GPR Signal Processing for Landmine Detection: A Comparative Study of Feature Extraction and Classification Algorithms

T. Kalaichelvi¹, S. Ravi ^{*2}

1,2 Computer Science, Pondicherry University, Pondicherry, India

E-mail address: assertivekalai@gmail.com, sravicite@gmail.com

Abstract: Landmine detection remains a critical challenge due to the difficulty of identifying buried threats. These hidden explosives pose a significant danger to human lives, hindering economic growth and development efforts. Traditional methods for landmine detection often need to be revised, relying on time-consuming manual techniques or needing more ability to identify non-metallic mines. Fortunately, advancements in technology offer various methods for locating buried landmines. Ground penetrating radar (GPR) has emerged as a powerful tool for subsurface exploration, emitting electromagnetic waves and recording reflections to create an image of buried objects. However, GPR data presents a complex picture, containing reflections from various underground features besides landmines. Effective landmine detection hinges on distinguishing these targets from background clutter. This paper delves into the comparative analysis of feature extraction and classification techniques employed in GPR-based landmine detection. The initial stage involves feature extraction, where algorithms identify and quantify characteristics within the GPR data that discriminate landmines from other objects. Various approaches exist, including image processing techniques like edge detection and statistical methods that analyze signal intensity variations. Machine learning algorithms, such as Support Vector Machines (SVMs) and k-nearest neighbors (k-NN), can learn these discriminatory features from labeled GPR data sets containing confirmed landmine locations. This paper meticulously compares the effectiveness of these techniques using performance metrics like probability of detection (Pd), accuracy, and false alarm rate (FAR). The paper aims to identify the optimal approach for accurate landmine detection by evaluating these metrics across different feature extraction and classification algorithms. This optimal approach should maximize Pd while minimizing FAR, ensuring landmines' safe and efficient identification for humanitarian demining efforts.

Keywords: Ground Penetrating Radar, Buried Object Detection, Clutter Reduction, Feature Extraction, Classification, Landmine Detection

1. INTRODUCTION

Landmines remain a significant global threat, threatening lives, hindering economic growth, and impeding development efforts. These explosive devices are buried underground and detonated upon contact with a person, vehicle, animal, or pressure [1]. The blast can cause direct and indirect damage through the explosive force and shrapnel. Beyond the immediate casualties, landmines also have a lasting impact, disrupting agricultural land use and harming the environment [2].

Effective landmine detection is a complex task influenced by various factors. These factors include the material used in the landmine, the soil's electromagnetic properties, the landmine's size, position, burial depth, shape, and environmental effects [3]. Landmine detectors are crucial for locating buried landmines and identifying the technology employed in their construction.

Researchers have made significant strides in developing automated landmine detection methods, primarily utilizing GPR technology. However, the performance of each technique varies depending on the type of explosive used, the landmine's shape, the properties of the soil, and the materials used in its construction. Researchers often employ surrogate landmines and nonmine objects buried at various depths during data collection to address this variability. This process helps researchers identify features that distinguish landmines based on size, shape, and casing type.

Landmines pose a life-threatening danger in many countries worldwide. Despite the global landmine ban, numerous countries retain the capability to produce them, and an estimated 80 countries remain affected by landmine contamination. These hidden explosives claim a devastating toll each year, with casualties ranging from 15,000 to 25,000 people killed or maimed [4]. Tragically, civilians, particularly children, represent a significant portion of landmine victims, accounting for approximately 80% of casualties.

Landmine detection is a critical issue for numerous countries. Landmine Monitor 2020 emphasizes the urgent need for complete landmine elimination. Fig. 1 shows the Landmine Contamination: Status 2020 report, as noted in [5]. International efforts are underway to eradicate landmines worldwide. Many countries have adopted the global landmine ban, and international funding supports demining operations. To date, 30 countries have achieved landmine-free status, with over 50 million landmines

destroyed. However, experts estimate that complete landmine removal could take centuries due to the sheer number of devices buried globally.

The threat posed by buried unexploded ordnance remains a significant concern for human safety and environmental well-being. Landmine detection and clearance are inherently challenging, time-consuming, and often dangerous. Fortunately, advancements in sensor technology, coupled with image processing, machine learning, and neural networks, offer promising solutions for more effective landmine detection. The Ottawa Treaty enforces the Anti-Personnel Landmine Ban Convention, mandating landmine clearance by 2025 [6].

Figure 1. Landmine Contamination: Status 2020

2. CATEGORIES OF LANDMINES AND DEMINING

A. Types of Landmines

Landmines come in two distinct categories: Anti-Tank (AT) and Anti-Personnel (AP). AT landmines, also known as anti-vehicular landmines, typically have cylindrical or square shapes ranging from 150-300 mm in diameter and 50-90 mm in thickness. Landmines contain powerful explosives like TNT, Composition B, or RDX [4]. Landmines come in various shapes and sizes, utilizing metal, plastic, or wood casings to make them difficult to detect. They detonate when subjected to a minimum pressure of 200 kilograms, typically triggered by vehicles driving over them. Anti-tank landmines, primarily used on battlefields, are designed to destroy tanks and trucks. These weapons can cause casualties for people inside and around the targeted vehicle, posing a significant threat to civilians caught in conflict zones. Fig. 2 showcases various anti-tank landmines [7].

AP landmines, in contrast to AT landmines, target individuals. These disc-shaped devices are compact, typically measuring 20-125 mm in diameter, 50-100 mm in length, and weighing 30 grams. Common explosives used in AP landmines include TNT, Tetryl, and Comp B [4]. Detonation occurs under pressure as low as 2 kilograms or when someone steps on the mine. There are two main subcategories of AP landmines: blast and fragmentation.

Figure 2. Anti-Tank Landmine types

• Blast Landmines: Designed to cause severe injuries and infections upon detonation, primarily affecting people close to the blast.

• Fragmentation Landmines: Considered more dangerous than blast mines, these contain metal shrapnel that explodes outwards, inflicting casualties within a radius of approximately 200 meters when triggered [8].

Fig. 3 provides the various anti-personnel landmine products [10]. Landmines come in multiple shapes and sizes, utilizing metal, plastic, or wood casings to make them difficult to detect. Unexploded ordnance (UXO), which are explosive devices that fail to detonate as intended, also fall into this category [9]. The rise of improvised landmines further complicates detection efforts and increases civilian casualties. Landmine-triggering mechanisms also vary considerably. These include pressure-based activation systems, electronic triggers, light sound remote detonation. or sensitivity (acoustic/seismic fuses), and magnetic influences.

Figure 3. Anti-Personnel Landmine Types

B. Types of Demining Methods

Landmines can remain active for over five decades, necessitating demining efforts to prevent casualties. Demining refers to the process of removing landmines from contaminated areas. Two primary methods exist military and humanitarian demining. • Military Demining: This method prioritizes speed over complete removal. It employs a brute force approach, utilizing vehicles to clear paths through minefields. While achieving an estimated 80% clearance rate, it accepts a certain level of casualties and leaves behind a significant portion of landmines.

• Humanitarian Demining: A more intricate and meticulous process, humanitarian demining focuses on safe and complete landmine removal with minimal environmental impact. It aims for a near-perfect 99.6% clearance rate. However, this safer method comes at a higher cost per landmine removed. It exposes deminers to risk, with an estimated one fatality for every 2,000 landmines cleared [4] [11].

3. EXPLOSIVE DETECTION

Researchers have explored various landmine detection techniques, each with advantages and limitations. This section explores six main categories of explosive detection methods: biological, electromagnetic, acoustic/seismic, mechanical, optical, and nuclear. We will discuss the sensor types, their requirements, performance capabilities, and challenges associated with each method.

A. Biological Detection

TABLE 1. THE REQUIREMENTS, PERFORMANCE, AND PROBLEMS OF BIOLOGICAL SENSORS

Sensors	Requirements	Performance	Problems	
Rats [8]	Food reward	Increased	Susceptible to	
	training to locate	detection rate with	tropical	
	explosives	more numbers of	diseases	
		rats		
Dogs	Extensive	High success rate	Mood, time,	
[12]	training in	for detecting	behavioral	
	explosives	explosives	variations	
Plants	Genetically	Detect explosives	Prone to false	
[13]	modified plant	when nitrogen	alarms	
	need a	dioxide is present		
	controlled			
	environment			
Ants [14]	No training is	Capable of	Limited range	
	required, can	locating	and detection	
	self-deactivate	explosives back to	capabilities	
		the nest		
Bacteria	A genetically	Covers large areas	Highly	
[15]	modified	and detects TNT	sensitive,	
	bacteria sprayed		leading to	
	in the field		false positives	
Bees [16]	Trained to	Effective at	Limited	
	associate a	detecting	operation	
	chemical odor	landmines	range due to	
	with food		temperature	
	reward		restrictions	

Biological detection techniques utilize trained animals (rats, dogs) and insects (bees, ants) alongside plants and bacteria to sense the presence of explosive materials. While landmine detection using these biological sensors is possible, their effectiveness is often contingent on specific conditions. Table 1 compares each biological sensor's requirements, performance, and problems.

B. Electromagnetic Detection

The electromagnetic detection method identifies variations in the electromagnetic properties of buried objects compared to the surrounding ground surface. It utilizes electromagnetic sensors operating at different frequencies, employing transmitters and receivers. The transmitter emits signals within a specific frequency range, and the receiver interprets the reflected signals to detect anomalies. Table 2 details various electromagnetic detection sensors' requirements, performance, and problems.

TABLE 2. THE REQUIREMENTS, PERFORMANCE, AND PROBLEMS OF ELECTROMAGNETIC SENSORS

Sensors	Requirements	Performance	Problems
Metal	Measure the	Prone to false	Difficult to
Detector [17]	reflected current	alarms; Cannot	detect in
	induced by the	detect non-	highly
	field	metallic object	conductive
			soils
Ground	Transmit and	Effective for	Inconsistent
Penetrating	receive radio	metallic and	in
Radar [18]	waves to detect	non-metallic	homogenous
	reflected signals	objects	soil
Microwave	Transmit and	Can detect	Performance
Radar [19]	receive micro	small and large	can be slow
	waves to detect	objects	in wet soil
	reflected signals		conditions
Millimeter-	Send millimeter	Penetrate on	Challenges
Wave Radar	wave and collect	obstacles like	faced across
[20]	reflected	clouds, smoke,	varying soil
	radiation	and dry soil	conditions
Electrical	Measure current	Suitable for	Background
Impedance	to map	wet soil and	noise can
Tomography	underground	detect all types	hamper
[21]	properties	of objects	performance
X-ray	Pass x-ray	Effective for	Difficult to
backscatter	photons and	shallowly	detect deep
[22]	analyze	buried objects	objects
Infrared [23]	Detect	Detect non-	Ineffective
	variations in	metallic	to detect
	temperature and	landmines	deep objects
	light properties		

C. Acoustic Detection

Acoustic sensors project acoustic waves toward the ground. These waves reflect based on the acoustic properties of the materials they encounter, causing vibrations due to their mechanical properties. Table 3 presents acoustic sensor detection techniques, outlining their requirements, performance, and problems.

Sensors	Requirements	Performance	Problems	
Ultrasound	Sound waves emitted	Propagates in	Not	
[24]	by acoustic sensors	wet areas and	efficient	
	reflect off the ground	underwater	in sand	
Acoustic to	Generates acoustic or	Detect both	Detection	
Seismic	seismic waves and	types of	speed is	
[25]	analyzes the vibration	landmines and	slow	
	based on mechanical	give low false		
	properties	alarm rates		

TABLE 3. THE REQUIREMENTS, PERFORMANCE, AND PROBLEMS OF ACOUSTIC SENSORs

D. Mechanical Detection

Mechanical detection of landmines utilizes physical interaction with the ground to locate buried explosives. Table 4 details mechanical detection techniques with requirements, performance, and problems.

TABLE 4. THE REQUIREMENTS, PERFORMANCE, AND PROBLEMS OF MECHANICAL DETECTION TECHNIQUES

Sensors	Requirements	Performance	Problems	
Clearing	Clearing	Taking a short	Trigger the	
Machines	machines are	time to remove a	landmine when	
[11]	rolling in the	landmine	heavy-sized	
	field to clear the		machines to	
	path		clear it	
Prodder	Scans the	Identifies the	Explode when	
and Probes	shallow area at a	unusual object	prodding, so it is	
[26]	30-degree angle	baesd on sound	hazardous	

E. Optical Detection

It penetrates the optical wave to the buried materials and measures the soil surface property. Table 5 displays optical detection techniques' requirements, performance, and problems.

TABLE 5. THE REQUIREMENTS, PERFORMANCE, AND PROBLEMS OF OPTICAL DETECTION TECHNIQUES

Sensors	Requirements	Performance	Problems	
LIDAR [8]	Identifies the	Detect metallic	Highly	
	polarization	and non-	vegetated areas	
	changes in the	metallic objects	are not suitable	
	backscattered	and cover large		
	energy	areas		
Light [10]	Capturing light	A large area	Less effective in	
[11]	waves from the	scanned only on	poor lighting	
	object	flat land in a	conditions	
		shorter time		

F. Nuclear Detection

The standard nuclear detection technique is nuclear quadrupole resonance (NQR), which uses radio-frequency and neutron-based techniques. Table 6 reports the nuclear detection techniques with requirements, performance, and problems.

Landmine detection remains a complex task due to limitations in current technologies. While widely used methods like metal detector (MD) and GPR offer some advantages, they also have drawbacks. Techniques like Bacterial and NQR show promise with low false alarm rates, but widespread adoption might be limited MDs are prone to false alarms when encountering even small amounts of metal debris.

TABLE 6. THE REQUIREMENTS, PERFORMANCE, AND	
PROBLEMS OF NUCLEAR DETECTION TECHNIQUES	

Sensors	Requirements	Performance	Problems	
Nuclear	Used radio	Effective in the	Identify	
Quadrupole	frequency and	detection of	landmines	
Resonance	identify	TNT or RDX	with strong	
[28]	nitrogen atom	explosive	signal	
	nuclei in TNT			
Nuclear	Used along with	Detect nitrogen	Detect only	
Magnetic	a metal detector	present in TNT	landmine	
Resonance			objects placed	
[29]			inside the coil	

Ideally, a landmine detection system should be efficient, accurate, and have a minimal false alarm rate. Unfortunately, no single sensor or method can guarantee complete detection across all scenarios. Several factors hinder landmine identification, including:

- Obstacles like rocks or vegetation
- Presence of metallic debris
- Variations in temperature and humidity
- Different types of soil composition

Therefore, using multiple sensors is crucial. These sensors collect diverse data (heterogeneous information) to aid in decision-making. GPR, in particular, offers a variety of feature extraction and classification techniques. By analyzing these features, GPR can potentially identify landmines buried underground through proven classification algorithms.

4. REVIEW OF LANDMINE DETECTION METHODS USING GROUND-PENETRATING RADAR

GPR is a valuable tool for landmine detection. It uses electromagnetic pulses to image objects buried beneath the ground surface. The system has two key components: a transmitter antenna that sends the pulses and a receiver antenna that records the reflected energy. Differences in the electrical properties of subsurface objects cause anomalies in the received signal. The software then processes these anomalies to generate an image. Fig. 4 illustrates the process of landmine detection using ground-penetrating radar [30]. It also has a built-in memory to store data after the examination. Noninvasive subsurface sensing can detect metal, non-metal, and plastic landmine.

Significant research focuses on automating landmine detection using GPR data. GPR signals can potentially identify landmines, objects resembling landmines, and even the absence of landmines by analyzing features associated with them on the ground surface. However, challenges arise due to "clutter" in the data caused by surface scattering, target interaction, and variations in the subsurface. Fortunately, various algorithms and techniques can distinguish between landmines and clutter based on their specific characteristics. These methods extract features from GPR images to determine the presence or absence of landmines and similar objects. Soil composition can significantly impact the effectiveness of GPR-based landmine detection methods. These methods underscore the ongoing challenges in this field and the need for advancements in various detection techniques.

Figure 4. Ground Penetrating Radar Process

One example of a GPR-based landmine detection technique is the Energy-Focusing Ground-Penetrating Radar (EFGPR) developed by [31]. This system utilizes a fuzzy logic information fusion module for Automatic Target Recognition (ATR). The module analyzes a final set of features extracted from the GPR data and generates a system-level confidence value based on factors like blob length. Fig. 5 shows the process of the Mamdani Fuzzy Inference System with ATR structure [31].

Another approach is the iterative algorithm developed to give better results than the Early Time Subtraction (ETS) and combined ETS with a whitening filter. The total scattered field $S(\omega)$ received from the GPR has a clutter contribution $H_c(\omega)$, desired target $T(\omega)$, and noise $n(\omega)$ mentioned as equation (1). Based on the time delay and damping factor $\gamma^r(m,n)$ in the selected time window at the mth and nth iteration, the target was identified and represented in equation (2). Fig. 6 displays the steps involved in the iterative algorithm for clutter reduction [32].

$$S(\omega) = H_c(\omega) + T(\omega) + n(\omega)$$
(1)

$$\hat{T}^{m,n}(\omega) = \hat{A}_r^{m,n} e^{-\omega \hat{\gamma}_r^{m,n}} e^{-j\omega \hat{t}_r^{m,n}} T_r(\omega)$$
(2)

Figure 5. Mamdani Fuzzy Inference System with Automatic Target Recognition

Figure 6. Clutter Reduction using Iterative Algorithm

[33] proposed a feature-level fusion for combining GPR and MD features. In decision-level fusion, MD features are retrieved using a weighted density distribution function (WDD) and given to a neural network for classification. Prony's Equation used to identify covered landmines based on GPR information. Using distancebased detectors, researchers compare Complex Natural Resonances (CNR) features from an unknown image with known objects in an object library. Fig. 7 displays the Complex Natural Resonance-based feature extraction process with distance-based detectors [34]. [35] recognized landmines through GPR feature-based rules, order statistics, and adaptive whitening (FROSAW) algorithm. FROSAW used depth-dependent features for anomaly detection from a constant false alarm rate (CFAR) detector and rule-based features to reject false alarms from mine-like objects.

Figure 7. Complex Natural Resonances based feature extraction with distance-based detectors

The technique used a Seeded Region Growing Segmentation (SRGS) to extract and classify features through a Feed-Forward Neural Network (FFNN). The input xj mentioned in (3) gave to NN, and output y (4) ranked the pattern as a landmine or not where the length of the pattern n, activation function f. wi, and wij denoted the weight connected to the output neuron and hidden layer neuron. Fig. 8 shows the Seeded Region Growing Segmentation-oriented feature extraction and Feed Forward Neural Network as Classification [36].

$$x_j = I(j) \tag{3}$$

$$y = \int \left(\sum_{i=1}^{m} w_i f_i \sum_{j=1}^{n} w_{ij} x_j \right) \tag{4}$$

[37] compared and evaluated Hidden Markov Model (HMM), edge histogram descriptors (EHD), spectral correlation feature (SCF), and Geometric (GEOM) discrimination methodologies to recognize landmines and clutter objects using vehicle-mounted GPR information.

Figure 8. Seeded Region Growing Segmentation and Feed Forward Neural Network Architecture

[38] developed an algorithm for detecting anomalies and landmines. With the help of EHD, translationinvariant features were extracted from the identified regions of interest (ROI), and then a probabilistic K-Nearest Neighbors (KNN) was used to determine the confidence value (7) $Conf(S_T)$ using the mine class (5) $Conf^M(S_T)$ and the clutter class (6) $Conf^C(S_T)$ for accurate detection.

$$Conf^{M}(S_{T}) = \frac{1}{\kappa} \sum_{k=1}^{K} \tilde{\mu}^{M}(R_{k}) w^{p}(S_{T}, R_{k})$$
(5)

$$Conf^{C}(S_{T}) = \frac{1}{\kappa} \sum_{k=1}^{K} \tilde{\mu}^{C}(R_{k}) w^{p}(S_{T}, R_{k})$$
(6)

$$Conf(S_T) = \sqrt{Conf^M(S_T) \times (1 - Conf^C(S_T))}$$
(7)

HMM proved as effective in landmine detection through GPR data. This framework worked based on the gradient features extracted from GPR signatures. A knearest neighbor classier and bar histogram used EHD to retrieve the buried object's features. Fig. 9 shows the Hidden Markov Model for discrimination of landmine and Clutter Signatures [39].

Figure 9. Hidden Markov Model for Discrimination of Landmine and Clutter Signatures

A supervised learning model used to retrieve spectral features from the identified Region of Interest (ROI) using the Least Mean Square (LMS) method. Equation (8) normalizes the Fourier-transformed data (Pk) magnitude to reduce its dependency on soil losses. This normalization is based on the N-point discrete Fourier transformed data (S[k]) and frequency (k). Fig. 10 displays Fourier Transform (FT) and SVM's feature extraction and classification process [40].

$$P_k = \frac{|S_k|}{\sum_{k=0}^{N-1} |S[k]|/N}$$
(8)

Figure 10. Feature Extraction and Classification using Fourier Transform and Support Vector Machine

Minimum Connected Component (MCC) method proposed to identify covered objects from the 2D GPR images based on graph theory. Fig. 11 illustrates the conversion process from the landmine matrix to MCC and MCCGray [41].

Figure 11. Minimum connected component-based feature extraction for landmine detection

Bag of Visual Words (BOV) and Fisher Vector (FV) used as the two modern feature-learning approaches used for Forward-Looking Ground Penetrating Radar (FLGPR) data processing. Based on the background mean μ and standard deviation σ , the normalized feature X' was extracted from image X using equation (9). In addition, the features retrieved from FLGPR data were BOV and FV applied with scale-invariant feature transform (SIFT) descriptors and raw pixel intensities under various soil conditions, data, classifiers, and techniques.

$$X' = \frac{|X| - \mu_{bg}}{\sigma_{bg}} \tag{9}$$

The final BOV and FV features were retrieved using equations (10) and (11) based on the dimensionality of raw and SIFT descriptors. Fig. 12 gives the Feature Learning approach steps for feature extraction using BOV and FV [42].

$$\psi_{BOV}(X|D) = \{ \max_{t} \{ \gamma_t(k) \}; k = 1 \dots K \}$$
(10)

$$\psi_{FV}(X|u_{\lambda}) = \{g_{\mu_{k}}^{X}, g_{\sigma_{k}}^{X}; k = 1 \dots K\}$$
(11)

Figure 12. Feature Learning approach using Bag of Visual Words and Fisher Vector

Robust principal component analysis (RPCA) proposed to prescreen APM from GPR images. Initially,

the technique received a productive RPCA method and used Decomposition (GoDec) to retrieve the target. Fig. 13 displays the process of RPCA-GoDec feature extraction and detection [43].

Figure 13. Robust Principal Component Analysis-Go Decomposition feature extraction and detection

The twin gray statistics sequence (TGSS) method developed to identify the twin vector and gray statistics. GPR features were classified using a B-scan image's row and column vector. Characteristics of image classified through TGSS method and dimension reduction through Gray Statistics Matrix (GSM). The gray statistics level his defined using (12) and (13).

$$\left\{ u_{i}(h) = \frac{1}{N} \sum_{y=1}^{N} \delta \left(G(i, y) = e_{h} \right\}$$
(12)

$$\left\{ v_i(h) = \frac{1}{M} \sum_{x=1}^N \delta \left(G(x, y) = e_h \right\}$$
(13)

This process calculates the twin gray sequence for row vector (i) and column vector (j) from the image's gray statistics level. It then uses the Gray Level Co-occurrence Matrix (GLCM) to extend these local sequences and derive sequence coding for classification. Fig. 14 illustrates the feature classification using the Twin Gray Statistics Sequence [44].

Figure 14. Feature classification using Twin Gray Statistics Sequence

Random Transform Prior Feature Selection

Pre Processing

Feature Extraction Mutual GPR Wavelet Transform & Higher Order Decompose 2D Information Radargrams Hard Thresholding Statistics to 1D Sequence Feature Selection Multi-Objective Hyperbolas Apply Hough Hyperbolas Genetic Reconstruction Transform Localization Algorithm Classification

Figure 15. Process of Classification through Multi-Objective Genetic Algorithm

The classification method as Multi-Objective Genetic Algorithm (MOGA) was proposed. The MOGA classifier utilizes features retrieved using Higher-Order Statistics (HOS) and Mutual Information Feature Selection (MIFS).

Fig. 15 details the classification process involving the Multi-Objective Genetic Algorithm [45].

The synthetic information from the GprMax program is utilized. The feature vector was calculated for row r and column c indices using Equations (14) and (15) for the data х.

$$Feature_{c} = \sqrt{\sum_{r=2}^{Rows} (x_{rc} - x(r-1)c)^{2}}$$
(14)

$$Feature_{r} = \sqrt{\sum_{c=2}^{Cols} (x_{rc} - x_{r}(c-1))^{2}}$$
(15)

$$FV_{rc} = [Feature_r Feature_c] \tag{16}$$

The final FV combined features derived from rows and columns mentioned in (16). Fig. 16 shows the Feature Vector retrieval process for Underground Object Detection from GprMax [46].

Figure 16. Feature Vector for Underground Object Detection from GprMax

Supervised machine-learning technique focused to identify landmines. The approach extracted three and five feature datasets from GPR images of landmines and classified them via support vector machine (SVM) and neural network (NN). Fig. 17 displays three and five features of feature extraction with a neural network classifier [47].

Figure 17. Five Features of Feature Extraction with Neural Network Classifier

[48] calculated a correlation coefficient between the main case's Scattering parameter (S-parameter) and whitening Algorithm to detect the anomaly. The landmine and clutter have varying scattering parameters due to different Ultra-Wide Band (UWB) signal compositions. The RPCA observed the data matrix X(17) from where the low-rank component G, sparse component S, and noise N.

$$X = G + S + N \tag{17}$$

The initial values of the low-rank matrix G_0 and the sparse matrix S_0 were calculated using Equations (18) and (19) based on data matrix X and transposition vector T.

$$G_0 = \left(\frac{1}{N} \sum_{i=1}^{N} x_i\right) \mathbf{1}_{N \times 1}^T$$
(18)

$$S_0 = X - G_0$$
 (19)

[49] proposed an intelligent system using a multi-agent hardware structure with different sensors. The agent worked independently to reach optimal acquisition, get Local Decision-Making (LDM), and share the information with another agent. The final decision on collaborative details shared by the agent will emerge in the Cooperative Decision-Making (CDM) system. Features vector calculated for Visible Spectrum (VS), Infrared (IR), and ultraviolet (UV) sensors using equation (20).

$$\Gamma = [\Lambda, \lambda, \mu, \sigma_M, \xi, K, \zeta, \rho, \epsilon, \phi]$$
(20)

[50] proposed a likelihood-ratio test (LRT) using Full-Length Ground Penetrating Radar (FLGPR). The LRT constructs a band of feasible probability densities for each hypothesis. developed a likelihood-ratio test (LRT) using FLGPR. Gradient magnitude with thresholding method employed for removing unwanted clutters and waveletbased denoising to eliminate noise from the GPR images. The approach measured the peak signal-to-noise ratio (PSNR) using equation (21) based on mean square error (MSE) and image entropy (IE) using equation (22). Fig. 18 displays the process of clutter suppression and denoised data for further classification [51].

$$PSNR(dB) = 10 \log_{10} \frac{L^2}{MSE}$$
 (21)

$$H = \frac{\left(\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} B^2(m,n)\right)^2}{\left(\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} B^4(m,n)\right)}$$
(22)

Figure 18. Gradient-based clutter suppression and Wavelet-based Denoising

[52] analyzed the framework trained on GPR data captured in landmine-free areas using autoencoders. It used different polarizations to analyze GPR data but required improvement in localizing the anomaly. [53] proposed an autonomous cognitive GPR (AC-GPR) based on deep reinforcement learning (DRL) that uses a rewarding method for both Region of Interest (RoI) detection and object classification. Researchers developed Deep O-learning networks (DONs) to address the dimensionality challenge in state space and enable them to learn policy directions. Gauss gradient and the Speeded Up Robust Feature (SURF) descriptor method was presented. Gauss gradient algorithm estimated the cumulative HOG (23) using the image details D_{fx} and D_{fy} . SURF detector identified the feature vector v using equation (24) from the 4x4 sub-region in horizontal direction d_x and vertical direction d_y .

$$D_{fxy} = \left| D_{fx} \right| + \left| D_{fy} \right| \tag{23}$$

$$v = \left[\sum d_x, \sum |d_x|, \sum d_y, \sum |d_y|\right]$$
(24)

Figure 19. Feature Extraction using Cumulative Histogram of Oriented Gradients and SURF Descriptor

Fig. 19 illustrates the entire process of landmine detection using the Cumulative Histogram of Oriented Gradients (HOG) and SURF Descriptor method for feature extraction [54].

Convolutional Auto-Encoder (CAE) used to remove clutter from the GPR image and produce the target component directly. The filter coefficient of the encoder and decoder in CAE depended on the kernel size and the number of filters used in the encoder and decoder. Signalto-clutter ratio (SCR) measured the effectiveness of the CAE method on actual data. Fig. 20 displays the Convolutional Auto-Encoder architecture to remove clutter from the GPR image [55].

Figure 20. Convolutional Auto-Encoder Architecture to remove clutter

[56] used a CNN to extract information from B-scans and RNN to model the differential data and retrieve features amongst scans from down and cross-track networks. [57] used the You Only Look Once version 3 (YOLOv3) model to identify pipelines under the subsurface. The iterative thresholding method transformed the hyperbolic response into a binary image to determine a pipeline's buried position and depth. [58] used key point–regression mode to identify the region of interest and hyperbola detection.

5. DISCUSSION ON COMPARISON OF GPR SENSORS DATA WITH ALGORITHM, FEATURES, ADVANTAGES, LIMITATIONS, DATASET, AND ACCURACY

The comparison Table 7 shows the information related to GPR data processed through many algorithms and retrieved a specific feature for classification to identify landmines. Each technique has advantages and limitations, and the dataset used for implementation shows accuracy in the probability detection and false alarm rate.

Algorithm	Features	Advantages	Limitations	Dataset	Metrics
Mamdani fuzzy	ATR	Information fusion maximizes the	Gradient and line-based	Calibration lane	Pd-96%
[31]	Value	and minimizes their weaknesses	high false alarm rate		FAK-0.017
Iterative	Scatter	Effectively reduced the clutter,	Detected only anti-	Dr. Chen's GPR	FAR-11%
Algorithm [32]		which leads to a decreased false alarm rate	personnel mines	data	For SNR- 40dB
Feature and	Spatial	Feature-level fusion produced	Investigation needed in	US Dataset	Pd-83.97
Decision-Level		reduced FAR	WDD functions		(MD)
Fusion [33]					Pd-52.92 (GPR)
Prony's	CNR	Better performance with good	CNR analysis requires	Demining	Pd-100% for
Algorithm,		probability detection achieved	removing the nominal	Technology	higher SNR
detectors [34]		based detectors	Scan	Center	
FROSAW [35]	Depth-	FROSAW achieved a reduced	The return signal from	NIITEK data	Pd-91 to 100
	Dependent and	FAR at high PD than CFAR	clutter objects was similar		FAR-0.0338
	Rule-Based Feature		to mine signals		
Median Filtering	Pagion based	An afficient method and more	Tested on a small amount of	DeTeC at the	Pd 80%
SRGS, FFNN [36]	Segmentation	reliable for detecting and	actual data	EPFL,	FU-8070
		classifying anti-personnel		Switzerland	
	F1	landmines with more accuracy			D1 000/
HMM, GEOM,	Eage, Geom	An HMM, edge-based algorithm provided the highest performance	algorithms require about	NIITEK data	Pd-90% FAR-0.00232
SCF, EHD [57]	Spectral,	over the entire data collection	five times more processing		(HMM)
	Edge		time per alarm		
EHD, KNN [38]	Edge	Fuzzy techniques distinguished	Factors appear to be	NIITEK data	Pd - 90%
		detections	and the environment		
HMM [39]	Gradient,	Model encountered 13 different	EHD was not as effective as	NIITEK data	EHD
	Gabor, Edge, Bar Histogram	AT landmines	Gabor, bar, and gradient		Pd-95%
LMS, FT, SVM,	Spectral	The spectral feature method gave	Multiple features can	Real-world data	Accuracy-
and Median filters	1	a better performance for landmine	include improving the		0.83
[40]		detection compared to edge and	classification accuracy		
MCC [41]	High-Intensity	The efficient performance	The feature extracting	Gravscale	Confidence
	Valued Edges	achieved in landmine detection by	efficacy was not a	landmine image	Level-95%
		using grayscale images	significant property for		
SVM. SIFT	BOV. FV	Performed well on feature	Feature learning did not	Western U.S.	FAR-0.02
Descriptor [42]		learning methods BOV and FV	perform well for other	Army Data	
		applied to the FLGPR images on	feature sets in all		
RPCA-GoDec	Sparse	HH polarization GoDec with thresholds has fast	polarizations Target discrimination had	Georgia	Pd- 99%
[43]	Component	computation and robustness	to be focused more	Technology	10 77/0
	_	against clutter and noise		Institute	
TGSS [44]	Twin Feature	The twin method performed well	The accuracy rate	Real data	Accuracy-
		reduction	sample set changes		02.1170

TABLE 7 COMPARISON OF GPR SENSORS DATA WITH AN ALGORITHM, FEATURES, ADVANTAGES, LIMITATIONS, DATASET, AND ACCURACY

TABLE 7 Continue

Algorithm	Features	Advantages	Limitations	Dataset	Metrics
MOGA [45]	HOS	MOGA outperformed in the	MOGA's design time was	Maas and	Accuracy-
		training set and achieved a good	higher than the use of	Schmalzl Data	91.03%
		result in the validation and testing	neural networks but faster		
		data	than SVM		
GPR Max, KNN,	Gradient	HOG produced better results when	Reduced the noise level in	Synthetic Data	Average
SVM, HOG [46]		KNN used	signals	from GPR Max	Performance-
					92.6%
SVM and NN	Five Feature Set	The NN method produced better	Not included various types	Surrogate	Accuracy
Classifier [47]		performance compared to the	of soil and moisture content	landmines and	NN-95%
		SVM	levels	non-mines	SVM-85%
Whitening	S-Parameter	ZCA-correlation whitening	The simulation did not	Georgia Tech	Correlation
Algorithm [48]		algorithm performed well on the	consider soil		Coefficient-
		simulated database	inhomogeneity		89.74%
CDM [49]	LDM and CDM	The system detected IEDs of any	GPR and TS sensors were	Fabio Caraffini	Acc-0.7778
		shape, material, and type	less performing than the VS	Data	(IR)
			and improved only in CDM		
LRT in Density	Feasible	LRT detector reduced the False	A robust hypothesis test is	Dr.Traian Dogaru	FA-8
Band and Outlier	probability	alarm and missed detection in	needed to assess the	of US Army	MD-2
Model [50]	density	robust outlier model	accuracy of the LRT		
DOL W. L.	G II I	XXY 1 1 11 1 1	detector adequately		DOND 27.20
PCA, wavelet	Gradient	worked well in clutter	lesting in heterogeneous	Synthetic and	PSNR-37.28,
denoising [51]		suppression, PSINK, and entropy	son and rough surface	measured data	IE-098.4
Automoder [52]	Multipolorizatio	Horizontal and vortical	Autoencoder enchlad only	Pool data	Acourocu
Autoencoder [52]	n	polarization achieved better	a limited amount of data	Keal uata	Accuracy -
	11	accuracy	a mined amount of data.		2370
DRL [53]	DON	Performed well in object detection	Worked only in a	Simulated	Classification
C 3		and classification accuracy	homogeneous environment	(gprMax)	-7.12X 10 ³
Cumulative HOG,	Gradient and	The SURF method produced more	The interpolation retrieved	Real data	Accuracy-
SURF Descriptor	SURF	detection probability with no false	the original image when		89%
[54]		alarm compared to gauss gradients	decimation was applied to		
			reduce the size of an image		
CAE, DCAE [55]	Texture	The clutter removal method CAE	The process was slightly	Vrije Universiteit	Clutter-
		and DCAE directly provided the	behind in the performance	Brussel	0.119(CAE)
		target component and worked well	of real data compared to		0.197(DCAE)
		in simulated data	LRSD-based methods		
CNN-RNN [56]	LSTM	Feature extracted using both CNN	Possible only when using	Real	Pd-0.9
		and RNN	deep learning algorithms		
R-CNN [57]	YOLOv3	The YOLOv3 model recognized	Took more time to divide	Real	Precision-
		the regions of the pipeline	the image into interest areas		95.6%
			of the region		
End-End DL [58]	Key point-	Support good accuracy and	Parameters cannot be	Real and	Accuracy-
	regression mode	maintain operating speed	optimized using deep	simulated-Gprmax	97.01%
			learning methods		

CONCLUSION

This study compared various feature extraction and classification algorithms for landmine detection using Ground Penetrating Radar (GPR) data. The goal was to identify the most effective approach for accurate landmine detection, minimizing false alarms while maximizing the probability of detection. The analysis revealed that clutter in GPR data, caused by buried objects and soil variations, significantly impacted landmine identification. To address this challenge, researchers explored various clutter reduction algorithms like SURF descriptors and machine learning features (Five feature sets, BOV, FV, and CAE). These techniques aimed to extract salient features and reduce clutter, ultimately improving landmine detection accuracy.

Furthermore, the study investigated the effectiveness of different classification algorithms (SVM, NN, KNN, and FFNN) in differentiating between clutter and landmines. Spectral feature-based classifiers, particularly SVM, demonstrated superior performance in distinguishing landmines from non-mines within GPR data compared to NN classifiers, which rely on edge and gradient features. This comparative analysis underlines the importance of clutter reduction and feature extraction in GPR-based landmine detection. The superior performance of SVM classifiers using spectral features highlights their

REFERENCES

- [1] United Nations Mine Action Service, *Landmines, Explosive Remnants of War and IED*, 3rd ed. United Nations, 2015.
- [2] "Home Minesweepers." Accessed: May 28, 2022. [Online]. Available: https://landminefree.org/
- "Landmine and Cluster Munition Monitor | Monitor." Accessed: May 28, 2022. [Online]. Available: http://www.themonitor.org/en-gb/home.aspx
- [4] E. M. A. Hussein and E. J. Waller, "Landmine detection: The problem and the challenge," *Appl. Radiat. Isot.*, vol. 53, no. 4– 5, pp. 557–563, 2000, doi: 10.1016/S0969-8043(00)00218-9.
- [5] "Landmine, Explosive Remnants of War (ERW), and Cluster Submunition Casualties in 2019 - World | ReliefWeb." Accessed: May 28, 2022. [Online]. Available: https://reliefweb.int/map/world/landmine-explosive-remnantswar-erw-and-cluster-submunition-casualties-2019
- [6] L. M. 2025, "Policy Brief The Ottawa Treaty's 2025 goal for clearance", [Online]. Available: https://www.halotrust.org/media/4645/policy_brief_ottawa_tr eatys_2025_goal_for_clearance.pdf
- "Foreign Anti-Tank Landmine Kit Inert Replicas Inert Products LLC." Accessed: May 28, 2022. [Online]. Available: https://inertproducts.com/product/inert-anti-tank-landminekit/
- [8] H. Kasban, O. Zahran, S. M. Elaraby, M. El-Kordy, and F. E. Abd El-Samie, "A comparative study of landmine detection techniques," *Sens. Imaging*, vol. 11, no. 3, pp. 89–112, 2010, doi: 10.1007/s11220-010-0054-x.
- [9] E. Hazardous, "Unexploded Ordnance (UXO): (UXO) An Overview October 1996," no. October, 1996.
- [10] "Anti-Personnel Landmine Kit Inert Replicas Inert Products LLC." Accessed: May 28, 2022. [Online]. Available: https://inertproducts.com/product/inert-anti-personnellandmine-kit/
- [11] P. C. Bhope and A. S. Bhalchandra, "Various Landmine Detection Techniques: A Review," *Int. J. Innov. Res. Sci. Eng. Technol.*, vol. 4, no. 6, pp. 771–775, 2015.
- [12] F. Abujarad, "Ground penetrating radar signal processing for landmine detection," University of Magdeburg, 2007.
- [13] M. K. Habib, "Controlled biological and biomimetic systems for landmine detection," *Biosens. Bioelectron.*, vol. 23, no. 1, pp. 1–18, 2007, doi: 10.1016/j.bios.2007.05.005.
- [14] J. E. McFee *et al.*, "Detection and dispersal of explosives by ants," *Detect. Sens. Mines, Explos. Objects, Obs. Targets XIV*, vol. 7303, p. 730302, 2009, doi: 10.1117/12.820232.
- [15] R. Liu, Z. Li, Z. Huang, K. Li, and Y. Lv, "Biosensors for explosives: State of art and future trends," *TrAC - Trends Anal. Chem.*, vol. 118, pp. 123–137, 2019, doi: 10.1016/j.trac.2019.05.034.
- [16] T. Wasilewski, J. Gębicki, and W. Kamysz, "Bio-inspired approaches for explosives detection," *TrAC - Trends Anal. Chem.*, vol. 142, 2021, doi: 10.1016/j.trac.2021.116330.
- [17] S. Masunaga and K. Nonami, "Controlled metal detector mounted on mine detection robot," *Int. J. Adv. Robot. Syst.*, vol. 4, no. 2, pp. 237–245, 2007, doi: 10.5772/5692.
- [18] K. Takahashi, H. Preetz, and J. Igel, "Soil properties and performance of landmine detection by metal detector and ground-penetrating radar — Soil characterisation and its veri fi cation by a fi eld test," vol. 73, pp. 368–377, 2011, doi: 10.1016/j.jappgeo.2011.02.008.
- [19] K. C. Tiwari and I. I. T. Roorkee, "Development of a model for detection and estimation of depth of shallow buried non-

potential for real-world applications. This research will explore the integration of deep learning algorithms as classifiers. Additionally, it will investigate the effectiveness of these methods in diverse environments with varying clutter characteristics.

metallic landmine at Microwave X-band frequency," pp. 225–250, 2008.

- [20] T. W. Du Bosq, J. M. Lopez-Alonso, G. D. Boreman, D. Muh, J. Grantham, and D. Dillery, "Millimeter wave imaging system for the detection of nonmetallic objects," *Detect. Remediat. Technol. Mines Minelike Targets XI*, vol. 6217, p. 621723, 2006, doi: 10.1117/12.665607.
- [21] P. Church, J. E. McFee, S. Gagnon, and P. Wort, "Electrical impedance tomographic imaging of buried landmines," *IEEE Trans. Geosci. Remote Sens.*, vol. 44, no. 9, pp. 2407–2420, 2006, doi: 10.1109/TGRS.2006.873208.
- [22] G. Lockwood, S. Shope, L. Bishop, M. Selph, and J. Jojola, "Mine Detection Using Backscattered X-Ray Imaging Of AntiTank and AntiPersonnel Mines detector X-ray source collimated detector," vol. 3079, pp. 408–417.
- [23] B. N. Nelson, "Region of interest identification, feature extraction, and information fusion in a forward looking infrared sensor used in landmine detection," pp. 94–103, 2002, doi: 10.1109/cvbvs.2000.855254.
- [24] C. Bruschini and B. Gros, "A Survey of Research on Sensor Technology for Landmine Detection," J. Humanit. Demining, vol. 2, no. 1, pp. 1–25, 1998, [Online]. Available: http://www.maic.jmu.edu/journal/2.1/bruschini.htm
- [25] N. Xiang and J. M. Sabatier, "An experimental study on antipersonnel landmine detection using acoustic-to-seismic coupling," *J. Acoust. Soc. Am.*, vol. 113, no. 3, pp. 1333–1341, 2003, doi: 10.1121/1.1543554.
- [26] C. P. Gooneratne, S. C. Mukhopahyay, and G. Sen Gupta, "A Review of Sensing Technologies for Landmine Detection : Unmanned Vehicle Based Approach," 2nd Int. Conf. Auton. Robot. Agents, pp. 401–407, 2004, [Online]. Available: http://wwwinter.com/comference/ICAPA2004/Elac/Denerg/Denerg/

ist.massey.ac.nz/conferences/ICARA2004/files/Papers/Paper7 0_ICARA2004_401_407.pdf

- [27] "Alternatives for Landmine Detection | RAND." Accessed: May 28, 2022. [Online]. Available: https://www.rand.org/pubs/monograph_reports/MR1608.html
- [28] R. M. Deas, C. Cervantes, and S. F. Schaedel, "Landmine Detection By Nuclear Quadrupole Resonance (NQR)," p. 6, 2008.
- [29] L. Cardona, H. Itozaki, J. Jiménez, N. Vanegas, and H. Sato-Akaba, "Design of a radio-frequency transceiver coil for landmine detection in Colombia by nuclear quadrupole resonance," *Heliyon*, vol. 6, no. 1, 2020, doi: 10.1016/j.heliyon.2020.e03242.
- [30] "Ground Penetrating Radar Logo." Accessed: Jul. 05, 2022.[Online]. Available: https://logodix.com/logos/338616
- [31] P. D. Gader, B. N. Nelson, H. Frigui, G. Vaillette, and J. M. Keller, "Fuzzy logic detection of landmines with ground penetrating radar," *Signal Processing*, vol. 80, no. 6, pp. 1069–1084, 2000, doi: 10.1016/S0165-1684(00)00020-7.
- [32] A. Der Van Merwe and I. J. Gupta, "A Novel signal processing technique for clutter reduction in gpr measurements of small, shallow land mines," *IEEE Trans. Geosci. Remote Sens.*, vol. 38, no. 6, pp. 2627–2637, 2000, doi: 10.1109/36.885209.
- [33] R. J. Stanley, P. D. Gader, and K. C. Ho, "Feature and decision level sensor fusion of electromagnetic induction and ground penetrating radar sensors for landmine detection with handheld units," *Inf. Fusion*, vol. 3, no. 3, pp. 215–223, 2002, doi: 10.1016/S1566-2535(02)00071-4.
- [34] M. P. Kolba and I. I. Jouny, "Buried Land Mine Detection using Complex Natural Resonances on GPR Data," *Int. Geosci. Remote Sens. Symp.*, vol. 2, no. C, pp. 761–763, 2003, doi: 10.1109/igarss.2003.1293909.

- [35] P. Gader, W. H. Lee, and J. N. Wilson, "Detecting landmines with ground-penetrating radar using feature-based rules, order statistics, and adaptive whitening," *IEEE Trans. Geosci. Remote Sens.*, vol. 42, no. 11, pp. 2522–2534, 2004, doi: 10.1109/TGRS.2004.837333.
- [36] M. A. Bhuiyan and B. Nath, "Anti-personnel mine detection and classification using GPR image," *Proc. - Int. Conf. Pattern Recognit.*, vol. 2, pp. 1082–1085, 2006, doi: 10.1109/ICPR.2006.274.
- [37] Z. Ma, "Advanced feature based techniques for landmine detection using ground penetrating radar," no. December, p. 103, 2007.
- [38] H. Frigui and P. Gader, "Detection and discrimination of land mines in ground-penetrating radar based on edge histogram descriptors and a possibilistic K-nearest neighbor classifier," *IEEE Trans. Fuzzy Syst.*, vol. 17, no. 1, pp. 185–199, 2009, doi: 10.1109/TFUZZ.2008.2005249.
- [39] A. Hamdi and H. Frigui, "Evaluation of various feature extraction methods for landmine detection using hidden Markov models," *Detect. Sens. Mines, Explos. Objects, Obs. Targets XVII*, vol. 8357, p. 835728, 2012, doi: 10.1117/12.924086.
- [40] A. Dyana, S. Vadada, C. H. Srinivas Rao, and S. Gorthi, "Landmine discrimination using spectral features from Ground Penetrating Radar data," *IET Conf. Publ.*, vol. 2017, no. CP728, pp. 2–5, 2017, doi: 10.1049/cp.2017.0450.
- [41] V. Ramasamy, D. Nandagopal, M. Tran, and C. Abeynayake, "A Novel Feature Extraction Algorithm for IED Detection from 2-D Images using Minimum Connected Components," *Procedia Comput. Sci.*, vol. 114, pp. 507–514, 2017, doi: 10.1016/j.procs.2017.09.018.
- [42] J. A. Camilo, L. M. Collins, and J. M. Malof, "A large comparison of feature-based approaches for buried target classification in forward-looking ground-penetrating radar," *IEEE Trans. Geosci. Remote Sens.*, vol. 56, no. 1, pp. 547–558, 2018, doi: 10.1109/TGRS.2017.2751461.
- [43] X. Song, D. Xiang, K. Zhou, and Y. Su, "Fast prescreening for GPR antipersonnel mine detection via go decomposition," *IEEE Geosci. Remote Sens. Lett.*, vol. 16, no. 1, pp. 15–20, 2019, doi: 10.1109/LGRS.2018.2866331.
- [44] D. Yuan, Z. An, and F. Zhao, "Gray-statistics-based Twin Feature Extraction for Hyperbola Classification in Ground Penetrating Radar images," *Procedia Comput. Sci.*, vol. 147, pp. 567–573, 2019, doi: 10.1016/j.procs.2019.01.215.
- [45] H. Harkat, A. E. Ruano, M. G. Ruano, and S. D. Bennani, "GPR target detection using a neural network classifier designed by a multi-objective genetic algorithm," *Appl. Soft Comput. J.*, vol. 79, pp. 310–325, 2019, doi: 10.1016/j.asoc.2019.03.030.
- [46] I. O. B. Ibrahim Mesecan, Betim Cico, "Feature Vector for Underground Object Detection using B-scan Images from GprMax," 2019 8th Mediterr. Conf. Embed. Comput., no. June, pp. 1–14, 2019.

T. Kalaichelvi is a Reasearch Scholar in the Department of Computer Science at Pondicherry University in Pondicherry. She received her Master's degree in Computer Science and Engineering from Anna University and has several years of experience in teaching. Her current research focuses on deep learning algorithms for image recognition.

- [47] N. Smitha and V. Singh, "Target detection using supervised machine learning algorithms for GPR data," *Sens. Imaging*, vol. 21, no. 1, pp. 1–15, 2020, doi: 10.1007/s11220-020-0273-8.
- [48] A. Gharamohammadi and A. Shokouhmand, "A robust whitening algorithm to identify buried objects with similar attributes in correlation-based detection," *J. Appl. Geophys.*, vol. 172, p. 103917, 2020, doi: 10.1016/j.jappgeo.2019.103917.
- [49] J. Florez-Lozano, F. Caraffini, C. Parra, and M. Gongora, "Cooperative and distributed decision-making in a multi-agent perception system for improvised land mines detection," *Inf. Fusion*, vol. 64, pp. 32–49, Dec. 2020, doi: 10.1016/j.inffus.2020.06.009.
- [50] A. D. Pambudi, A. D. Pambudi, M. Faub, F. Ahmad, and A. M. Zoubir, "Minimax robust landmine detection using forwardlooking ground-penetrating radar," *IEEE Trans. Geosci. Remote Sens.*, vol. 58, no. 7, pp. 5032–5041, 2020, doi: 10.1109/TGRS.2020.2971956.
- [51] B. S. Kumar, A. K. Sahoo, and S. Maiti, "Removal of Clutter and Random Noise for GPR Images," *Proc. 2021 IEEE 18th India Counc. Int. Conf. INDICON 2021*, 2021, doi: 10.1109/INDICON52576.2021.9691520.
- [52] P. Bestagini, F. Lombardi, M. Lualdi, F. Picetti, and S. Tubaro, "Landmine Detection Using Autoencoders on Multipolarization GPR Volumetric Data," *IEEE Trans. Geosci. Remote Sens.*, vol. 59, no. 1, pp. 182–195, 2021, doi: 10.1109/TGRS.2020.2984951.
- [53] M. M. Omwenga, D. Wu, Y. Liang, L. Yang, D. Huston, and T. Xia, "Cognitive GPR for Subsurface Object Detection Based on Deep Reinforcement Learning," *IEEE Internet Things J.*, vol. 8, no. 14, pp. 11594–11606, 2021, doi: 10.1109/JIOT.2021.3059281.
- [54] F. M. El-Ghamry *et al.*, "Gauss Gradient and SURF Features for Landmine Detection from GPR Images," *Comput. Mater. Contin.*, vol. 71, no. 2, pp. 4457–4486, 2022, doi: 10.32604/cmc.2022.022328.
- [55] E. Temlioglu and I. Erer, "A Novel Convolutional Autoencoder-Based Clutter Removal Method for Buried Threat Detection in Ground-Penetrating Radar," *IEEE Trans. Geosci. Remote Sens.*, vol. 60, pp. 1–13, 2022, doi: 10.1109/TGRS.2021.3098122.
- [56] S. V Athawale, "An Advanced Buried Threat Detection Using Convolutional Neural Networks and Recurrent Neural Networks," vol. 7, pp. 878–883, 2022.
- [57] H. Liu, Y. Yue, C. Liu, B. F. Spencer, and J. Cui, "Automatic recognition and localization of underground pipelines in GPR B-scans using a deep learning model," *Tunn. Undergr. Sp. Technol.*, vol. 134, p. 104861, Apr. 2023, doi: 10.1016/J.TUST.2022.104861.
- [58] Y. Su *et al.*, "End-to-end deep learning model for underground utilities localization using GPR," *Autom. Constr.*, vol. 149, p. 104776, May 2023, doi: 10.1016/J.AUTCON.2023.104776.

Author 2 Name and a short biography