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Abstract: Landmine detection remains a critical challenge due to the difficulty of identifying buried threats. These hidden explosives 

pose a significant danger to human lives, hindering economic growth and development efforts. Traditional methods for landmine 

detection often need to be revised, relying on time-consuming manual techniques or needing more ability to identify non-metallic 

mines. Fortunately, advancements in technology offer various methods for locating buried landmines. Ground penetrating radar (GPR) 

has emerged as a powerful tool for subsurface exploration, emitting electromagnetic waves and recording reflections to create an image 

of buried objects. However, GPR data presents a complex picture, containing reflections from various underground features besides 

landmines. Effective landmine detection hinges on distinguishing these targets from background clutter. This paper delves into the 

comparative analysis of feature extraction and classification techniques employed in GPR-based landmine detection. The initial stage 

involves feature extraction, where algorithms identify and quantify characteristics within the GPR data that discriminate landmines 

from other objects. Various approaches exist, including image processing techniques like edge detection and statistical methods that 

analyze signal intensity variations. Machine learning algorithms, such as Support Vector Machines (SVMs) and k-nearest neighbors 

(k-NN), can learn these discriminatory features from labeled GPR data sets containing confirmed landmine locations. This paper 

meticulously compares the effectiveness of these techniques using performance metrics like probability of detection (Pd), accuracy, 

and false alarm rate (FAR). The paper aims to identify the optimal approach for accurate landmine detection by evaluating these metrics 

across different feature extraction and classification algorithms. This optimal approach should maximize Pd while minimizing FAR, 

ensuring landmines' safe and efficient identification for humanitarian demining efforts. 
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1. INTRODUCTION 

Landmines remain a significant global threat, 

threatening lives, hindering economic growth, and 

impeding development efforts. These explosive devices are 

buried underground and detonated upon contact with a 

person, vehicle, animal, or pressure [1]. The blast can cause 

direct and indirect damage through the explosive force and 

shrapnel. Beyond the immediate casualties, landmines also 

have a lasting impact, disrupting agricultural land use and 

harming the environment [2]. 

Effective landmine detection is a complex task 

influenced by various factors. These factors include the 

material used in the landmine, the soil’s electromagnetic 

properties, the landmine’s size, position, burial depth, 

shape, and environmental effects [3]. Landmine detectors 

are crucial for locating buried landmines and identifying 

the technology employed in their construction.  

Researchers have made significant strides in 

developing automated landmine detection methods, 

primarily utilizing GPR technology. However, the 

performance of each technique varies depending on the 

type of explosive used, the landmine’s shape, the properties 

of the soil, and the materials used in its construction. 

Researchers often employ surrogate landmines and non-

mine objects buried at various depths during data collection 

to address this variability. This process helps researchers 

identify features that distinguish landmines based on size, 

shape, and casing type.  

Landmines pose a life-threatening danger in many 

countries worldwide. Despite the global landmine ban, 

numerous countries retain the capability to produce them, 

and an estimated 80 countries remain affected by landmine 

contamination. These hidden explosives claim a 

devastating toll each year, with casualties ranging from 

15,000 to 25,000 people killed or maimed [4]. Tragically, 

civilians, particularly children, represent a significant 

portion of landmine victims, accounting for approximately 

80% of casualties. 

Landmine detection is a critical issue for numerous 

countries. Landmine Monitor 2020 emphasizes the urgent 

need for complete landmine elimination. Fig. 1 shows the 

Landmine Contamination: Status 2020 report, as noted in  

[5]. International efforts are underway to eradicate 

landmines worldwide. Many countries have adopted the 

global landmine ban, and international funding supports 

demining operations. To date, 30 countries have achieved 

landmine-free status, with over 50 million landmines 



destroyed. However, experts estimate that complete 

landmine removal could take centuries due to the sheer 

number of devices buried globally. 

The threat posed by buried unexploded ordnance 

remains a significant concern for human safety and 

environmental well-being. Landmine detection and 

clearance are inherently challenging, time-consuming, and 

often dangerous. Fortunately, advancements in sensor 

technology, coupled with image processing, machine 

learning, and neural networks, offer promising solutions 

for more effective landmine detection. The Ottawa Treaty 

enforces the Anti-Personnel Landmine Ban Convention, 

mandating landmine clearance by 2025 [6]. 

 

 
Figure 1. Landmine Contamination: Status 2020 

2. CATEGORIES OF LANDMINES AND DEMINING 

A. Types of Landmines 

Landmines come in two distinct categories: Anti-Tank 
(AT) and Anti-Personnel (AP). AT landmines, also known 
as anti-vehicular landmines, typically have cylindrical or 
square shapes ranging from 150-300 mm in diameter and 
50-90 mm in thickness. Landmines contain powerful 
explosives like TNT, Composition B, or RDX [4]. 
Landmines come in various shapes and sizes, utilizing 
metal, plastic, or wood casings to make them difficult to 
detect. They detonate when subjected to a minimum 
pressure of 200 kilograms, typically triggered by vehicles 
driving over them. Anti-tank landmines, primarily used on 
battlefields, are designed to destroy tanks and trucks. These 
weapons can cause casualties for people inside and around 
the targeted vehicle, posing a significant threat to civilians 
caught in conflict zones. Fig. 2 showcases various anti-tank 
landmines  [7]. 

AP landmines, in contrast to AT landmines, target 
individuals. These disc-shaped devices are compact, 
typically measuring 20-125 mm in diameter, 50-100 mm in 
length, and weighing 30 grams. Common explosives used 
in AP landmines include TNT, Tetryl, and Comp B [4].  
Detonation occurs under pressure as low as 2 kilograms or 
when someone steps on the mine. There are two main 
subcategories of AP landmines: blast and fragmentation. 

 

Figure 2. Anti-Tank Landmine types 

• Blast Landmines: Designed to cause severe 
injuries and infections upon detonation, primarily affecting 
people close to the blast. 

• Fragmentation Landmines: Considered more 
dangerous than blast mines, these contain metal shrapnel 
that explodes outwards, inflicting casualties within a radius 
of approximately 200 meters when triggered [8].  

Fig. 3 provides the various anti-personnel landmine 
products [10]. Landmines come in multiple shapes and 
sizes, utilizing metal, plastic, or wood casings to make 
them difficult to detect. Unexploded ordnance (UXO), 
which are explosive devices that fail to detonate as 
intended, also fall into this category [9]. The rise of 
improvised landmines further complicates detection efforts 
and increases civilian casualties. Landmine-triggering 
mechanisms also vary considerably. These include 
pressure-based activation systems, electronic triggers, 
remote detonation, light or sound sensitivity 
(acoustic/seismic fuses), and magnetic influences. 

Figure 3. Anti-Personnel Landmine Types  

B. Types of Demining Methods 

Landmines can remain active for over five decades, 
necessitating demining efforts to prevent casualties. 
Demining refers to the process of removing landmines 
from contaminated areas. Two primary methods exist 
military and humanitarian demining. 



• Military Demining: This method prioritizes speed 
over complete removal. It employs a brute force approach, 
utilizing vehicles to clear paths through minefields. While 
achieving an estimated 80% clearance rate, it accepts a 
certain level of casualties and leaves behind a significant 
portion of landmines. 

• Humanitarian Demining: A more intricate and 
meticulous process, humanitarian demining focuses on safe 
and complete landmine removal with minimal 
environmental impact. It aims for a near-perfect 99.6% 
clearance rate. However, this safer method comes at a 
higher cost per landmine removed. It exposes deminers to 
risk, with an estimated one fatality for every 2,000 
landmines cleared [4] [11]. 

3.  EXPLOSIVE DETECTION 

Researchers have explored various landmine detection 
techniques, each with advantages and limitations. This 
section explores six main categories of explosive detection 
methods: biological, electromagnetic, acoustic/seismic, 
mechanical, optical, and nuclear. We will discuss the 
sensor types, their requirements, performance capabilities, 
and challenges associated with each method. 

A. Biological Detection  

TABLE 1. THE REQUIREMENTS, PERFORMANCE, AND 
PROBLEMS OF  BIOLOGICAL SENSORS 

Sensors Requirements Performance Problems 

Rats [8]   Food reward 

training to locate 

explosives 

Increased 

detection rate with 

more numbers of 

rats 

Susceptible to 

tropical 

diseases 

Dogs 

[12]  

Extensive 

training in 

explosives 

High success rate 

for detecting 

explosives 

Mood, time, 

behavioral 

variations  

Plants 

[13]   

Genetically 

modified plant 

need a 

controlled 

environment 

Detect explosives 

when nitrogen 

dioxide is present 

Prone to false 

alarms  

Ants [14]   No training is 

required, can 

self-deactivate 

Capable of 

locating 

explosives back to 

the nest 

Limited range 

and detection 

capabilities 

Bacteria 

[15]   

A genetically 

modified 

bacteria sprayed 

in the field  

Covers large areas 

and detects TNT 

Highly 

sensitive, 

leading to 

false positives  

Bees [16] Trained to 

associate a 

chemical odor 

with food 

reward 

Effective at 

detecting 

landmines 

Limited 

operation 

range due to 

temperature 

restrictions 

 

Biological detection techniques utilize trained animals 
(rats, dogs) and insects (bees, ants) alongside plants and 
bacteria to sense the presence of explosive materials. While 

landmine detection using these biological sensors is 
possible, their effectiveness is often contingent on specific 
conditions. Table 1 compares each biological sensor’s 
requirements, performance, and problems. 

B. Electromagnetic Detection  

The electromagnetic detection method identifies 
variations in the electromagnetic properties of buried 
objects compared to the surrounding ground surface. It 
utilizes electromagnetic sensors operating at different 
frequencies, employing transmitters and receivers. The 
transmitter emits signals within a specific frequency range, 
and the receiver interprets the reflected signals to detect 
anomalies. Table 2 details various electromagnetic 
detection sensors’ requirements, performance, and 
problems. 

TABLE 2. THE REQUIREMENTS, PERFORMANCE, AND 
PROBLEMS OF ELECTROMAGNETIC SENSORS 

Sensors Requirements Performance Problems 

Metal 

Detector [17] 

Measure the 

reflected current 

induced by the 

field  

Prone to false 

alarms; Cannot 

detect non-

metallic object  

Difficult to 

detect in 

highly 

conductive 

soils 

Ground 

Penetrating 

Radar [18] 

Transmit and 

receive radio 

waves to detect 

reflected signals 

Effective for 

metallic and 

non-metallic 

objects 

Inconsistent  

in 

homogenous 

soil  

Microwave 

Radar [19] 

Transmit and 

receive micro 

waves to detect 

reflected signals 

Can detect 

small and large 

objects 

Performance 

can be slow 

in wet soil 

conditions 

Millimeter-

Wave Radar 

[20] 

Send millimeter 

wave and collect 

reflected  

radiation 

Penetrate on 

obstacles like 

clouds, smoke, 

and dry soil 

Challenges 

faced across 

varying soil 

conditions 

Electrical 

Impedance 

Tomography 

[21] 

Measure current 

to map 

underground 

properties 

Suitable for 

wet soil and 

detect all types 

of objects 

Background 

noise can 

hamper 

performance 

X-ray 

backscatter 

[22] 

Pass x-ray 

photons and 

analyze  

Effective for 

shallowly 

buried objects 

Difficult to 

detect deep 

objects 

Infrared [23] Detect 

variations in 

temperature and 

light properties 

Detect non-

metallic 

landmines 

Ineffective 

to detect 

deep objects 

C. Acoustic Detection 

Acoustic sensors project acoustic waves toward the 
ground. These waves reflect based on the acoustic 
properties of the materials they encounter, causing 
vibrations due to their mechanical properties. Table 3 
presents acoustic sensor detection techniques, outlining 
their requirements, performance, and problems. 

 



TABLE 3. THE REQUIREMENTS, PERFORMANCE, AND 
PROBLEMS OF ACOUSTIC SENSORs  

Sensors Requirements Performance Problems 

Ultrasound 

[24] 

Sound waves emitted 

by acoustic sensors 

reflect off the ground 

Propagates in 

wet areas and 

underwater 

Not 

efficient 

in sand 

Acoustic to 

Seismic 

[25] 

Generates acoustic or 

seismic waves and 

analyzes the vibration 

based on mechanical 

properties 

Detect both 

types of 

landmines and 

give low false 

alarm rates 

Detection 

speed is 

slow  

D. Mechanical Detection  

Mechanical detection of landmines utilizes physical 
interaction with the ground to locate buried explosives. 
Table 4 details mechanical detection techniques with 
requirements, performance, and problems. 

TABLE 4. THE REQUIREMENTS, PERFORMANCE, AND 
PROBLEMS OF MECHANICAL DETECTION TECHNIQUES 

E. Optical Detection  

It penetrates the optical wave to the buried materials 
and measures the soil surface property. Table 5 displays 
optical detection techniques' requirements, performance, 
and problems. 

TABLE 5. THE REQUIREMENTS, PERFORMANCE, AND 
PROBLEMS OF OPTICAL DETECTION TECHNIQUES 

Sensors Requirements Performance Problems 

LIDAR [8] Identifies the 

polarization 

changes in the 

backscattered 

energy 

Detect metallic 

and non-

metallic objects 

and cover large 

areas 

Highly 

vegetated areas 

are not suitable  

Light [10] 

[11] 

Capturing light 

waves from the 

object 

A large area 

scanned only on 

flat land in a 

shorter time 

Less effective in 

poor lighting 

conditions 

F. Nuclear Detection 

The standard nuclear detection technique is nuclear 
quadrupole resonance (NQR), which uses radio-frequency 
and neutron-based techniques. Table 6 reports the nuclear 
detection techniques with requirements, performance, and 
problems. 

Landmine detection remains a complex task due to 
limitations in current technologies. While widely used 
methods like metal detector (MD) and GPR offer some 
advantages, they also have drawbacks. Techniques like 

Bacterial and NQR show promise with low false alarm 
rates, but widespread adoption might be limited  MDs are 
prone to false alarms when encountering even small 
amounts of metal debris. 

TABLE 6. THE REQUIREMENTS, PERFORMANCE, AND 
PROBLEMS OF NUCLEAR DETECTION TECHNIQUES 

Sensors Requirements Performance Problems 

Nuclear 

Quadrupole 

Resonance 

[28] 

Used radio 

frequency and 

identify 

nitrogen atom 

nuclei in TNT 

Effective in the 

detection of 

TNT or RDX 

explosive 

Identify 

landmines 

with strong 

signal 

Nuclear 

Magnetic 

Resonance 

[29] 

Used along with 

a metal detector 

Detect nitrogen 

present in TNT 

Detect only 

landmine 

objects placed 

inside the coil 

Ideally, a landmine detection system should be 
efficient, accurate, and have a minimal false alarm rate. 
Unfortunately, no single sensor or method can guarantee 
complete detection across all scenarios. Several factors 
hinder landmine identification, including: 

• Obstacles like rocks or vegetation 

• Presence of metallic debris 

• Variations in temperature and humidity 

• Different types of soil composition 

Therefore, using multiple sensors is crucial. These 
sensors collect diverse data (heterogeneous information) 
to aid in decision-making. GPR, in particular, offers a 
variety of feature extraction and classification techniques. 
By analyzing these features, GPR can potentially identify 
landmines buried underground through proven 
classification algorithms. 

4. REVIEW OF LANDMINE DETECTION METHODS 

USING GROUND-PENETRATING RADAR  

GPR is a valuable tool for landmine detection. It uses 
electromagnetic pulses to image objects buried beneath the 
ground surface. The system has two key components: a 
transmitter antenna that sends the pulses and a receiver 
antenna that records the reflected energy. Differences in the 
electrical properties of subsurface objects cause anomalies 
in the received signal. The software then processes these 
anomalies to generate an image. Fig. 4 illustrates the 
process of landmine detection using ground-penetrating 
radar [30]. It also has a built-in memory to store data after 
the examination. Noninvasive subsurface sensing can 
detect metal, non-metal, and plastic landmine.  

Significant research focuses on automating landmine 
detection using GPR data. GPR signals can potentially 
identify landmines, objects resembling landmines, and 
even the absence of landmines by analyzing features 
associated with them on the ground surface. However, 
challenges arise due to "clutter" in the data caused by 
surface scattering, target interaction, and variations in the 

Sensors Requirements Performance Problems 

Clearing 

Machines 

[11] 

Clearing 

machines are 

rolling in the 

field to clear the 

path 

Taking a short 

time to remove a 

landmine 

Trigger the 

landmine when 

heavy-sized 

machines to 

clear it 

Prodder 

and Probes 

[26] 

Scans the 

shallow area at a 

30-degree angle 

Identifies the 

unusual object 

baesd on sound  

Explode when 

prodding, so it is 

hazardous 



subsurface. Fortunately, various algorithms and techniques 
can distinguish between landmines and clutter based on 
their specific characteristics. These methods extract 
features from GPR images to determine the presence or 
absence of landmines and similar objects. Soil composition 
can significantly impact the effectiveness of GPR-based 
landmine detection methods. These methods underscore 
the ongoing challenges in this field and the need for 
advancements in various detection techniques. 

Figure 4. Ground Penetrating Radar Process 

One example of a GPR-based landmine detection 
technique is the Energy-Focusing Ground-Penetrating 
Radar (EFGPR) developed by [31]. This system utilizes a 
fuzzy logic information fusion module for Automatic 
Target Recognition (ATR). The module analyzes a final set 
of features extracted from the GPR data and generates a 
system-level confidence value based on factors like blob 
length. Fig. 5 shows the process of the Mamdani Fuzzy 
Inference System with ATR structure  [31].  

Another approach is the iterative algorithm developed 
to give better results than the Early Time Subtraction (ETS) 
and combined ETS with a whitening filter. The total 
scattered field S(ω) received from the GPR has a clutter 
contribution H_c (ω), desired target T(ω), and noise n(ω) 
mentioned as equation (1). Based on the time delay and 
damping factor γ _̂r^(m,n) in the selected time window at 
the mth and nth iteration, the target was identified and 
represented in equation (2). Fig. 6 displays the steps 
involved in the iterative algorithm for clutter reduction 
[32]. 

𝑆(𝜔) = 𝐻𝑐(𝜔) + 𝑇(𝜔) + 𝑛(𝜔)   (1) 

�̂�𝑚,𝑛(𝜔) = �̂�𝑟
𝑚,𝑛𝑒−𝜔�̂�𝑟

𝑚,𝑛
𝑒−𝑗𝜔�̂�𝑟

𝑚,𝑛
 𝑇𝑟 (𝜔)  (2) 

 

Figure 5. Mamdani Fuzzy Inference System with Automatic Target 

Recognition 

 
Figure 6. Clutter Reduction using Iterative Algorithm  

[33] proposed a feature-level fusion for combining 
GPR and MD features. In decision-level fusion, MD 
features are retrieved using a weighted density distribution 
function (WDD) and given to a neural network for 
classification. Prony’s Equation used to identify covered 
landmines based on GPR information. Using distance-
based detectors, researchers compare Complex Natural 
Resonances (CNR) features from an unknown image with 
known objects in an object library. Fig. 7 displays the 
Complex Natural Resonance-based feature extraction 
process with distance-based detectors [34]. [35] 
recognized landmines through GPR feature-based rules, 
order statistics, and adaptive whitening (FROSAW) 
algorithm. FROSAW used depth-dependent features for 
anomaly detection from a constant false alarm rate 
(CFAR) detector and rule-based features to reject false 
alarms from mine-like objects. 

 
Figure 7. Complex Natural Resonances based feature extraction with 

distance-based detectors  

The technique used a Seeded Region Growing 
Segmentation (SRGS) to extract and classify features 
through a Feed-Forward Neural Network (FFNN). The 
input xj mentioned in (3) gave to NN, and output y (4) 
ranked the pattern as a landmine or not where the length 
of the pattern n, activation function f.  wi, and wij denoted 
the weight connected to the output neuron and hidden 
layer neuron. Fig. 8 shows the Seeded Region Growing 
Segmentation-oriented feature extraction and Feed 
Forward Neural Network as Classification [36]. 

𝑥𝑗 = 𝐼(𝑗)      (3) 

𝑦 =  ∫(∑ 𝑤𝑖𝑓𝑖
𝑚
𝑖=1 ∑ 𝑤𝑖𝑗𝑥𝑗

𝑛
𝑗=1 )    (4) 

 [37] compared and evaluated  Hidden Markov Model 
(HMM), edge histogram descriptors (EHD), spectral 
correlation feature (SCF), and Geometric (GEOM) 
discrimination methodologies to recognize landmines and 
clutter objects using vehicle-mounted GPR information. 



 
Figure 8. Seeded Region Growing Segmentation and Feed Forward 

Neural Network Architecture 

[38] developed an algorithm for detecting anomalies 
and landmines. With the help of EHD, translation-
invariant features were extracted from the identified 
regions of interest (ROI), and then a probabilistic K-
Nearest Neighbors (KNN) was used to determine the 
confidence value (7) 𝐶𝑜𝑛𝑓(𝑆𝑇) using the mine class (5)  
𝐶𝑜𝑛𝑓𝑀 (𝑆𝑇)  and the clutter class (6) 𝐶𝑜𝑛𝑓𝐶 (𝑆𝑇)  for 
accurate detection. 

𝐶𝑜𝑛𝑓𝑀 (𝑆𝑇) =
1

𝐾
∑ �̃�𝑀(𝑅𝑘) 𝑤𝑝 (𝑆𝑇

𝐾
𝑘=1 , 𝑅𝑘)   (5) 

𝐶𝑜𝑛𝑓𝐶 (𝑆𝑇) =
1

𝐾
∑ �̃�𝐶(𝑅𝑘) 𝑤𝑝 (𝑆𝑇

𝐾
𝑘=1 , 𝑅𝑘)  (6) 

𝐶𝑜𝑛𝑓(𝑆𝑇) = √𝐶𝑜𝑛𝑓𝑀 (𝑆𝑇)  × (1 − 𝐶𝑜𝑛𝑓𝐶 (𝑆𝑇)) (7) 

HMM proved as effective in landmine detection 
through GPR data. This framework worked based on the 
gradient features extracted from GPR signatures. A k-
nearest neighbor classier and bar histogram used EHD to 
retrieve the buried object’s features. Fig. 9 shows the 
Hidden Markov Model for discrimination of landmine and 
Clutter Signatures [39]. 

 

Figure 9. Hidden Markov Model for Discrimination of Landmine 

and Clutter Signatures  

A supervised learning model used to retrieve spectral 
features from the identified Region of Interest (ROI) using 
the Least Mean Square (LMS) method. Equation (8) 
normalizes the Fourier-transformed data (Pk) magnitude 
to reduce its dependency on soil losses. This normalization 
is based on the N-point discrete Fourier transformed data 
(S[k]) and frequency (k). Fig. 10 displays Fourier 
Transform (FT) and SVM's feature extraction and 
classification process [40]. 

𝑃𝑘 =
|𝑆𝑘|

∑ |𝑆[𝑘]|/𝑁𝑁−1
𝑘=0

     (8) 

 

Figure 10. Feature Extraction and Classification using Fourier 

Transform and Support Vector Machine  

Minimum Connected Component (MCC) method 

proposed to identify covered objects from the 2D GPR 

images based on graph theory. Fig. 11 illustrates the 

conversion process from the landmine matrix to MCC and 

MCCGray [41]. 

 
Figure 11. Minimum connected component-based feature 

extraction for landmine detection  

Bag of Visual Words (BOV) and Fisher Vector (FV) 
used as the two modern feature-learning approaches used 
for Forward-Looking Ground Penetrating Radar (FLGPR) 
data processing. Based on the background mean µ and 
standard deviation σ, the normalized feature X' was 
extracted from image X using equation (9). In addition, the 
features retrieved from FLGPR data were BOV and FV 
applied with scale-invariant feature transform (SIFT) 
descriptors and raw pixel intensities under various soil 
conditions, data, classifiers, and techniques.  

𝑋′ =
|𝑋|−𝜇𝑏𝑔

𝜎𝑏𝑔
     (9) 

The final BOV and FV features were retrieved using 
equations (10) and (11) based on the dimensionality of raw 
and SIFT descriptors. Fig. 12 gives the Feature Learning 
approach steps for feature extraction using BOV and FV 
[42]. 

𝜓𝐵𝑂𝑉(𝑋|𝐷) = {
𝑚𝑎𝑥

𝑡
 {𝛾𝑡  (𝑘)}; 𝑘 = 1 … 𝐾}              (10) 

𝜓𝐹𝑉(𝑋|𝑢𝜆) = {𝑔𝜇𝑘 ,     
𝑋 𝑔𝜎𝑘

𝑋 ;  𝑘 = 1 …  𝐾}              (11) 

 
Figure 12. Feature Learning approach using Bag of Visual Words and 

Fisher Vector  

Robust principal component analysis (RPCA) 
proposed to prescreen APM from GPR images. Initially, 



the technique received a productive RPCA method and 
used Decomposition (GoDec) to retrieve the target. Fig. 13 
displays the process of RPCA-GoDec feature extraction 
and detection [43]. 

 

Figure 13. Robust Principal Component Analysis-Go Decomposition 

feature extraction and detection  

The twin gray statistics sequence (TGSS) method 
developed to identify the twin vector and gray statistics. 
GPR features were classified using a B-scan image's row 
and column vector. Characteristics of image classified 
through TGSS method and dimension reduction through 
Gray Statistics Matrix (GSM). The gray statistics level h 
is defined using (12) and (13). 

{𝑢𝑖(ℎ) =
1

𝑁
 ∑ 𝛿 (𝐺(𝑖, 𝑦)  = 𝑒ℎ

𝑁
𝑦=1 }                (12) 

{𝑣𝑖(ℎ) =
1

𝑀
 ∑ 𝛿 (𝐺(𝑥, 𝑦)  = 𝑒ℎ

𝑁
𝑥=1 }                (13) 

This process calculates the twin gray sequence for row 
vector (i) and column vector (j) from the image's gray 
statistics level. It then uses the Gray Level Co-occurrence 
Matrix (GLCM) to extend these local sequences and 
derive sequence coding for classification. Fig. 14 
illustrates the feature classification using the Twin Gray 
Statistics Sequence [44]. 

 

Figure 14. Feature classification using Twin Gray Statistics Sequence  

 
Figure 15. Process of Classification through Multi-Objective Genetic 

Algorithm 

The classification method as Multi-Objective Genetic 
Algorithm (MOGA) was proposed. The MOGA classifier 
utilizes features retrieved using Higher-Order Statistics 
(HOS) and Mutual Information Feature Selection (MIFS). 

Fig. 15 details the classification process involving the 
Multi-Objective Genetic Algorithm  [45]. 

The synthetic information from the GprMax program 
is utilized. The feature vector was calculated for row r and 
column c indices using Equations (14) and (15) for the data 
x. 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑐  =  √∑ (𝑥𝑟𝑐 −  𝑥(𝑟 − 1)𝑐)2𝑅𝑜𝑤𝑠
𝑟=2           (14) 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑟  =  √∑ (𝑥𝑟𝑐 −  𝑥𝑟(𝑐 − 1))2𝐶𝑜𝑙𝑠
𝑐=2            (15) 

𝐹𝑉𝑟𝑐  = [𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑟𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑐]            (16) 

The final FV combined features derived from rows and 
columns mentioned in (16). Fig. 16 shows the Feature 
Vector retrieval process for Underground Object 
Detection from GprMax  [46]. 

 
Figure 16. Feature Vector for Underground Object Detection from 

GprMax 

Supervised machine-learning technique focused to 
identify landmines.  The approach extracted three and five 
feature datasets from GPR images of landmines and 
classified them via support vector machine (SVM) and 
neural network (NN). Fig. 17 displays three and five 
features of feature extraction with a neural network 
classifier [47]. 

 
Figure 17. Five Features of Feature Extraction with Neural Network 

Classifier  

[48] calculated a correlation coefficient between the 
main case’s Scattering parameter (S-parameter) and 
whitening Algorithm to detect the anomaly. The landmine 
and clutter have varying scattering parameters due to 
different Ultra-Wide Band (UWB) signal compositions. 
The RPCA observed the data matrix X (17) from where the 
low-rank component G, sparse component S, and noise N.  

𝑋 = 𝐺 + 𝑆 + 𝑁                               (17) 

The initial values of the low-rank matrix G0 and the sparse 
matrix S0 were calculated using Equations (18) and (19) 
based on data matrix X and transposition vector T.  

𝐺0 = (
1

𝑁
 ∑ 𝑥𝑖

𝑁
𝑖=1 ) 1𝑁×1

𝑇                                             (18) 



𝑆0 = 𝑋 − 𝐺0                 (19) 

[49] proposed an intelligent system using a multi-agent 
hardware structure with different sensors. The agent 
worked independently to reach optimal acquisition, get 
Local Decision-Making (LDM), and share the information 
with another agent. The final decision on collaborative 
details shared by the agent will emerge in the Cooperative 
Decision-Making (CDM) system. Features vector 
calculated for Visible Spectrum (VS), Infrared (IR), and 
ultraviolet (UV) sensors using equation (20).  

Γ =  [Λ, 𝜆, 𝜇,  𝜎𝑀  , 𝜉, 𝐾, 𝜁, 𝜌, 𝜖, 𝜙  ]             (20) 

[50] proposed a likelihood-ratio test (LRT) using Full-
Length Ground Penetrating Radar (FLGPR). The LRT 
constructs a band of feasible probability densities for each 
hypothesis. developed a likelihood-ratio test (LRT) using 
FLGPR. Gradient magnitude with thresholding method 
employed for removing unwanted clutters and wavelet-
based denoising to eliminate noise from the GPR images. 
The approach measured the peak signal-to-noise ratio 
(PSNR) using equation (21) based on mean square error 
(MSE) and image entropy (IE) using equation (22). Fig. 
18 displays the process of clutter suppression and denoised 
data for further classification  [51]. 

𝑃𝑆𝑁𝑅 (𝑑𝐵)  =  10 log10
𝐿2

𝑀𝑆𝐸
                            (21) 

𝐻 =
(∑ ∑ 𝐵2(𝑚,𝑛)𝑁−1

𝑛=0
𝑀−1
𝑚=0 )

2

(∑ ∑ 𝐵4(𝑚,𝑛)𝑁−1
𝑛=0

𝑀−1
𝑚=0 )

               (22) 

 
Figure 18. Gradient-based clutter suppression and Wavelet-based 

Denoising 

[52] analyzed the framework trained on GPR data 
captured in landmine-free areas using autoencoders. It 
used different polarizations to analyze GPR data but 
required improvement in localizing the anomaly. [53] 
proposed an autonomous cognitive GPR (AC-GPR) based 
on deep reinforcement learning (DRL) that uses a 
rewarding method for both Region of Interest (RoI) 
detection and object classification. Researchers developed 
Deep Q-learning networks (DQNs) to address the 
dimensionality challenge in state space and enable them to 
learn policy directions. Gauss gradient and the Speeded 
Up Robust Feature (SURF) descriptor method was 
presented. Gauss gradient algorithm estimated the 
cumulative HOG (23) using the image details Dfx and Dfy. 
SURF detector identified the feature vector v using 
equation (24) from the 4x4 sub-region in horizontal 
direction dx and vertical direction dy. 

𝐷𝑓𝑥𝑦 =  |𝐷𝑓𝑥| + |𝐷𝑓𝑦|                                          (23) 

𝑣 = [∑ 𝑑𝑥 , ∑|𝑑𝑥|, ∑ 𝑑𝑦 , ∑|𝑑𝑦|]                            (24) 

Figure 19. Feature Extraction using Cumulative Histogram of Oriented 

Gradients and SURF Descriptor 

Fig. 19 illustrates the entire process of landmine detection 
using the Cumulative Histogram of Oriented Gradients 
(HOG) and SURF Descriptor method for feature 
extraction  [54]. 

Convolutional Auto-Encoder (CAE) used to remove 
clutter from the GPR image and produce the target 
component directly. The filter coefficient of the encoder 
and decoder in CAE depended on the kernel size and the 
number of filters used in the encoder and decoder. Signal-
to-clutter ratio (SCR) measured the effectiveness of the 
CAE method on actual data. Fig. 20 displays the 
Convolutional Auto-Encoder architecture to remove 
clutter from the GPR image [55].  

 

 
Figure 20. Convolutional Auto-Encoder Architecture to remove 

clutter  

[56] used a CNN to extract information from B-scans 
and RNN to model the differential data and retrieve 
features amongst scans from down and cross-track 
networks. [57] used the You Only Look Once version 3 
(YOLOv3) model to identify pipelines under the 
subsurface. The iterative thresholding method transformed 
the hyperbolic response into a binary image to determine 
a pipeline’s buried position and depth. [58] used key 
point–regression mode to identify the region of interest 
and hyperbola detection. 

5. DISCUSSION ON COMPARISON OF GPR SENSORS 

DATA WITH ALGORITHM, FEATURES, ADVANTAGES, 

LIMITATIONS, DATASET, AND ACCURACY 

 The comparison Table 7 shows the information related 
to GPR data processed through many algorithms and 
retrieved a specific feature for classification to identify 
landmines. Each technique has advantages and limitations, 
and the dataset used for implementation shows accuracy in 
the probability detection and false alarm rate. 

 



TABLE 7 COMPARISON OF GPR SENSORS DATA WITH AN ALGORITHM, FEATURES, ADVANTAGES, LIMITATIONS, DATASET, 
AND ACCURACY

 

 

 

 

Algorithm Features Advantages Limitations Dataset Metrics 

Mamdani fuzzy 

inference system 

[31] 

ATR 

Confidence 

Value 

Information fusion maximizes the 

strengths of independent modules 

and minimizes their weaknesses 

Gradient and line-based 

feature algorithms gave a 

high false alarm rate 

Calibration lane Pd-96%  

FAR-0.017 

Iterative 

Algorithm [32] 

Scatter Effectively reduced the clutter, 

which leads to a decreased false 

alarm rate 

Detected only anti-

personnel mines 

Dr. Chen's GPR 

data 

FAR-11%  

For SNR-

40dB 

Feature and 

Decision-Level 

Fusion [33] 

Spatial Feature-level fusion produced 

reduced FAR 

Investigation needed in 

WDD functions 

US Dataset Pd-83.97 

(MD) 

Pd-52.92 

(GPR) 

Prony's 

Algorithm, 

Distance-based 

detectors [34] 

CNR 

 

Better performance with good 

probability detection achieved 

with CNR and multiple distance-

based detectors 

CNR analysis requires 

removing the nominal 

background from the A-

Scan 

Demining 

Technology 

Center 

Pd-100% for 

higher SNR 

FROSAW [35] Depth-

Dependent and 

Rule-Based 

Feature 

FROSAW achieved a reduced 

FAR at high PD than CFAR 

The return signal from 

clutter objects was similar 

to mine signals 

NIITEK data Pd-91 to 100 

FAR-0.0338 

Median Filtering, 

SRGS, FFNN [36] 

Region-based 

Segmentation 

An efficient method and more 

reliable for detecting and 

classifying anti-personnel 

landmines with more accuracy 

Tested on a small amount of 

actual data 

DeTeC at the 

EPFL, 

Switzerland 

Pd-80% 

HMM, GEOM, 

SCF, EHD [37] 

Edge,  

Geom, 

Spectral, 

Edge 

An HMM, edge-based algorithm 

provided the highest performance 

over the entire data collection 

Compared to EHD, HMM 

algorithms require about 

five times more processing 

time per alarm 

NIITEK data Pd-90% 

FAR-0.00232 

(HMM) 

EHD, KNN [38] Edge Fuzzy techniques distinguished 

false alarms from accurate 

detections 

Factors appear to be 

influenced by geography 

and the environment 

NIITEK data Pd - 90% 

HMM [39] Gradient, 

Gabor, Edge, 

Bar Histogram 

Model encountered 13 different 

AT landmines 

EHD was not as effective as 

Gabor, bar, and gradient 

algorithms 

NIITEK data EHD 

Pd-95% 

FAR-0.01181 

LMS, FT, SVM, 

and Median filters 

[40] 

Spectral The spectral feature method gave 

a better performance for landmine 

detection compared to edge and 

gradient features 

Multiple features can 

include improving the 

classification accuracy 

Real-world data Accuracy-

0.83 

MCC [41] High-Intensity 

Valued Edges   

The efficient performance 

achieved in landmine detection by 

using grayscale images 

The feature extracting 

efficacy was not a 

significant property for 

landmine detection. 

Grayscale 

landmine image 

Confidence 

Level-95%  

SVM, SIFT 

Descriptor [42] 

BOV, FV Performed well on feature 

learning methods BOV and FV 

applied to the FLGPR images on 

HH polarization  

Feature learning did not 

perform well for other 

feature sets in all 

polarizations  

Western U.S. 

Army Data 

FAR-0.02 

RPCA-GoDec 

[43] 

Sparse 

Component 

GoDec with thresholds has fast 

computation and robustness 

against clutter and noise 

Target discrimination had 

to be focused more 

Georgia 

Technology 

Institute 

Pd- 99% 

TGSS [44] Twin Feature The twin method performed well 

in robustness and dimension 

reduction 

The accuracy rate 

fluctuated as the training 

sample set changes 

Real data Accuracy-

82.77% 



TABLE 7 Continue 

 

CONCLUSION 

This study compared various feature extraction and 
classification algorithms for landmine detection using 
Ground Penetrating Radar (GPR) data. The goal was to 
identify the most effective approach for accurate landmine 
detection, minimizing false alarms while maximizing the 
probability of detection. The analysis revealed that clutter 
in GPR data, caused by buried objects and soil variations, 
significantly impacted landmine identification. To address 
this challenge, researchers explored various clutter 

reduction algorithms like SURF descriptors and machine 
learning features (Five feature sets, BOV, FV, and CAE). 
These techniques aimed to extract salient features and 
reduce clutter, ultimately improving landmine detection 
accuracy. 

Furthermore, the study investigated the effectiveness 
of different classification algorithms (SVM, NN, KNN, 
and FFNN) in differentiating between clutter and 
landmines. Spectral feature-based classifiers, particularly 
SVM, demonstrated superior performance in 
distinguishing landmines from non-mines within GPR 

Algorithm Features Advantages Limitations Dataset Metrics 

MOGA [45] HOS MOGA outperformed in the 

training set and achieved a good 

result in the validation and testing 

data 

MOGA's design time was 

higher than the use of 

neural networks but faster 

than SVM 

Maas and 

Schmalzl Data 

Accuracy-

91.03% 

GPR Max, KNN, 

SVM, HOG [46] 

Gradient HOG produced better results when 

KNN used 

Reduced the noise level in 

signals 

Synthetic Data 

from GPR Max 

Average 

Performance-

92.6% 

SVM and NN 

Classifier [47] 

Five Feature Set The NN method produced better 

performance compared to the 

SVM 

Not included various types 

of soil and moisture content 

levels 

Surrogate 

landmines and 

non-mines 

Accuracy  

NN-95% 

SVM-85% 

Whitening 

Algorithm [48] 

S-Parameter ZCA-correlation whitening 

algorithm performed well on the 

simulated database 

The simulation did not 

consider soil 

inhomogeneity 

Georgia Tech Correlation 

Coefficient-

89.74% 

CDM [49] LDM and CDM  The system detected IEDs of any 

shape, material, and type 

GPR and TS sensors were 

less performing than the VS 

and improved only in CDM 

Fabio Caraffini 

Data 

Acc-0.7778 

(IR) 

LRT in Density 

Band and Outlier 

Model [50] 

Feasible 

probability 

density 

LRT detector reduced the False 

alarm and missed detection in 

robust outlier model 

A robust hypothesis test is 

needed to assess the 

accuracy of the LRT 

detector adequately 

Dr.Traian Dogaru 

of US Army 

FA-8 

MD-2 

PCA, Wavelet 

denoising [51] 

Gradient Worked well in clutter 

suppression, PSNR, and entropy 

under homogeneous medium 

Testing in heterogeneous 

soil and rough surface 

conditions is necessary 

Synthetic and 

measured data 

PSNR-37.28, 

IE-698.4 

Autoencoder [52] Multipolarizatio

n 

Horizontal and vertical 

polarization achieved better 

accuracy 

Autoencoder enabled only 

a limited amount of data. 

Real data Accuracy - 

93% 

DRL [53] DQN Performed well in object detection 

and classification accuracy 

Worked only in a 

homogeneous environment 

Simulated 

(gprMax) 

Classification

-7.12X 103 

Cumulative HOG, 

SURF Descriptor 

[54] 

Gradient and 

SURF 

The SURF method produced more 

detection probability with no false 

alarm compared to gauss gradients 

The interpolation retrieved 

the original image when 

decimation was applied to 

reduce the size of an image 

Real data Accuracy-

89% 

CAE, DCAE [55] Texture The clutter removal method CAE 

and DCAE directly provided the 

target component and worked well 

in simulated data 

The process was slightly 

behind in the performance 

of real data compared to 

LRSD-based methods 

Vrije Universiteit 

Brussel 

Clutter-

0.119(CAE) 

0.197(DCAE) 

CNN-RNN [56] LSTM Feature extracted using both CNN 

and RNN 

Possible only when using 

deep learning algorithms 

Real Pd-0.9 

R-CNN [57] YOLOv3 The YOLOv3 model recognized 

the regions of the pipeline 

Took more time to divide 

the image into interest areas 

of the region 

Real Precision-

95.6% 

End-End DL [58] Key point–

regression mode 

Support good accuracy and 

maintain operating speed 

Parameters cannot be 

optimized using deep 

learning methods 

Real and 

simulated-Gprmax 

Accuracy-

97.01% 

https://figshare.com/authors/Fabio_Caraffini/6657968


data compared to NN classifiers, which rely on edge and 
gradient features. This comparative analysis underlines the 
importance of clutter reduction and feature extraction in 
GPR-based landmine detection. The superior performance 
of SVM classifiers using spectral features highlights their 

potential for real-world applications. This research will 
explore the integration of deep learning algorithms as 
classifiers. Additionally, it will investigate the 
effectiveness of these methods in diverse environments 
with varying clutter characteristics.  
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