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Abstract: This paper proposes a multimodal graph based recommendation system using a hybrid filtering approach. The proposed approach 

uses various sources of data and advanced graph based deep learning algorithms to provide more accurate and personalized 

recommendations to users. Our framework captures user and item attributes using text, images, videos, and metadata. We incorporate these 

attributes into the graph of user-item interactions using collaborative filtering and content based filtering. Graph convolutional networks 

(GCNs) help us identify collaborative filtering attributes. The intrinsic characteristics of items can be better understood and utilized with 

graph-based content based filtering. The proposed model initially classifies related users and items into groups using unsupervised 

clustering, then refines its recommendations using a cross-attention approach. In addition, we use a Variational Graph Autoendcoder 

(VGAE) approach that encodes intricate interactions inside a hidden space, hence enabling precise predictions of links. Experimental results 

show that the proposed model provides more accurate and personalized recommendations than existing models. We conduct comprehensive 

experiments using the publically accessible datasets of Movielens 1M, TikTok, MovieLens 10M and MicroVideo 1.7M. Our proposed 

model demonstrates superior effectiveness compared to the state-of-art multimedia recommender systems in various evaluation parameters 

such as precision, accuracy, recall, Normalized Discounted Cumulative Gain (NDCG), and F1-score. 

Keywords: Content, collaborative, hybrid filtering, multimdodal, cluster similarity, graph convolutional network, variational graph 

autoencoder, link prediction.  

1. INTRODUCTION 

The existing web services are starting to employ 
recommendation algorithms more and more frequently [1]. 
Such algorithms almost always adjust their 
recommendations to meet the user's requirements. Utilizing 
these technologies, media streaming platforms and e-
commerce sites [2] help users navigate massive information 
landscapes, which in turn helps consumers find new, 
relevant material. During the initial stages of the business, 
the primary focus was on developing online shopping 
recommendation systems [3]. It used simple algorithms to 
analyze customer purchase histories. Powerful 
recommendation systems that employ machine learning 
algorithms have been increasingly popular in recent years, 
emerging on a wide range of websites and platforms [4]. To 
improve the precision and accuracy of their product 
suggestions, e-commerce businesses are experimenting with 
recommendation systems. Individualized recommendations 
for media such as articles, books, songs, and movies are 
among the many services offered by these systems [5]. 

There are two main ways that recommender systems sift 
through data: collaborative filtering (CF) and content-based 
filtering (CBF). Collaborative Filtering recommends similar 
users' preferences. This sort of recommendation system 

classifies users into clusters of similar types and 
recommends each user based on its cluster's preferences [6, 
7]. We divide it into two categories: item and user-based CF. 
Item-based CF compares items for similarity [8]. User-based 
CF recommends items based on two users' similarities [9]. 
Collaborative filtering has some issues; without enough data 
for new users or items, the cold start problem [10] is a major 
concern. Collaborative filtering systems often struggle with 
data sparsity [11]. When ratings are low in relation to users 
and items, recommendations are less reliable. 

CBF matches items to users' tastes based on their 
contents [12]. Use client profiles, item summaries, and 
previous purchases to make suggestions. Content-based 
filtering can propose items after analyzing what users have 
done and what they like, but it can't offer very distinct items. 

Both CF and CBF encounter certain limitations, which 
led to the creation of hybrid recommendation systems 
[13][14]. These systems incorporate multiple 
recommendation methods to enhance their shortcomings and 
optimize their strengths. A hybrid system might use CF to 
find items or users that are similar, and then it might use CBF 
to make suggestions that are specific to each user based on 
their own traits. 



Hybrid recommendation systems can make suggestions 
more varied and accurate at the same time. They are 
especially effective at helping with data sparsity and the cold 
start problem because of the traits they offer. We can 
combine different approaches to assimilate collaborative and 
content-based methods. Within these methods are arithmetic 
mixtures, meta-level models, and feature augmentation. 
However, these systems primarily focus on integrating text 
data and user-item interaction. They don't always pay 
attention to the rich multi-modal data that is available in 
many applications. 

In the digital world we live in now, we can get all kinds 
of information, like text, pictures, movies, and music. For 
example, people who shop online can watch videos, as well 
as write and post visual reviews of products. Social 
networking site posts allow users to include text, images, and 
videos, and users also interact with these posts. Using this 
multimodal data lets us understand user tastes and product 
qualities better, which could lead to better recommendation 
algorithms. Unimodal data cannot capture some qualities of 
an item or human behavior, but multimodal data can. When 
it comes to showing how someone feels and what they like, 
audio data can often provide aesthetic and contextual 
information. Visual information is a beneficial way to show 
contextual and semantic information, while textual data can 
show how users feel about a material and its meaning [15]. 

For personalized recommendations, these systems utilize 
multimodal data intended to offer insight into the user's 
preferences. But the assimilation is persistent in the absence 
of much data ie. text, images, video, and music. Combining 
data from multiple modalities efficiently needs complex 
algorithms and plenty of computational cost [16]. 
Multimodal recommendation systems are scarce, 
complicating the issue. Problems with real-time applications 
are becoming harder to solve [17]. This is caused by an 
increasing multimodal data complexity. We must handle 
multimodal datasets without overloading performance, 
ensuring that the load matches the capacity. The study 
intends to design and evaluate a hybrid recommender that 
uses multiple data sets and algorithms. 

2. RELATED WORKS 

The more straightforward antecedents of today's 
recommendation systems, which were dependent on explicit 
user-item interactions, have been replaced by more complex 
systems that combine multimodal data and advanced 
machine learning. Earlier systems widely used both content-
based filtering (CBF) and collaborative filtering (CF), each 
with its own pros and cons. Sparsity and cold-start issues in 
CF might hinder user engagement with items.  

Integrating CF and CBF methods with graph-based 
methods overcomes their drawbacks. The approach focuses 
on relevant feature matrices by dynamically integrating user 
and item domain information via cross-attention methods. 
This hybrid technique uses user behavior and item features 
to make more accurate and personalized recommendations 
[18]. Recent multimodal learning advances allow feature 

extraction and integration from text, photos, videos, and 
metadata [19]. RoBERTa [20], EfficientNet-V2 [21], and 
Video Transformer [22] may generate rich representations 
from their modalities. These elements create a 
comprehensive view of users and products, helping the 
recommendation engine capture complicated user 
preferences and item characteristics.  

User-item feature encoding helps recommendation 
systems work by turning raw data into model-friendly 
representations. CF and CBF uses encoded user-item 
information to predict user preferences. The matrix 
factorization approaches, a type of latent feature encoding, 
have been frequently utilized to improve collaborative 
filtering using low-dimensional user-item relationship 
matrix representations [23]. Neural network-based 
embeddings have improved the capture of complicated user-
item interactions by encoding high-dimensional data into 
dense, low-dimensional vectors [24].  

Unsupervised clustering approaches as hierarchical and 
k-means are used in recommendation systems to find hidden 
user and item data structures [25]. Features can be used to 
cluster users and items and identify communities and content 
similarities. Cluster similarity-based graphs employ user and 
item cluster relationships to improve the system's capacity to 
offer relevant items without explicit interactions. Semantic 
clustering groups things or users by semantic similarity, 
frequently using NLP. This method uses contextual 
information in written descriptions, reviews, and other 
content. Word embeddings and deep learning models to 
cluster items by semantic content, improving content-based 
recommendations. Semantic clustering and collaborative 
filtering improve suggestion relevancy by integrating 
content similarity and user behavior patterns. 

Many recommendation systems are based on bipartite 
networks, which have nodes for users and objects. This 
structure models user-item interactions like ratings and 
clicks. Bipartite graphs enable graph-based algorithms to 
find latent links and recommend objects. To increase 
recommendation accuracy, Graph Convolutional Networks 
(GCNs) transmit data across the bipartite graph in order to 
detect patterns of higher-order connections [26]. The graph 
autoencoders can learn the structure of user-item interactions 
from bipartite networks, improving recommendation 
performance [27]. 

Due to their capacity to capture complex user-item 
relationships, graph-based recommendation systems are 
popular. User-item bipartite graphs express interactions, 
making graph neural networks (GNNs) for collaborative 
filtering easier. Graph Convolutional Networks (GCNs) and 
GraphSAGE aggregate information from surrounding nodes 
to improve recommendation embeddings for users and items 
[28][29].  

VGAEs provide a powerful foundation for graph link 
prediction, helping recommendation systems [30]. VGAEs 
model user-item interaction uncertainty and variability by 
learning probabilistic distributions over latent variables. 



GCNs in the encoder and a probabilistic decoder allow 
VGAEs to capture complicated relationships and forecast 
future user-item interactions, making them suited for tailored 
recommendations. 

Social networks, recommender systems, and biological 
networks use link prediction, a crucial network analysis 
problem, to predict future links. Traditional methods include 
network topology and similarity measurements such 
common neighbors, Jaccard coefficient, and preferred 
attachment [31]. Bayesian, stochastic block, and matrix 
factorization approaches like Singular Value Decomposition 
(SVD) improve prediction accuracy [32]. Supervised 
learning methods that treat link prediction as a binary 
classification task show potential [33]. By capturing 
complex network patterns, unsupervised methods like node 
embeddings like DeepWalk and Node2Vec improve 

prediction [34]. By using graph structures, deep learning 
developments like GNNs and GCNs have revolutionized 
link prediction [35][36]. Graph Attention Networks (GATs) 
dynamically weigh neighbor significance to improve 
predictions [37]. Model performance is often evaluated 
using AUC, accuracy, recall, and F1-score [38]. This 
multidisciplinary approach shows link prediction methods' 
evolution. 

3. PROPOSED MODEL  

As shown in Figure 1, our proposed model uses deep 
learning and multimodal data preprocessing. The model 
integrates user and item attributes into the recommendation 
system, merges data, trains the model, and improves user 
score prediction over cutting-edge techniques. 

Figure 1 shows our proposed model’s framework 

3.1 Algorithm: Multimodal Graph-based 
Recommendation System using Hybrid Filtering 
Approach (MGRS-HFA) 

A. Multimodal Feature Extraction, Fusion and User-Item 
Bipartite Graph Generation 

i) Gather different modalities (text, image, video 
and metadata) from the various sources. 

ii) Resize and normalize image modality and pass 
through EfficientNet V2 for image features 
extraction. 

iii) Preprocess video and extract features using 
Video Transformer. 

iv) Preprocess the text modality by splitting the 
corpus, removing stop words and punctuation, 
and performing lemmatization; tokenize text and 
generate RoBERTa embeddings from tokenized 
input. 

v) Normalization processes for continuous 
variables in metadata from Prompt Generation 
and encoding for categorical variables transform 
into numerical vectors using RoBERTa. 

vi) The user-item feature encoder was used to 
integrate features from all modalities into a single 
representation. 

vii) Construct a user-item bipartite graph. 



B. Collaborative Filtering with GraphSAGE 

Input: User and Item feature matrix (XU, XI), User and Item 
adjacency matrix (AU , AI) 

Output: Processed feature matrices HU , HI  

i) Calculate user and item similarity for each user 
pair (ui, uj) and item pair (ii, ij), and also compute 
the similarity based coefficient for both pairs. 

ii) Construct user and item graphs for each user pair 
(ui, uj) and item pair (ii, ij), if the similarity 
exceeds a threshold value, set the adjacency 
matrix to 1otherwise to 0. 

iii) GCN Processing on Attributed Graphs and 
Obtaining the Processed Feature Matrix : Apply 
a Two layer GCN to user and item subgraphs to 
learn the collaborative filtering and updated 
adjacency matrix to fine-tune user and item 
features. Compute the final processed user HU 
and item HI feature matrices. 

C. Content Filtering with GraphSAGE 

Input: Mixed feature matrix XUI, Mixed adjacency matrix 
AUI 

Output: Processed mixed feature matrix HUI 

i) Unsupervised clustering: Apply clustering to 
both user and item features and Compute cluster 
centroids of user cluster CUj and item cluster CIj, 

ii) Compute cluster similarity for each user cluster 
CUj and item cluster CIk 

iii) for each user cluster CUj and item cluster CIk, 
construct a user-item cluster graph. If the 
similarity exceeds a threshold value, set the 
adjacency matrix to 1 otherwise to 0. 

iv)  Mixed Graph GraphSAGE Processing: Apply 
GraphSAGE to the mixed feature matrix and 
adjacency matrix. We refined the mixed features 
using the updated adjacency matrix. Calculate 
the final processed mixed feature matrix HUI. 

D. Cross-Attention, VGAE, and Recommendation 
Generation 

Input: Processed feature matrices HU , HI, HUI 

Output: Recommendations 

i) Define the query, key, and value matrices and 
compute the attention weights and cross-
attention mechanism's output. 

ii) Use the Variational Graph Autoencoder (VGAE) 
to learn probabilistic distributions over latent 
variables.  
a) The Inference Model (Encoder): Calculate 

the mean and log variance. Sample Z latent 
variables from the inferred Gaussian 
distribution. Calculate the posterior 
distribution. 

b) Decoder: Reconstruct the adjacency 
matrix by estimating link probabilities 
between nodes. Using the encoder's latent 

variables, determine the likelihood of each 
link's existence. 

iii) Calculate Loss Function using reconstruction 
loss and KL divergence. 

iv) Calculate the likelihood of node pairs for Link 
Prediction. 

v) Rank the computed link probabilities to generate 
recommendations. 

3.2 Framework of the Proposed Model 

In this section, the overall proposed model consists of 
four components: multimodal data preprocessing, 
collaborative filtering, content based filtering, cross-
attention, VGAE, and recommendation generation. 

A. Multimodal Data Preprocessing 

The model encompasses a range of data modalities, 
including text, image, video, and metadata, for building user 
and item representations. The feature extraction and 
multimodal data fusion processes, which are at the core of 
our recommendation system. The steps proceed as follows: 

i) Data Collection and Preprocessing 

The model starts with gathering multiple sources of data. 
In the text features, we utilize user reviews and item 
descriptions.  The image data consists of product images and 
user-uploaded photos. The video data also includes 
multimedia content, such as trailers and reviews. Metadata 
is structured information such as item attributes (e.g., genre, 
price, category) and user demographics (e.g., age, location). 
To standardize and validate each data type, a specific 
preprocessing pipeline is necessary. We split the corpus and 
removed stop words, punctuation, and lemmatization for text 
data. The resized and normalized images serve as image-
level input data. We divide each video into offset frames, 
known as keyframes, and extract the features accordingly. 
Standardizing metadata to ensure consistent records. 

ii) Feature Extraction Models 

For feature extraction from each data modality, we use 
specific models: 

 Text data: Using a pre-trained RoBERTa model, we 
derive contextual embeddings. This paradigm provides 
dense vector representations and captures semantic 
subtleties. 

 Image Data: EfficientNet-V2 extracts high-level 
features from images. This model's time efficiency and 
outstanding performance in image categorization tasks 
persuaded us to select it. 

 Video Data: A Video Transformer model processes the 
video data, capturing the dynamic information within 
video sequences by analyzing sequential frames to 
extract temporal properties. 

 Metadata: Normalization processes for continuous 
variables and one-hot encoding for categorical variables 



transform metadata characteristics into numerical 
vectors. 

iii) Feature Integration and Encoding 

We create an integrated representation of users and items 
by combining the features retrieved from all modalities. In 
order to guarantee that the multimodal features are 
compatible and collectively informative, this integration 
makes use of alignment and concatenation techniques. 

Next, we use a feature encoder to transform the unified 
features into a fixed-dimensional space suitable for further 
processing. Typically, this encoder consists of fully linked 
layers that determine the most important parts of the 
combined characteristics. 

iv) Bipartite Graph of User-Item 

The unified and encoded features were used for construct 
a user-item bipartite graph. User nodes represent the 
system's individual users. Item nodes represent the items the 
system offers (products, movies, music, etc.). An edge 
connects a user and an item node if there is an interaction 
between the user and item. These interactions can be explicit 
(e.g., purchases, ratings) or implicit (e.g., browsing history, 
clicks).  

A bipartite graph G = (U, I, E) entails of two distinct sets 
of vertices: U (users) and I (items), where E represents the 
edges between these sets. Each edge euiϵE connects a user 
uϵU and an item iϵI, indicating some form of interaction or 
relationship (e.g., purchase, rating). 

The multimodal feature extraction and data fusion 
ensures that our recommendation system leverages all 
available information to make highly accurate and 
personalized suggestions. By integrating diverse data types 
and extracting meaningful features, we establish a robust 
foundation for the subsequent graph-based learning and 
recommendation processes. 

B. Collaborative Filtering 

Beyond user-item interactions, we can construct 
collaboration graphs to capture relationships between users 
(user collaboration graph) or items (item collaboration 
graph). 

i) User Collaboration Graph 

This graph represents relationships between users. The 
model can create edges based on shared preferences, similar 
browsing behavior, or social connections. This graph helps 
identify user communities with similar interests, allowing 
the system to recommend items popular within those 
communities. 

From the bipartite graph, we extract a user-user graph 
GU = (U, EU) based on feature similarity among users. The 
edges EU are defined based on a similarity metric s(u, u′) for  
u, u′𝜖𝑈, such as the cosine similarity of user feature vectors 
as shown in equation (1): 

 s(u, u′) =
vu,v

u′

‖vu‖‖vu′‖
 (1) 

where vu is the feature vector of user u. 

 

Figure 2 User Collaboration Graph of the MovieLens 1M dataset 

ii) Item Collaboration Graph 

This graph captures relationships between items. We can 
generate edges based on item co-purchases, content 
similarity, or complementary functionalities. This graph 
helps identify groups of similar items, allowing the system 
to recommend complementary items or substitutes based on 
user preferences. 

Similarly, we form an item-item graph GI = (I, EI) by 
connecting items i, i′𝜖I based on their similarity s(i, i′) as 
given in equation (2): 

 s(i, i′) =
vi,v

i′

‖vi‖‖vi′‖
  (2) 

where vi is the feature vector of item i. 

 

Figure 3 Item Collaboration Graph of the MovieLens 1M dataset 

iii) GCN Processing on Attributed Graphs 

We apply two layer GCNs separately to GU and GI to 
learn and refine the node (user or item) representations. 
Equation (3) expresses the propagation rule for a GCN layer. 

 H(I+1) = σ(D−
1

2ÂD̂−
1

2H(I)W(I)  (3) 

iv) Obtaining the Processed Feature Matrix 

We obtain the output feature matrices HU and HI for 
users and items, respectively, after processing through two-
GCN layers. These matrices encapsulate the refined and 
graph structure and node interactions to create high-level 



user and item representations. Each row in HU and HI 
corresponds to the new feature vector of a user or item, 
representing their embedded characteristics in the 
collaborative filtering context. 

Various downstream tasks like recommendation, 
clustering, or classification can use the resulting feature 
matrices HU and HI, enhancing the system's understanding 
of complex patterns in user-item interactions. 

C. Content Filtering 

The user-item content filtering network improves the 
bipartite graph by adding nodes that represent item and user 
content. Item and user nodes communicate with their content 
feature nodes via edges.  

This enhanced structure allows the system to filter user-
item associations by content similarity. The system may 
connect a user who frequently watches comedies to item 
nodes that represent additional comedies, even if the user has 
not directly interacted with them. Content-based filtering 
uses thematic links between users and items to improve 
recommendation accuracy. 

i) Unsupervised Clustering 

Unsupervised clustering can discover hidden structures 
of data and increase recommendation accuracy. Using 
unsupervised learning, create clustering graphs for users and 
items. These graphs show user behavior and item quality by 
combining users and items with similar features. On build 
clusters, we use k-means or DBSCAN to cluster users and 
items differently. We designate each collection of users and 
items as U and I. In the dataset, each user uϵU and item iϵI 
are represented by vu and vi. 

User clustering graphs display users as nodes. As shown 
in equation (4), edges connect clustered users. Users in these 
connections share interests or behaviors.  

 CU = {CU1, CU2, … … … … … CUj} (4) 

CUj represents the j-th user cluster. 

Nodes in an item clustering network represent items. 
Equation (5) connects clustered items, reflecting their 
content similarity or co-occurrence patterns.  

 CI = {CI1, CI2, … … … … … CIk}  (5) 

CIk represents the j-th item cluster. 

Clustering graphs help the system understand user 
communities and item links based on raw interaction data. 
Analyzing these graphs can yield system insights. 

ii) Content Filtering using Cluster Similarity-based Graphs  

Using user and item clustering graphs, we can create a 
cluster similarity-based network for content filtering. This 
graph examines cluster relationships. 

Nodes represent the previous stage's user and item 
clusters. High-similarity edges connect user and item 
clusters. Content-based feature analysis or common user 

preferences for cluster elements can measure this similarity. 
We must calculate user and item similarity after clustering. 

First, compute each cluster's centroid. The centroid of a 
cluster CUj, can be found using equation (6). 

 CUj =
1

|CUj|
∑ VuuϵUIj   (6) 

 

Figure 4 User Clusters of the MovieLens 1M dataset 

In a similar way, equation (7) gives the cluster's centroid 
CIj: 

 CIj =
1

|CIj|
∑ ViiϵCIj   (7) 

 

Figure 4 Item Clusters of the MovieLens 1M dataset 

Use a similarity measure like cosine similarity in 
equation (8) to compute the similarity among each pair of 
user-item clusters.  

 s(CUj, CIk) =
CUj,CIk

‖CUj‖‖CIk‖
  

 (8) 

The cluster similarity allows for CBF by recommending 
items from clusters similar to those a user has interacted with 
earlier. This approach personalizes recommendations by 
leveraging the intrinsic properties of items and user behavior 
patterns learned through unsupervised clustering.  

iii) Content Filtering Graph 

Create an integrated graph based on cluster-level 



similarities that mixes user and item nodes. A graph G =
(V, E) using V as the nodes and E as the cluster-similar 
edges. For each user u ϵ CUj and item i ϵ CIk : 

(u, i)ϵE if 𝑠(CUj, CIk) > threshold 

We can set this threshold based on a predefined value or 
derive it from the distribution of similarities. 

We consider the feature vectors of nodes in the new 
graph G; vu for users and vi for items. Refine the node 
features, apply GCN to the constructed graph. Equation (9) 
provides the GCN propagation rule. 

 H(I+1) = σ(D−
1

2ÂD̂−
1

2H(I)W(I) (9) 

 

Figure 5 (a) Cluster Similarity of MovieLens 1M Users and Items 
Network Graph 

 

Figure 5 (b) Largest MovieLens IM dataset Network component 

iv) Obtaining the Processed Feature Matrix 

The final output feature matrix H, after being processed 
through the GCN layer, represents the refined embeddings 
for both users and items. These embeddings hold the 
connections learned from cluster-level interactions and 
graph convolutions. This makes it possible for tasks like 
prediction and recommendation to work better later on. 

This approach uses unsupervised clustering and graph 
neural networks to improve content filtering reliability and 
context. 

D. Hybrid Filtering 

Most recommendation systems use CF, which uses user-
item interaction data, or CBF, which uses item features. 
However, each method has limitations. CBF may struggle 
with restricted feature representation, while CF may have 
sparsity and cold-start issues. Hybrid approaches combine 
the strengths of both approaches to overcome these 
constraints. This hybrid filtering approach relies on cross-
attention. 

i) Cross Attention Mechanism 

Dynamically combining user and item information is 
essential for hybrid filtering. Cross-attention learns the 
importance of features based on their relevance to the user 
and the item. 

Representing Users and Items: We use embedding 
layers to convert user and item features to latent 
representations. These lower-dimensional representations 
capture user and item traits. 

Equation (10) describes the attention mechanism: 

 𝑍 = Attention (Q, K, V) = softmax (
QKT

√dk
) V (10) 

Define the queries (Q), keys (K), and values (V) as 
follows in equation (11) :  

 𝑄 = 𝐻𝑈 , 𝐾 = 𝐻𝐼 𝑎𝑛𝑑 𝑉 = 𝐻𝑈𝐼  (11) 

After addressing cross-attention, the mechanism 
computes the attention weights. When calculating the 
model's weights, we can see how much weight each user 
attribute should have when considering a certain item, and 
vice versa. 

Equation (12) allows us to determine the weight of 
attention.  

 Attention Weight (A) = softmax (
QKT

√dk
)   (12)  

Finally, we apply the learned attention weights to the 
user-item representations. In our recommendation, we use a 
weighting technique to pay attention to the preference of 
users and items and qualities. 

The cross-attention method allows the model to focus on 
the relevant regions of the merged feature matrices. HU , HI, 
and HUI to represent the input feature matrices. The cross-
attention permits the model to focus on pertinent parts of the 
feature matrices when combining them. Let HU , HI, and HUI 
be the input feature matrices. 

Equation (13) shows the cross-attention process.  

 Z = AV  (13) 

ii) Recommendation through Link Prediction 

Predicting user preferences and then suggesting relevant 
items is the main objective of recommendation systems. For 
this purpose, link prediction in graphs is a method that has 
shown some potential. This section explores the Variational 
Graph Autoencoder (VGAE) within recommendation 



systems for potential use in link prediction. 

Finding the likelihood that an edge will connect two 
nodes is one of the primary objectives of graph link 
prediction. In the past, link prediction relied heavily on 
either hand-crafted attributes or really basic graph 
properties. But it's also conceivable that these approaches 
overlook the complex patterns and relationships in the data 
pertaining to interactions between items and users. 

iii) Variational Graph Autoencoder (VGAE) for Link 
Prediction 

Utilizing deep learning's capabilities, VGAE sidesteps 
the limitations of conventional methods. VGAE, a subclass 
of deep learning architectures, specifically handles graph 
data. This can help you understand how VGAE predicts 
connections in recommendation systems: 

Making an item-based representation of the data is the 
initial step. Nodes represent users or items, whereas edges 
indicate interactions between nodes. Engagements include 
clicks, ratings, and purchases. 

The user-item graph is processed by the VGAE encoder. 
Graph convolutional layers is used in this encoder to 
detention the intricate relationships. 

The inference model aims to learn a probabilistic 
distribution over the latent variables (node embeddings). We 
employ two GCN layers for computing μ = GCNμ(X, A) and 

log σ =  GCNμ(X, A) that share the weight matrix W0. 

Equation (14.1 & 14.2) illustrates how we derive the 
inference model from the Variational Graph Autoencoder. 

 q(Z|X, A) = ∏ q(zi|X, A)N
i=1   (14.1) 

 q(zi|X, A) = 𝒩(zi|μi, diag (σi
2)) (14.2) 

where μi and σi
2 are the mean and variance obtained from 

the GCN layers. 

The VGAE encoder compresses the user and item 
representations into a lower-dimensional latent space. This 
latent space captures the most important features and 
relationships from the user-item graph. 

The equation (15) provides the likelihood of a link 
between two nodes, u and v, based on the latent 

representations Z obtained via the VGAE.  

 𝑝 = 𝐴𝑢𝑣 = 1|𝑍) = 𝜎(𝑧𝑢
𝑇𝑧𝑣)  (15) 

where nodes u and v have latent vectors 𝑧𝑢 and 𝑧𝑣. 

Using latent representations, the decoder reconstructs the 
original user-item graph. During this process, the VGAE 
predicts the likelihood of missing edges (i.e., unobserved 
user-item interactions). 

Equation (16.1 & 16.2) shows how the decoder 
reconstructs the network structure using link prediction 
based on the encoder function's latent embedding. 

 p(A|Z) = ∏ ∏ p(Aij|𝑧𝑖 , 𝑧𝑗)𝑁
𝑗=1

N
i=1   (16.1) 

 𝑝(𝐴𝑖𝑗 = 1|𝑧𝑖 , 𝑧𝑗) = 𝜎(𝑧𝑖
𝑇𝑧𝑗) (16.2) 

where σ is the sigmoid function. 

As expressed in equation (17), the VGAE loss function 
is made of two components: the reconstruction loss and the 
Kullback-Leibler (KL) divergence. 

 ℒ = 𝔼q(Z|G)[log p (A|Z)] − KL(q(Z|G)||p(Z)) (17) 

where 𝔼q(Z|G)[log p (A|Z)]is the reconstruction loss and 

KL(q(Z|G)||p(Z) is the KL divergence. 

iv) Generating Recommendations 

To generate recommendations, compute the probability 
of new links for each user-item pair. Rank these probabilities 
to suggest the most likely new links (i.e., recommendations). 

4. SIMULATION OF THE PROPOSED MODEL 

This section will encompass case studies of MGRS-
HFA, experimental scenarios, and performance evaluations. 

A.  Experimental Setup  

i)  Datasets  

The study employs the framework of description and 
empirical evaluation on the platforms MovieLens 1M [40], 
MovieLens 10M [42], MicroVideo 1.7M [42] and TikTok 
[40] as shown in Table 1. Each dataset comprises 
comprehensive records of user-item interactions and 
numerous multimodal features.  

TABLE 1. FOUR DATASET STATISTICS 

Dataset Interactions Items Users Sparsity Visual Textual 

Tiktok 726,065 76,085 36,656 99.99% 128 128 

Movielens 1M 1,239,508 5,986 55,485 99.63% 2,048 100 

MovieLens 10M 10,216,527 10682 51,001 98.12% 10,380 300 

MicroVideo 1.7M 12,737,619 1,704,880 10,986 99.93% 984,983 200 

ii)  Baselines  

MGAT [39]: User preferences determine gated and 
attention mechanisms for distinct techniques. We utilize 
comparable attention to determine method relevance. 

MGCF [40]: Fusion enhances MGCF representation 

learning. Numerous GCN processes and attention strategies 
combine multimodal information to improve performance. 

MCGCRS: This approach uses multimodal CLIP-guided 
graphs to predict links between users and items. It 
incorporates adversarial pretraining and Variational Graph 
Autoencoder (VGAE) approaches to accurately capture 



complex interactions between users and items. 

DIEN [41]: It improves DIN by adding a dynamic 
interest layer to track users' changing interests and 
eliminating batch normalization. 

MUIR [42]: It aims to capture a wide range of user 
interests by combining several representations for 
personalized recommendations without using batch 
normalization. 

HMCB-GRS: This approach for content-based filtering 
uses a hierarchical fusion, graph-based architecture with 
GCNs, meta-path-based GNNs, and bipartite graphs to better 
show how users interact with items, which makes 
personalized suggestions more accurate.  

iii)  Evaluation Metrics and Parameter Settings  

The dataset is split into two ratio using a random 

allocation method, with a number ratio of 8:2. The top-K's 

performance is assess using widely recognized metrics such 

as Precision@K, Recall@K, Accuracy@K, F1-Score@K 

and NDCG@K to measure the top-K performance. A value 

of K=10 is set to all models and mean score value is 

calculated accordingly. The model is trained using Adam's 

optimizer, randomly initialized parameters using a Gaussian 

distribution, Sigmoid as the activation function with a binary 

cross-entropy loss and 0.001 learning rate. Figures 6–10 

depict the outcomes. 

TABLE 2. PERFORMANCE ANALYSIS OF THE MGRS-HFA WITH COLLABORATIVE RECOMMENDATION SYSTEMS 

Model 
MovieLens 1M Tiktok 

Precision Recall NDCG F1-Score Precision Recall NDCG F1-Score 

MGAT 0.1272 0.5412 0.3251 0.2060 0.1251 0.5965 0.3838 0.2068 

MGCF 0.1342 0.5654 0.3448 0.2169 0.1308 0.6179 0.3987 0.2159 

MCGCRS 0.4910 0.8506 0.3684 0.6226 0.5209 0.9378 0.4124 0.6698 

MGRS-HFA (Proposed) 0.8269 0.8718 0.6844 0.8484 0.7969 0.9452 0.7023 0.8643 

%Improvement 68% 2% 86% 36% 53% 1% 70% 29% 

TABLE 3. PERFORMANCE ANALYSIS OF THE MGRS-HFA WITH CONTENT RECOMMENDATION SYSTEMS 

Model 
MovieLens-10M MicroVideo-1.7M 

Precision Recall NDCG F1-Score Precision Recall NDCG F1-Score 

DIEN [24] 0.2820 0.4316 0.6899 0.3411 0.3898 0.0625 0.6892 0.1077 

MUIR [25] 0.2917 0.4413 0.6992 0.3512 0.4018 0.0640 0.6978 0.1104 

HMCB-GRS 0.2998 0.4510 0.6998 0.3602 0.4054 0.6173 0.7009 0.4894 

MGRS-HFA (Proposed) 0.5912 0.4785 0.8711 0.5285 0.6659 0.6485 0.8619 0.6568 

Improvement in %age 97% 6% 24% 47% 64% 5% 23% 34% 

TABLE 4. PERFORMANCE ANALYSIS FOR MGRS-HFA WITH CONTENT AND COLLABORATIVE RECOMMENDATION SYSTEMS 

ON ACCURACY 

Model MovieLens 1M Tiktok Model MovieLens-10M MicroVideo-1.7M 

MCGCRS 0.4807 0.5413 HMCB-GRS 0.3535 0.3559 

MGRS-HFA (Proposed) 0.5182 0.5519 MGRS-HFA (Proposed) 0.5593 0.5295 

%Improvement 8% 2% Improvement in %age 58% 49% 
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(c) NDCG values                                                                            (d)     F1-Score values 

Figure 6 (a)-(d). Performance Analysis of the MGRS-HFA with MGAT, MGCF, and MCGCRS on various evaluation metrics 

     
(a) Precision values                                                                            (b)     Recall values 

     
(c) NDCG values                                                                            (d)     F1-Score 

Figure 7 (a)-(d). Performance Analysis of the MGRS-HFA with DIEN, MUIR, and HMCB-GRS on various evaluation metrics 



     
Figure 8. Performance Analysis for MGRS-HFA with Content and Collaborative Recommendation Systems of Accuracy 

   

(a) MovieLens 1M                                 (b)   Tiktok                                     (c)   MovieLens 10M                              (d)   MicroVideo 1.7M 

Figure 9 (a)-(d). Training loss by MGRS-HFA over 100 epochs on various datasets 

 

(a) Precision@ different K values 

 

(b) Recall@ different K values 



 

(c) Accuracy@ different K values 

 

(d) F1-Score@ different K values 

 
(e) NDCG@ different K values 

Figure 10 (a)-(e). Performance analysis of MGRS-HFA on various datasets (MovieLens 1M, TikTok, MovieLens 10M and MicroVideo 1.7M) for different 

values of K and Epochs 

B. Performance Analysis 

The experimental results, shown in Table 2-4 show that 
MGRS-HFA exhibits outstanding performance on various 
metrics, viz Precision, Recall, NDCG, Accuracy and F1-
Score for different models.  

The MGRS-HFA outperforms other collaborative 
models; for MovieLens 1M, the MGRS-HFA achieves a 
precision of 0.8269, which is 68% higher than the baseline 
performance. On TikTok, the MGRS-HFA achieves a 
precision of 0.7969, marking a 53% improvement. There are 
modest improvements in recall: 2% for MovieLens 1M and 
1% for TikTok. The MGRS-HFA demonstrates substantial 

enhancements in NDCG: an 86% improvement for 
MovieLens 1M and 70% for TikTok. Notably, the F1-Score 
improves by 36% for MovieLens 1M and 29% for TikTok. 

The MGRS-HFA outperforms other content-based 
models. The MGRS-HFA shows a 97% improvement in 
precision for MovieLens-10M and a 64% improvement for 
MicroVideo-1.7M. The recall improvements are 6% for 
MovieLens-10M and 5% for MicroVideo-1.7M. There is a 
24% improvement in NDCG performance for MovieLens-
10M and a 23% improvement for MicroVideo-1.7M. The 
F1-Score also sees significant gains: 47% for MovieLens-
10M and 34% for MicroVideo-1.7M. 



For the MovieLens 1M and TikTok datasets, the MGRS-
HFA shows an 8% improvement in accuracy over MCGCRS 
and a 2% improvement over HMCB-GRS. For the 
MovieLens-10M and MicroVideo-1.7M datasets, the 
MGRS-HFA shows a 58% improvement over MCGCRS and 
a 49% improvement over HMCB-GRS. 

The model's precision is highly consistent for smaller k 
values and shows reasonable performance and variability for 
larger k values across different datasets and epochs. Each 
dataset shows unique characteristics in how recall values 
evolve over epochs, likely due to dataset size, item diversity, 
and user behavior differences. Across all datasets, as k 
increases, accuracy tends to improve or stabilize over 
epochs. Larger values of k (e.g., 50, 100) consistently show 
more stability or improve accuracy, suggesting that models 
may benefit from recommending a larger number of items 
simultaneously. Higher k values tend to stabilize F1-Scores 
better than lower k values. While some metrics stabilize 
early on, smaller k values often show more variability and 
potential for improvement over epochs. Customizing 
recommendation systems to each dataset is important 
because each dataset performs radically. 

5. CONCLUSION 

This paper improves a Multimodal Graph-based 
Recommendation System using Hybrid Filtering Approach 
(MGRS-HFA) framework by combining text, image, video, 
and metadata to generate more relevant recommendations 
for individual users. Adding GCN-based collaborative 
filtering and graph-based similarity clustering using content 
filtering to the model makes it more robust than traditional 
collaborative filtering and content-based filtering. The 
model uses cross-attention mechanism and Variational 
Graph Autoencoder (VGAE) for link prediction to capture 
complex user-item interactions. Experiments on multiple 
datasets demonstrate the effectiveness of MGRS-HFA 
compared to the state-of-the-art. The presented model 
performs better on various evaluation metrics. Researchers 
can improve recommendation accuracy by capturing 
complex user-item interactions using more advanced 
attention mechanisms and deep learning architectures in the 
future. The MGRS-HFA model's performance and resilience 
can be achieved by combining it with additional advanced 
recommendation approaches like meta-learning and 
reinforcement learning. 
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