation infrastructure to handle contem-
porary agricultural concerns intelligently. In the system,
temperature, humidity, soil moisture, and light intensity
are monitored locally and remotely by the system. A
sophisticated irrigation system is also integrated to regulate
water supply effectively. Real-time data monitoring and IoT
connectivity are made feasible by the BLYNK application,
and direct water pump control facilitates brilliant irrigation
difficulties. Zhu and Shang developed an IoT and machine
learning-based intelligent farm monitoring system [12].
Here, the authors highlight new prospects for agricultural
management leveraging IoT and machine learning and
provide a practical remote monitoring and management
solution for intelligent agriculture. In their proposed solu-
tion, a solid data management system efficiently monitors
greenhouse environmental elements such as temperature,
carbon dioxide, and light. The FPKM algorithm used in
the system offers accurate data analysis with constant
iteration times through the identification and removal of
outliers. The system also incorporates user monitoring, data
center, and mobile phone client modules by fusing IoT
with FPKM. The work proposed by Lanitha et al. in [13]
involves the integration of Internet of Things technology
utilizing a NodeMCU equipped with a Wi-Fi module, which
interfaces with a Raspberry Pi board for various agricultural
applications. These applications encompass the maintenance
of soil moisture using a motor pump and moisture sensor,
ensuring air quality with an exhaust fan and gas sensors
(MQ2, MQ135), temperature regulation through dhtl1 and
Im35 sensors, and adjusting crop exposure with artificial
LED and LDR. To enable remote monitoring, recording,
and control, the system employs Blynk, ThingSpeak, and
NodeMCU. Specifically, ThingSpeak is utilized for storing
sensor data, while Blynk facilitates data collection and
remote management of equipment such as motors, fans,
and lights. In [14], the authors introduce SAgric-IoT, a
cutting-edge technology platform designed for precision
agriculture, which seamlessly integrates the Internet of
Things (IoT) and Convolutional Neural Networks (CNN).
This innovative tool enables monitoring of physical data
and early detection of plant ailments, employing advanced
communication algorithms for precise data assessment and
environmental control. Convolutional Neural Networks are
also harnessed for accurate plant disease classification and
detection. The primary objective of this research is to create
a stable, low-maintenance, and cost-effective IoT platform
that can effectively manage and optimize crop production.
Numerous technologies used in the agricultural area use (the
Internet of Things) IoT to boost productivity and address
existing obstacles, which are as follows: first, increased
food production is necessary to serve the expanding pop-
ulation and prevent the era of starving [15]. Second, the
shortage of laborers due to civilization adds obstacles to
the agriculture sector; therefore, overcoming these issues
requires deploying agriculture systems that do not need

time, effort, or human participation. Third, due to climate
change and the deterioration of water resources, several
technologies are being deployed to assist in managing
agricultural water supplies. Fourth, it is necessary to limit
the influence of chemicals on human health by spraying
these chemicals (pesticides or fertilizer) based on crop
requirements rather than using planned traditional ways.
Fifth, energy availability and pricing remain significant
challenges in the agricultural industry. Sixth, maintaining
a green environment with low GHG emissions is a sig-
nificant problem [16]. The paper [17] introduces an IoT-
based monitoring and automated correction system designed
for aquaponics within a temperature-controlled greenhouse
environment. The system continuously measures real-time
parameters, including light intensity, air temperature, hu-
midity, pH levels, and water temperature. When the col-
lected data falls outside predefined threshold ranges, the
system initiates corrective actions by activating devices such
as grow lights, fans, coolers, aerators, and peristaltic buffers.
This setup ensures the maintenance of optimal conditions
crucial for the regular operation of the aquaponics system.
Furthermore, the system enables real-time wireless data
transmission and reception, facilitating remote access via
an Android smartphone application for seamless monitoring
and control.

Bersani et al. [18] explores the utilization of the Internet
of Things (IoT) in the context of intelligent greenhouses,
encompassing the deployment of sensors, devices, and com-
munication infrastructure for continuous monitoring and
real-time data acquisition. This data is then processed to
effectively manage indoor variables such as light, venti-
lation, humidity, temperature, and carbon dioxide levels.
The paper provides an in-depth analysis of the latest de-
velopments in IoT-based applications tailored for smart
greenhouses, emphasizing the numerous benefits and the
significant potential this technology brings to the agri-
cultural industry. The paper [19] details implementing an
intelligent greenhouse system that effectively monitors and
controls critical factors influencing crop yield, including
temperature, humidity, CO2 levels, light intensity, and soil
moisture, utilizing a combination of Raspberry Pi and
Arduino. Real-time data collection and visualization are
facilitated through the Internet of Things (IoT) technology,
employing the ThingSpeak platform. To surpass previous
models in terms of complexity and versatility, the paper
presents a fully automated greenhouse incorporating hy-
droponics and vertical farming techniques and state-of-the-
art security and monitoring technologies. Andrianto et al.
[20] focuses on developing IoT-based smart greenhouses
tailored for hydroponic farming. The central controller
of this system is an Arduino Mega2560. Real-time data,
including information about the status of actuators (such
as pumps, lights, fans, sprayers, and valves), temperature,
humidity, TDS (Total Dissolved Solids), pH levels, and light
intensity, is stored in the Firebase database. The ESP-32
module facilitates communication between the Arduino and
Firebase. Furthermore, a smartphone application enables
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users to monitor the greenhouse’s environmental conditions
and control the various actuators. In [2], by deploying
IoT sensors and devices, Farooq et al. demonstrated the
practicality of remotely monitoring greenhouse conditions,
including parameters like CO2 levels, pH, moisture content,
humidity, temperature, and irrigation, by deploying IoT
sensors and devices. This comprehensive survey delves into
the evolving technologies associated with IoT and provides
an extensive overview of agricultural practices in green-
houses that leverage IoT. Furthermore, the study addresses
contemporary and traditional production techniques, serving
as a valuable resource for gardeners looking to enhance
their understanding of the technological foundations of
greenhouse farming.

The proposed architecture by Khan et al. [21] provides
low-cost choices for smart farming by utilizing mobile
and communication technologies, the Internet of Things,
and cloud computing. Sensors measure the temperature,
air humidity, and light intensity. An analysis platform in
the cloud gets the collected data. A smartphone app or
email notifications are given to the farmer, who can take
any necessary preventive action. The paper [22] presented
an Internet of Things (IoT)-based greenhouse environ-
ment monitoring and control system. This system uses a
lightweight, rapid Blynk IoT platform for messaging and
control via a mobile app, unlike existing systems that use
Zigbee-based wireless networks with restrictions. Through
the ThingSpeak cloud and GSM infrastructure, the system
delivers real-time wireless sensor data transfer, display, and
processing. According to experimental data, this strategy
successfully supports sustainability and a green environ-
ment while enabling smart farming that is energy efficient
in greenhouses. Two automated system components are
covered by Kumkhet et al. [23]. The first part employs a
BH1750 sensor to assess ambient brightness and adjusts
LED lights to offer a sufficient illumination range for
gerbera growth (3000-5000 lux). The second component
employs a fork-shaped sensor to monitor soil moisture and
initiates a water sprayer when the moisture measurement
falls within or exceeds the predetermined range (70-80%).
An ESP8266 microcontroller, connected to the IoT by ISM
2.4GHz wireless communication, powers the entire system.
Ullah et al. in [24] offers a revolutionary technique for au-
tonomous farming in intelligent greenhouses. The strategy
incorporates learning algorithms for optimization and pre-
diction to control the greenhouse environment successfully.
The system tries to enable more effective and autonomous
control of components such as temperature, humidity, light,
and irrigation within the greenhouse by blending machine-
learning approaches with optimization strategies.

Our proposed work fills the literature gap by proposing
a new, pioneering greenhouse system with state-of-the-art,
unexplored elements. The proposed system has an intel-
ligent rainwater collection system, a solar tracking mech-
anism, and a mobile application containing a Monitoring
Dashboard for real-time supervision corresponding to the

plant. This application can bind two major subsystems—the
Crop Recommendation System and the Disease Detection
Subsystem—to control the greenhouse climate optimally
by continuously monitoring greenhouse parameters through
various sensors. The result is a new form, integral in nature,
that modern agricultural practices have taken, setting this
work apart in contributions toward greenhouse technology.
It further substantiates the practicality of the system and
the reliability of any system that is to be implemented,
which would further be valuable, offering strong proof
in an agricultural real-world setup—disease detection and
crop recommendation through rigorous simulation-based
performance tests.

3. METHODOLOGY

The proposed system comprises the following important
components: i) Greenhouse System Setup and Configura-
tion, ii) Data acquisition, transmission, and monitoring Sub-
system, iii) Intelligent Crop Recommendation, iv) Disease
Detection System utilizing Image Processing, v) Rainwater
Harvesting and Solar Tracking Mechanism. An overview of
the system’s design and interactions are shown in Figure 1.
Detailed explanations of the systems are described below.

A. Greenhouse System Setup and Configuration

The greenhouse setup requires carefully positioning pre-
cise sensors to monitor crucial environmental elements like
temperature, humidity, light levels, and soil moisture. These
sensors interact with the central control unit, an Arduino
Mega, which analyses the data and engages actuators such
as humidifiers, heaters, chillers, and water pumps as needed.
In addition, we’ve included MQ135 and ultrasonic sensors
for CO2 level monitoring and crop height estimate, enhanc-
ing our system’s capabilities. The technology uses adap-
tive algorithms to ensure specific Horizontal, Vertical, and
Hydroponics Farming Systems conditions. An integrated
ESP32 module enables simple data exchange for remote
monitoring using Firebase Cloud and MySQL database.

B. Data acquisition, transmission, and monitoring Subsys-

tem

The greenhouse farming system has a sophisticated
setup to create optimal conditions for plant growth. This
system has sensors that monitor temperature, humidity, light
levels, and soil moisture. These sensors feed real-time data
to a control center connected to an Arduino Mega. The
control center, in turn, manages various equipment such as
humidifiers, heaters, chillers, and water pumps based on the
data received. The Arduino employs advanced algorithms to
adapt to different farming conditions, including Horizontal,
Vertical, and Hydroponic setups. Additionally, CO2 levels
and crop height are monitored using MQ135 and ultra-
sonic sensors. Furthermore, a Real-Time video Acquisition
subsystem that[25] utilizes a Pi camera and Raspberry Pi
for early diagnosis of crop diseases. An ESP32 module
transmits data to the Cloud, enabling remote monitoring
and data-driven decision-making. The paper includes Figure
2, illustrating the sequence of processes involved in this
subsystem.
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Figure 1. Block Diagram of the Proposed Greenhouse system.

C. Intelligent Crop Recommendation Subsystem

The system seamlessly integrated contemporary sensors,
including pH, NPK (Nitrogen, Phosphorus, and Potassium),
soil moisture, and a DHT sensor (Digital Humidity and
Temperature). These sensors were meticulously chosen for
their ability to capture essential information, enabling the
detection of critical soil components such as nitrogen (N),
phosphorus (P), and potassium (K), as well as monitoring
temperature, humidity, and pH levels. Real-time data from
these sensors is presented on an LCD screen, as depicted in
Figure 3. This visual display functions as a dashboard, pro-
viding farmers with an immediate overview of their soil’s
characteristics and the surrounding environment. Moreover,
The system is designed with user-friendliness in mind,
allowing farmers to input vital data directly through a user-
friendly application. The distinguishing feature of this sub-
system is its intelligent suggestion function. It uses robust
algorithms to evaluate the amalgamated data from all the
sensors—pH, NPK, soil moisture, temperature, humidity,
and pH. These algorithms intricately analyze the complex
relationships between soil composition and environmental
factors to generate crop recommendations tailored to the
specific qualities of the soil. This functionality has been
developed by collecting and analyzing a substantial dataset,
followed by training various Machine Learning (ML) mod-
els. The conceptual process is illustrated in Figure 4.

1) Dataset collection

The dataset employed in this subsystem for crop recom-
mendations, referenced as Crop Recommendation Dataset
[26], was sourced from Kaggle. '. This dataset comprises
2200 samples and encompasses 7 distinct features. Among
these features, the independent variables encompass the
soil’s nitrogen (N), phosphorus (P), potassium (K) content,
along with temperature, humidity, and pH levels. In contrast,
the dependent variable pertains to crop labels, comprising
22 unique crop labels as class variables.

2) Data Preprocessing

In the data preprocessing phase, a thorough assessment
was conducted to ensure data cleanliness, consistency, and
suitability for analysis. This process commenced by scru-
tinizing the dataset for any instances of missing values
or duplicate entries, and no such issues were detected.
We have performed a feature transformation technique and
data balancing method to mitigate the bias over the target
variable.

a) Feature Transformation

It is necessary to convert each feature on the same scale
to reduce biases in the dataset. It makes the features of the
dataset invariant to the unit. We utilized the standard scaling
technique to perform feature scaling to ensure that the input
features were all on the same scale. This transformation

Thttps://www.kaggle.com/datasets/atharvaingle/crop-recommendation-
dataset
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In the equation 1, m and d denote the mean and variance
of the training samples respectively.

3) Machine Learning Algorithm

We have applied seven machine learning models in this

1. NPK sensor part of the crop Recommendation. The models are listed
2. DHT sensor below:

3. pH sensor
4. LCD display
e Random Forest: The model [27] was constructed

using 50 decision trees and 42 random states. The
Classifier generates a consensus result from the deci-
sion trees.

e Support Vector Machine: The Support Vector Ma-
chine (SVM) [28] is optimized for predictive accu-
racy using a randomized search over kernel types,
regularization strengths, and gamma values. The best-
performing SVM model, identified through this pro-
cess, is stored in the variable best svm_random.
This hyperparameter tuning aims to enhance the
SVM’s performance and generalization on the dataset.

Figure 3. Prototype of the Crop Recommendation Subsystem

ensures that the input features have a mean centered at
zero and approximately one standard deviation. This enables
faster convergence of ML algorithms. The standard score of
a sample R is derived using the formula shown in equation

L e Decision Tree: The optimal Decision Tree model

obtained through hyperparameter tuning using grid
R=(S-m/d (1 search. This fine-tuned model represents the most
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Figure 4. The conceptual diagram of the proposed Model for crop recommendation subsystem

effective configuration for predictive accuracy within
the given parameter space.

Logistic Regression: The model undergoes advanced
hyperparameter tuning using GridSearchCV. The hy-
perparameter grid explores penalty types (L1 or L2),
regularization strengths (C), intercept fitting options,
solver algorithms (liblinear or saga), and maximum it-
eration values. Employing a cross-validated approach
with 5 folds, this method systematically identifies the
optimal configuration, enhancing the model’s predic-
tive accuracy and generalization on the dataset for the
study.

Bagging: The Bagging (Bootstrap Aggregating) is an
ensemble learning method [29] is formed using a
diverse set of base models, including RandomForest,
Decision Tree, Extra Trees, and k-Nearest Neighbors,
each with a maximum depth of 5. The ensemble
employs 100 base models, utilizing a RandomForest
as the base estimator.

AdaBoost: The AdaBoost Classifier [30] is config-
ured with hyperparameter tuning, utilizing a diverse
set of base models: Decision Tree, Random Forest,
SVM, and Gradient Boosting. The ensemble, com-
prising 100 base estimators with a learning rate of
0.1, aims to enhance predictive performance through
model diversity. The research systematically explores
AdaBoost’s effectiveness for improved accuracy and
generalization in predictive modeling tasks.

Stacking: The Stacking Classifier [31] is used with
diverse base models, including Random Forest, Gra-
dient Boosting, SVM, and KNN, which are integrated
to capture varied learning patterns. This ensemble
is refined through hyperparameter tuning, optimiz-
ing the meta-classifier (Logistic Regression), and the
stacking method.

D. Disease Detection Subsystem

This Disease Detection Subsystem uses advanced im-
age processing techniques to identify possible plant health
problems by carefully examining leaf photos. This Subsys-

http://journals.uob.edu.bh


http://journals.uob.edu.bh

&
Ay\é‘ LIRS

§’~+:1J'-uj

0
% b

196

Hemal, et al. : An IoT and Machine Learning-driven Advanced Greenhouse Farming System.

tem strategically employs lightweight Convolutional Neural
Network models. The subsystem’s efficiency and flexibil-
ity are improved by consciously using these lightweight
models, making it the perfect choice for deployment on
low-processing devices, particularly resource-constrained
Internet of Things devices. Our purposeful emphasis on
lightweight models guarantees our disease detection sub-
system’s scalability, accessibility, and smooth integration
across many technological platforms, which require low
computational power.

1) Dataset collection

The dataset employed in the Disease Detection Subsys-
tem, as referenced in [32], was sourced from Kaggle?. This
extensive dataset comprises approximately 87,000 RGB
images of healthy and damaged crop leaves. These leaves
are categorized into 38 different types and are affected
by 26 distinct plant ailments. The dataset encompasses a
variety of greenhouse crops, including but not limited to
tomatoes, maize, apples, strawberries, grapes, and peppers.
This dataset has 70,295 images designated for training
purposes and an additional 17,572 images allocated for
validation.

2) Data Preprocessing

Before feeding the images into the deep learning mod-
els, a preprocessing phase is executed to standardize their
dimensions and format. This involves resizing the pho-
tographs to a consistent resolution of 256x256 pixels while
maintaining RGB color format. This crucial step ensures
uniformity in image size and dimensions, enabling the
models to evaluate the data effectively. Data augmentation
techniques are applied during training to enhance dataset
variability and mitigate overfitting. These techniques en-
compass random rotations, flips, zooms, and color adjust-
ments, all improving the models’ adaptability to real-world
environmental variations.

3) Model Selection

The Disease Detection Subsystem uses a range of deep
learning models [33] to accurately detect and diagnose
diseases affecting various plant species in the greenhouse
environment. The models used are

o NASNetMobile: The model [34] includes two fully
connected layers with dropout regularization for im-
proved generalization and a Global Average Pooling
layer to reduce spatial dimension. The sparse categor-
ical cross-entropy loss function and Adam optimizer
are used in the model’s construction for multiclass
classification.

o DenseNetl21: The top classification layers are re-
moved from the model based on DenseNet121 [35],
and a Global Average Pooling layer is added. To avoid
overfitting, two completely linked layers with dropout
regularization come next. The Adam optimizer and

Zhttps://www.kaggle.com/datasets/vipoooool/new-plant-diseases-dataset

sparse categorical cross-entropy loss function are used
to train the model.

e EfficientNetBO: The model uses EfficientNetBO [36]
as its foundational architecture. Applying two com-
pletely linked layers with dropout for regulariza-
tion comes after the Global Average Pooling layer.
The model’s construction uses the sparse categorical
cross-entropy loss function and Adam optimizer.

e MobileNetV2: The top classification layers are not
included when MobileNetV2 [37] is used as the
basis model. Following the introduction of a Global
Average Pooling layer, two completely linked lay-
ers with dropout regularization follow. The model’s
construction uses the sparse categorical cross-entropy
loss function and Adam optimizer.

e InceptionV3: The underlying model is the Incep-
tionV3 [38] architecture, with the top categorization
layers removed. A Global Average Pooling layer and
two fully linked layers with dropout are included for
better performance. The model’s training uses the
sparse categorical cross-entropy loss function and the
Adam optimizer.

The selected deep learning models offer an attractive combi-
nation of accuracy, efficacy, and flexibility for microdevice
IoT applications [39]. These models have been carefully
designed to combine computational complexity with pre-
dictive performance, making them suited for environments
with restricted resources typically observed in IoT devices.
These models may perform effectively on edge devices with
low memory and processing power owing to their efficient
architecture and extremely few parameters [40]. This is
particularly beneficial for real-time disease classification
and detection in a greenhouse farming setting, where rapid
reflexes and effective treatments are necessary to avert
significant crop losses.

E. Rainwater Harvesting and Solar Tracking Subsystem

This subsystem is important in our greenhouse system
since it provides a two-pronged approach to increasing
sustainability and operational efficiency. As shown in Figure
5, the prototype of this subsystem emphasizes its critical
role in our proposed system. The solar tracker system allows
solar panels to accurately follow the sunlight’s direction and
intensity throughout the day. By constantly adjusting the
location of the solar panels, the system maximizes solar
energy absorption, optimizing energy production and stor-
age. The working flow of this tracking system is shown in
figure 6. This solar-powered technique makes our proposed
system more self-sufficient and cost-effective, minimizing
operational expenses and decreasing the carbon footprint.

Additionally, the employment of renewable solar energy
aligns with sustainable agricultural practices, adding to
environmental conservation. On the other hand, Rainwa-
ter Harvesting enables water conservation and sustainable
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water management approaches. This subsystem also incor-
porates a rain sensor to monitor rainfall events. The working
flow of this system is also shown in figure 6. When the rain
sensor detects rain, it prompts the subsystem to take action.
Upon rain detection, a servo motor is actuated to open the
water reservoir’s inlet, allowing rainwater to be collected.
This proactive strategy ensures that crucial rainwater is
efficiently gathered and conserved for later use within
the greenhouse. The proposed system dramatically lessens
dependence on conventional water supplies by harnessing
rainwater for irrigation and other greenhouse purposes,
safeguarding vital freshwater resources. This minimizes
water use, saves operational expenditures, and aids in a
more environmentally friendly agriculture practice. The
reservoir works as a storage facility, collecting rainwater
during rains. This saved rainwater can be employed during
dry seasons or droughts, providing a stable water supply
for the greenhouse. This water reuse strategy increases the
system’s sustainability, robustness, and efficiency.

FE. Mobile App Development & Design
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Figure 7. Mobile Application Workflow

The mobile app, built using Django for the backend and
Flutter for the front end, provides a smooth and efficient
user experience. A RESTful API offers dependable com-
munication and data exchange, while a MySQL database
ensures data storage reliability. The workflow of this ap-
plication is visually depicted in Figure 7. The program
includes a Monitoring Dashboard for real-time monitoring
of crucial parameters such as temperature, humidity, light
intensity, and soil moisture. The Crop Recommendation
System also uses modern data analytics to deliver individu-
alized crop recommendations, hence increasing agricultural
productivity. The Disease Detection Subsystem, on the other
hand, uses image processing to swiftly identify possible
health hazards in plants, allowing for early action. This
integrated strategy improves precision agriculture by pro-
viding farmers with a comprehensive tool for monitoring,
crop management, and disease identification, resulting in
more sustainable and efficient agricultural methods.

4. RESULTS AND DISCUSSIONS
In this section, we will first introduce our experimental
setup and then conduct experiments to demonstrate the
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significance of the proposed technique. We will explain the
evaluation metrics and then show the comparison results of
our analysis. We also examine the efficiency of the trained
student models.

A. Performance Evaluation Metrics

Several essential metrics are used to assess the perfor-
mance of classification models. The confusion matrix, a
table that compares model predictions to actual labels, is
one such statistic that is crucial in measuring a model’s
performance. The four critical components of the confusion
matrix are true positive (TP), false positive (FP), true
negative (TN), and false negative (FN) [41]. The num-
ber of positive occurrences successfully predicted by the
model is marked by TP, whereas the number of negative
instances incorrectly projected as positive is denoted by
FP. TN, on the other hand, represents the number of
negative occurrences that were correctly anticipated as
negative, and FN denotes the number of positive instances
that were incorrectly classified as negative. Several metrics
derived from the confusion matrix assist in assessing the
model’s performance. Accuracy is a statistic that measures
the model’s predictability by dividing the total number of
occurrences by the sum of TP and TN, as indicated in
Equation 2.

TP

Accuracy = 2)
TP+TN+FP+FN

Precision, a positive predictive value determined using
equation 3, is concerned with the fraction of correctly
predicted positive occurrences out of all cases anticipated.

TP
Precision = ———— 3)
TP+ FP

In contrast, recall, as stated in equation 4, is the propor-
tion of correctly predicted positive occurrences relative to
all positive instances. It is also known as sensitivity or true

positive rate.

TP
Recall = ———— @
TP+ FN

The Fl-score gives a balanced statistic by assessing the
harmonic mean of accuracy and recall. Equation 5 may
be used to get the F1 score. It demonstrates the model’s
capacity to achieve both accuracy and recall simultaneously.

Precision * Recall

F1-S =2 5
core * Precision + Recall )

On top of that, the Matthews Correlation Coefficient
[42], a statistic, considers the confusion matrix’s TP, TN,
FP, and FN components. Its value ranges from -1 to 1,
with 1 being an error-free classification, 0 representing an
arbitrary classification, and -1 representing a completely
incorrect classification. The MCC formula incorporates TP,
TN, FP, and FN to provide a comprehensive measure of

categorization quality, as shown in Equation 6.

MCC - (TP TN) — (FP = FN)

NTP+FP)+(TP+ FN)=(IN + FP)* (IN +( 61;N)

The ROC AUC metric was used to compare the ma-
chine learning models. The ROC curve illustrates a binary
classifier’s performance at various categorization levels. At
different threshold values, it shows the true positive rate
(TPR) vs the false positive rate (FPR). A multiclass ROC
curve is utilized in this comparison to assess how well
each method performed for each class concerning the other
classes. The AUC (Area Under the Curve) score gauges the
algorithm’s performance for each class. The boundary of
AUC is (0,0 to 1,1). The highest value of AUC indicates a
better classifier.

B. Experimental Design of the Proposed System

Our intelligent greenhouse system’s functional prototype
displays its potential to effectively monitor and adjust
greenhouse conditions by seamlessly collecting and provid-
ing real-time data. Figure 8 displays the prototype of the
Intelligent Greenhouse Setup, which serves as a physical
indicator of our effort. We tested the system inside a home
at Kaliakair near Gazipur, Bangladesh. Using our real-life
application, we successfully acquired important parameter
data, enabling us to adequately assess the system’s perfor-
mance and impact in a genuine, real-world context.

C. Comparison of several ML models for Crop recommen-
dation subsystem

Among the machine learning models evaluated for crop
recommendation, Boosting (AdaBoost) stands out as the
top performer, as shown in table I and figure 9, achieving
the highest accuracy, precision, recall, F1-Score, and MCC.
Bagging closely follows, demonstrating strong performance
across multiple metrics. Random Forest performs well but
slightly lags behind Boosting and Bagging. In contrast,
SVM and Decision Trees perform less than ensemble
methods. The choice between Boosting and Bagging may
depend on specific requirements such as interpretability and
resource constraints. Boosting is the preferred choice for
maximizing predictive performance in crop recommenda-
tion tasks in this scenario.

D. Crop Recommendation System Mobile Interface

In this integrated architecture, users input critical green-
house parameters through a user-friendly form embedded
in a Flutter mobile application. The input is sent via a
POST request to a Django backend, which, in turn, forwards
the data to a Flask server hosting a pre-trained machine-
learning model for predicting optimal crops. The Flask
server processes the input, returns the prediction to Django,
and stores the results in a MySQL database, including
the input parameters and prediction. The Django backend
communicates the prediction to the Flutter app, enabling
users to seamlessly receive and display personalized recom-
mendations. This unified system harmonizes the strengths
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TABLE I. Performance Comparison among ML Algorithms for Crop Recommendation

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) MCC (%)
Random Forest 96.36 96.84 96.36 96.43 96.20
SVM 93.41 93.65 93.41 93.38 93.10
Decision Tree 92.27 94.14 92.27 92.41 91.99
Bagging 94.55 95.67 94.55 94.58 94.33
AdaBoost 97.27 97.62 97.27 97.30 97.15
Stacking 92.27 93.01 92.27 92.16 91.95
Logistic Regression  86.36 87.02 86.36 86.29 85.74

Random Forest

syM 5341

Decision Tree

Bagging 9455

AdaBoost

97.27]

Stacking

Logistic Regression .36

0 20 40 60 80 100
Accuracy (%)

Figure 9. Accuracy Comparison among ML Algorithms for Crop
Recommendation

of Flutter for frontend interaction, Django for API han-
dling and database integration, Flask for machine learning
model deployment, and a MySQL database for consistent
data storage, creating an efficient end-to-end greenhouse
recommendation system. Figure 11 displays the interface
screenshot and the prediction result.

E. Comparison of Deep Learning Models for Disease De-
tection Subsystem

When examining multiple deep-learning models for crop
disease detection, as demonstrated in Table II and Figure
10, MobileNetV2 and EfficientNetBO have considerably
fewer parameters than InceptionV3, NASNetMobile, and
Densenet121. This is critical for this proposed approach

100 T == MobileNetv2

== InceptionV3

//_/\/F\_’— NASNetMobile
95 £ == DenseNet121

== EfficientNetB0

Acuuracy (%)

85T

| | 4 ' | L |
80 U T T T T T 1

Epoch

Figure 10. Accuracy Curves of Deep Learning Models for Disease
Detection Subsystem

since we utilized IoT devices with limited resources. Re-
garding the highest accuracy, EfficientNetBO outperforms
with an accuracy of 97.50%. Precision, representing the
accuracy of optimistic predictions, is also maximized by
EfficientNetBO0, showcasing a value of 98.82%. The model’s
ability to capture all relevant instances, known as recall, is
best demonstrated by EfficientNetB0, boasting the highest
recall score of 98.73%. The F1 score, which harmonizes
precision and recall, is likewise peaked by EfficientNetBO,
registering an impressive 98.77%. From these metrics, Ef-
ficientNetBO emerges as the superior model, showcasing
a balanced performance in precision and recall—crucial
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TABLE II. Performance Comparison of Deep Learning Models for Crop Disease Detection

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)
MobileNetV2 96.06 96.43 96.43 96.43
InceptionV3 91.44 95.61 95.59 95.60
NASNetMobile 93.16 96.39 96.56 96.47
EfficientNetB0 97.50 98.82 98.73 98.77
Densenet121 96.69 98.41 98.34 98.37

aspects in classification tasks. Due to a reasonable mix
of model size, computational efficiency, and accuracy, Effi-
cientNetBO0 is the most suitable solution for this proposed
system with resource-constrained devices.

F. Disease Detection Subsystem Mobile Interface

The mobile app interface provides users with a user-
friendly platform for plant disease detection. Users can
initiate the process by clicking on the camera icon, which
activates the image capture functionality. Alternatively,
users can choose a pre-captured leaf image from their
device’s gallery. Upon image selection, the mobile ap-
plication processes the chosen image using the disease
detection subsystem. The system then analyzes the selected
image to identify any potential plant diseases. The interface
dynamically displays the results of the disease detection
process, showcasing the identified disease(s) on the plant
leaf. This information is presented to the user in an easily
understandable format, allowing them to take necessary
actions based on the diagnosis. Figure 11 illustrates a
screenshot of the mobile app interface during the disease
detection process, giving users a visual representation of
the detected disease on the selected plant leaf.

5. CONCLUSION

Our proposed system combines technology with prin-
ciples of sustainable farming, forcing a reformation in
traditional agricultural production using modern sensors,
automation, machine learning, and modern farming meth-
ods such as horizontal greenhouses, vertical farming, and
hydroponics. Starting from rain collection to solar tracking,
the stipulated subsystem rejoices in saving resources and
environmental sustainability. Extensive simulations show
excellent results: the highest recorded accuracy of crop rec-
ommendations was 97.27%, while crop diseases accounted
for 97.50%. The results obtained from this study show that
the system has potential applications in increasing crop
productivity, efficient use of resources, and sustainability.
Through a user-friendly mobile app, it makes monitoring
easier on the greenhouse, gives recommendations on crops,
and timely disease detection; hence, it remains atop in
keeping up with solving challenges caused by increased
populations. Although the upfront cost of installation may
deter many farmers, the long-term benefits certainly out-
number these drawbacks. Future research should be oriented
toward fine-tuning the system based on certain environmen-
tal parameters and increasing its adaptability to different
agricultural practice conditions and crops. Then, through

continuous innovation and data-driven insights, farmers will
be better placed in creating a greener and more sustainable
agricultural landscape: striking a perfect balance between
technology and nature for a brighter future.
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