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Abstract

Deep learning played a vital role in the seizure prediction challenge. Nevertheless, most studies used generic architectures
that fail to consider the distinct characteristics of multivariate time-series Electroencephalography signals. Additionally,
many methods depend on inadequate EEG segmentation techniques, resulting in unreliable results. This study presents
an in-depth architectural design of a Convolutional Neural Network specifically tailored to extract features from the
wavelet-transformed EEG signals using Wavelet packet decomposition (WPD). In addition, the chosen testing strategy
and data segmentation methodology ensures accurate and trustworthy performance results. This study introduces a data
segmentation method to generate distinct intervals and effectively capture the temporal dynamics of the time-series data.
The proposed model evaluation utilized 12 subjects’ EEG data from the CHB-MIT dataset, employing a Leave-One-Out
cross-validation technique. The proposed architecture outperformed five reproduced state-of-the-art models in the
segment-based accuracy, sensitivity, and specificity metrics. The proposed model achieved 78.00% accuracy, 65.17%
sensitivity, and a high 90.83% specificity rate. Evaluation using the more straightforward KFold cross-validation technique
demonstrated robust performance, achieving 96.68% accuracy, 97.41% sensitivity, and 95.95% specificity. The significant
improvement in the model’s specificity rates indicates a substantial reduction in false alarms, making the proposed model
a reliable tool for seizure prediction.

Keywords: Epilepsy, Seizure Prediction, Electroencephalography, Convolutional Neural Network, Wavelet Packet
Decomposition

1 Introduction

Epilepsy is a neurological condition characterized by re-
current and spontaneously occurring seizure events that
disrupt and affect patients’ lives. The unpredictable na-
ture of seizures can drastically degrade the quality of life
and can be life-threatening directly or indirectly owing
to drowning and other accidents [1]. The World Health
Organization (WHO) reported that epilepsy has affected
more than 50 million individuals around the world. The
burden of epilepsy is compounded by the fact that 30%
of individuals exhibit resistance to anti-epileptic drugs [2].
This burden highlights the imperative need for innovative
strategies to predict, detect and prevent seizures [3].

Electroencephalography (EEG) is a common tool for mon-
itoring the brain’s electric activity and studying epilepsy
[4]. The states of an epileptic brain can be one of four:
inter-ictal (normal interval between seizure events), pre-
ictal (interval immediately preceding a seizure event), ictal

(period of a seizure), and post-ictal (interval immediately
following a seizure). At its core, seizure prediction is a
task of detecting the presence of the pre-ictal state. How-
ever, most studies depict seizure prediction as a binary
classification task between the pre- and inter-ictal states
[5].

Seizure prediction utilizing the electric activity of an
epileptic brain is a challenging research problem that has
attracted more attention in recent years [5–8]. The ability
to issue warnings before seizures occur may lead to the
development of novel diagnostic methods and therapies
[9, 10]. Moreover, the focus on the algorithmic prediction
of seizures might offer valuable insights into the mechanics
of a seizure event. However, little attention has been paid to
extracting meaningful and comprehensible characteristics
about seizures and their dynamics [11].

EEG signals are complex, non-stationary, and require
advanced signal processing and feature extraction to help
provide meaningful interpretation [12]. Advances in deep
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learning have shown great promise in its capacity to learn
good representations of EEG signals. Deep learning ap-
proaches differ from traditional machine learning techniques;
they do not require extensive domain expertise or operator
feedback on the feature extraction process. Nevertheless,
deep learning models are prone to weak generalization and
deliver less human comprehensible features [13].

Deep learning approaches offer a potential answer to
developing a reliable seizure prediction system. However,
the clinical adoption of deep learning models mandates
a certain degree of model explainability. Although deep
learning is considered a black box, it is possible to build
human-comprehensible interpretations on the internals of
a deep learning model [11, 14]. Nevertheless, most studies
utilized deep learning methods with generic architectural
designs solely for accurate predictions. Such design choices
greatly complicated the interpretation of model decisions.
Another concern involving numerous studies is the poten-
tial for data bias in the data pre-processing and model
evaluation techniques [15].

This study introduces a wavelet-based Convolutional
Neural Network (CNN) well-suited for multi-channel EEG
data analysis. The architecture’s compactness relies on ex-
ploiting Wavelet Packet Decomposition (WPD) to enhance
the signal for better feature extraction without increasing
the data dimensionality or redundancy. The CNN architec-
ture utilizes separable convolutions to reduce the number
of learned parameters. Furthermore, the proposed architec-
ture performance was evaluated using the Leave-One-Out
Cross-Validation (LOOCV), also named Leave-One-Group-
Out (LOGO), for the test set. Additionally, a fixed-step
ordered sampling technique was utilized to avoid the un-
certainty of random sampling techniques. To ensure a
fair comparison, recent state-of-the-art methods are repli-
cated to be trained in the same conditions and to prevent
potential data bias.

The remainder of this manuscript is organized as follows:
Section 2 gives a concise overview of recent state-of-the-
art methods. Section 3 describes the data and materials
used in this research, including the employed data pre-
processing techniques. Additionally, section 3 lists and
details the components of the proposed architecture, and
presents the model training strategy and evaluation metrics.
Section 4 delivers the performance results, while section 5
thoroughly examines the comparisons of the reproduced
methods. Section 6 encloses the manuscript with the study
conclusions and discusses potential future works.

2 Related Work

Multiple seizure prediction studies have explored numerous
manual feature extraction techniques [16–18]. However,
their findings revealed no success in identifying the ideal

set of features and the appropriate classifier to yield reli-
able prediction performance. As a concrete example, the
winning study of the Melbourne University seizure predic-
tion contest employed 11 classifiers and more than 3000
handcrafted features [19]. Consequently, recent state-of-the-
art methods utilized automated feature extraction, taking
advantage of deep learning methods.

Tsiouris et al. [18] used the most common features, includ-
ing the time domain, frequency domain, correlation, and
graph theory features, to generate 643x1 feature vectors for
each 5-second long EEG segment. The Long Short-Term
Memory (LSTM) network was employed as the classifier
for its inherent advantage in processing the sequential EEG
time series. They also tested the LSTM network using
raw EEG segments as the input in a feature extraction sce-
nario. However, the feature extraction model was unable
to achieve comparable results. The primary cause for this
low performance observed while using raw EEG data was
the model’s low capacity and limited computing hardware
capability, which prevented any attempt to increase the
model size.

Khan et al. [20] proposed a CNN architecture to extract
features from the time-frequency domain of the EEG signals.
The time-frequency domain was generated using the Contin-
uous Wavelet Transform (CWT) of 1-second raw EEG seg-
ments. They argued that using wavelet-transformed EEG
segments to include the frequency information achieves
deeper feature extraction without additional model capac-
ity. They used the Mexican-hat mother wavelet and 9
dyadic scales to add the geometric frequency range of 0.25
to 128 Hz in the frequency dimension. On the other hand,
Truong et al. [21] used the Short Time Fourier Transform
(STFT) to transform the 30-second raw EEG segments into
the time-frequency domain. The STFT generated segments
that encompassed frequencies ranging from 1 to 128 Hz at
the cost of losing information in the time dimension. The
information loss occurs since STFT uses sliding windows of
fixed lengths to generate the amplitude or power spectra.

Daoud and Bayoumi [22] conducted experiments using
various deep learning architectures trained on raw EEG
data without pre-processing except for the 5-second seg-
mentation process. Their best-performing architecture with
the least number of trainable parameters is a Convolutional
Auto-encoder (CAE) for feature extraction and a Bidirec-
tional LSTM (Bi-LSTM) for classification. The CAE was
trained in an unsupervised manner using data from several
subjects to find lower-dimensional representations of the
raw EEG data. The Bi-LSTM uses the learned features
from the encoder component of the CAE to carry out the
ultimate classification task.

Similarly, Xu et al. [23], Jana and Mukherjee [24] in-
troduced end-to-end deep learning models that directly
learn from raw EEG data as input. Jana and Mukherjee
[24] used 8-second long EEG segments and developed a
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CNN architecture with (3 × 3) convolution kernel size and
a combination of (1 × 3) and (2 × 3) max-pooling kernel
sizes. Different max-pooling kernel sizes are used because
the input EEG segments have more temporal than spatial
resolution. On the other hand, Xu et al. [23] used 1D convo-
lution kernels with sizes of (1×20) and (1×10) for the first
three convolution blocks. Each of these blocks are followed
by (1 × 10) and (1 × 5) 1D max-pooling operations. The
length of these kernel sizes was chosen to capture longer
local temporal dependencies with an increased receptive
field. The final two convolutional blocks have standard 2D
convolution kernels with (3 × 3) size to capture spatial and
temporal characteristics. The EEG segment was set to 20
seconds long in this study.

An alternative method for expanding the receptive field
of the convolution process involves using dilated kernels.
Hussein et al. [25], Wang et al. [26], Gao et al. [27] incorpo-
rated a dilation rate of more than one to enlarge the kernel
length while avoiding an increase in the number of weights
within a kernel. Hussein et al. [25] divided the EEG data
into segments, each having 30 seconds in length. Then, each
segment is transformed into time-frequency representations
using CWT with 100 scales. However, the wavelet mother
and the distribution of the scales were not reported in this
study. The illustrated time-frequency images indicated
that the utilized scales produce a frequency range of 0.1 to
100 Hz. The suggested model consisted of 30 convolution
layers arranged in parallel paths with varying dilation rates
and a kernel size of (3 × 3) or (5 × 5). While using 30
convolution layers, the network is constructed to be only 3
convolution blocks deep. The suggested CNN architecture
was created with numerous learnable parameters, requir-
ing several hours of training for a single patient. Wang
et al. [26] used STFT instead of CWT to transform the 30
seconds long EEG segments. Additionally, they used 3D
convolution kernels instead of 2D but did not report the
number of kernels in each layer.

Lawhern et al. [28] constructed an EEG-specific archi-
tecture; called EEGNet, replicating the well-known Filter-
Bank Common Spatial Pattern (FBCSP) feature extraction
process. FPCSP performs spatial filtering separately on sev-
eral frequency subbands to compute features with maximal
variance to optimally discriminate between two classes [29].
Zhang et al. [30] utilized FBCSP to generate 2D images
and achieved state-of-the-art performance using a CNN
architecture. In contrast, EEGNet utilized raw EEG data
to learn both temporal (frequency-related) and spatial fea-
tures using a CNN directly instead of FPCSP. The EEGNet
architecture incorporates a 1D temporal convolution layer
with a kernel size of (1 × 64), followed by spatial depthwise
convolution layers with a kernel size of (N × 1) where N is
the number of channels in the input EEG signal.

However, the EEGNet architecture designed by Lawhern
et al. [28] was not specifically trained for a seizure predic-

tion task. Jemal et al. [31] made minor adjustments to
the EEGNet architecture and trained the model to predict
seizures from 20 seconds long raw EEG segments. The
temporal kernel size is (1 × 128) to extract frequency fea-
tures starting at 2 Hz from an EEG segment with a 256
Hz sampling rate. The architecture additionally included
average-pooling layers with a kernel size of (1×16) following
both temporal convolution layers to enlarge the receptive
field of the model. However, this study failed to report the
number of kernels utilized in each stage of the proposed
architecture.

3 Materials and Methods

3.1 Data Acquisition

The proposed CNN architecture is trained using a subset
of the CHB-MIT scalp EEG dataset gathered at the Chil-
dren’s Hospital Boston [32, 33]. The dataset comprises 664
recordings, grouped into 23 cases from 22 pediatric patients.
Each case is denoted by the code chbi, where i refers to the
case ID. Each case has a summary .txt file that specifies
the start and end timings, the EEG montage used for each
recording, the number of seizure events, and their timing
relative to the recording. Each case consists of recordings
ranging from 9 to 42. Each recording has 10 minutes up
to 4 hours of EEG data duration sampled at 256 Hz. This
dataset utilized the international 10-20 EEG electrode place-
ment system with bipolar montage. The proposed method
uses only 18 channels common among subjects from the
overall 23 EEG channels. The selected EEG channels and
their corresponding electrode placements are depicted in
Figure 1. Figure 2 shows a 150-minute EEG sample from
subject chb01 preceding the seizure of chb01 15.edf file.
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Figure 1: The montage of the 18 common EEG channels
among the CHB-MIT subjects.
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Figure 2: A 150 minutes sample EEG recording from subject chb01 preceding a seizure.

3.2 Data Segmentation

The proposed seizure prediction system employs the pre-
and inter-ictal states to perform a binary classification task.
Performing binary classification on long continuous EEG
data mandates establishing three parameters to extract the
pre- and inter-ictal states:

• The pre-ictal period, which is immediately before a
seizure. For this investigation, a 35-minute pre-ictal
period length is extracted. Furthermore, seizure events
with 30 minutes or less pre-ictal data were not included
to ensure non-misleading validation results due to a
low number of samples.

• The inter-ictal distance refers to the duration between
a seizure onset and the inter-ictal data. This period
is not included in the inter-ictal period to reduce the
similarity between pre- and inter-ictal states in the
training phase. The proposed system uses two hours
as the inter-ictal period distance, resulting in an hour
and 25 minutes gap between the pre- and inter-ictal
periods.

• The post-ictal period is the interval immediately after
a seizure that is not categorized as a pre-ictal or inter-
ictal state. In this study, two hours of post-ictal period
are excluded from the training set.

The intervention time, also known as the Seizure Predic-
tion Horizon (SPH) [10], is another essential parameter re-
quired to specify the timings of extracted periods. However,
this parameter is only crucial in the event-based prediction

(inference stage). For instance, a five-minute intervention
time would mean alarms induced in the five minutes im-
mediately before a seizure are false alarms. Nevertheless,
the intervention period is still considered pre-ictal; any
alarm during this interval is a false warning since there
should be enough time to intervene [8, 10]. A 35-minute
pre-ictal duration to predict incoming seizures 30 minutes
before the intervention interval yields a 30-minute Seizure
Occurrence Period (SOP). Only cases with three seizures
or more meeting the abovementioned conditions are used
to evaluate the proposed and replicated architectures.

Table 1 displays the final subset of EEG data obtained
from the CHB-MIT dataset. The table presents the number
of seizure events, the overall length of the EEG data, the
interictal and preictal data length, and the imbalance ratio
between the two classes. The trainable seizures are the
number of seizures used in the training process. As shown
in Table 1, the inter-ictal data are often long and the pre-
ictal data are limited by the pre-ictal length and number
of seizure events. The number of inter-ictal samples out-
numbering the pre-ictal samples causes a data imbalance
issue. To solve the imbalance issue, most studies employed
random under-sampling techniques [20, 22–24, 27, 34–36].
Consequently, the certainty of these methods is prone to
data bias due to randomly selecting a subset of the inter-
ictal data. This study introduce a sampling technique that
is formulated as below:

Let the subset of all extracted periods and their annota-
tions from a single case be:

S = {(xt,g, yt,g)|t = 0, 1, ..., Ng − L, g = 0, 1, ..., G} (1)
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Table 1: Summary of the CHB-MIT dataset.

Subject Num. of
Seizures

(Trainable)

Overall
Length

(minutes)

Interictal
(minutes)

Preictal
(minutes)

Imbalance
(inter:pre)

chb01 7 (3) 2433 1296 104 12.5
chb02 3 (2) 2115 1564 69 22.7
chb03 7 (1) 2280 1643 33 49.8
chb04 4 (2) 9363 8509 70 121.6
chb05 5 (4) 2340 1233 139 8.9
chb06 10 (6) 4004 2363 209 11.3
chb07 3 (3) 4023 3437 105 32.7
chb08 5 (4) 1200 313 139 2.3
chb09 4 (3) 4072 3360 105 32.0
chb10 7 (5) 3001 1896 175 10.8
chb11 3 (1) 2087 1919 35 54.8
chb12 27 (3) 1241 73 100 0.7
chb13 12 (3) 1980 1202 104 11.6
chb14 8 (4) 1560 584 135 4.3
chb15 20 (8) 2400 428 279 1.5
chb16 10 (2) 1140 458 69 6.6
chb17 3 (2) 1260 907 70 13.0
chb18 6 (3) 2138 1738 104 16.7
chb19 3 (2) 1795 1620 70 23.1
chb20 8 (1) 1656 1202 34 35.4
chb21 4 (2) 1969 1465 68 21.5
chb22 3 (2) 1860 1258 70 18.0
chb23 7 (1) 1593 853 35 24.4

where xt,g is the EEG segment starting at time t and ending
at time t + L in group g, L is the selected window size of
the EEG segment. yt,g ∈ {0, 1} is the binary class label of
the corresponding EEG segment. Ng is the total number
of EEG time points in group g. G is the total number
of groups, where each group represents data associated
with a seizure event. While seizure events that met the
selection criteria have pre-ictal data of no less than 30
minutes, the seizure events is not necessarily preceded by
inter-ictal data. Therefore, the inter-ictal recordings are
divided evenly among the seizure events. In this study, the
segmentation window size (L) was set 4 seconds. Now let
the majority class (inter-ictal class) and the minority class
(pre-ictal class) be represented as follows:

S0,g = {(xt,g, yt,g)|yt,g = 0}
S1,g = {(xt,g, yt,g)|yt,g = 1}

(2)

where S0,g is the inter-ictal set and S1,g is the pre-ictal
set. The complete set S represents all unique segments
by hoping only one sample at a time. Tsiouris employed
a variable overlapping factor using variable hopping size
per subject. Using a large overlap percentage increases the
number of samples in the minority class. However, it does
not add new information to the dataset and increases the
computational cost of the training. Therefore, This study

used a fixed overlap percentage of 50%.

S
′

1,g = {(xt,g, yt,g)|yt,g = 1, t = 0, n, 2n, ..., Ng − L} (3)

where n = 0.5 ∗ L is an integer defining the hop size and
equals half the segment size. In order to under-sample the
majority class, we used a variable underlapping factor. In
contrast to random sampling, this strategy ensures that
the chosen subset of the majority class contains as much
temporal information as possible. The underlapping hop
size calculation is as follows:

k = ⌊S0,g

S
′
1,g

⌋ (4)

Where ⌊·⌋ is the floor function. The final under-sampled
majority class is:

S
′

0,g = {(xt,g, yt,g)|yt,g = 0, t = 0, k, 2k, ..., Ng − L} (5)

3.3 Wavelet Packet Decomposition

Wavelet-based and other frequency-time transformations
can effectively analyze non-stationary signals like EEG
[17, 37]. Both Wavelet Packet Decomposition (WPD) and
Discrete Wavelet Transform (DWT) decompose the input
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Figure 3: An example of 3-level WPD tree on a single channel of an EEG segment.

signal into a pair of coefficients that reflect the low (ap-
proximation) and high-frequency (detail) components of
the signal [38]. However, the distinction is that DWT
uses only the previous approximation to generate the next-
level approximation and detail coefficients. In contrast,
WPD decomposes the previous level’s approximation and
detail coefficients into four new coefficients. Hence, DWT
generates (l + 1) coefficients whereas WPD produces (2l)
coefficients.

DWT and WPD transformations do not add to the re-
dundancy of the input signal due to the down-sampling
process at each level. However, WPD coefficients have
equal lengths due to undergoing the same number of down-
sampling operations. Conversely, DWT has different time
points between the approximation and detail coefficients
because of the multi-level process. Hence, the equal-length
coefficients generated by WPD are more appropriate for
input to a CNN architecture. Figure 3 illustrates a 3-level
WPD tree on a single channel of an EEG segment.

Let the chosen segment length be L = 4 seconds, where
the number of time points in the segment would be L×fs =
4 × 256 = 1024 time points. Applying a 4-level WPD using
Daubechies 4 (db4) wavelet to the segment gives:

wpd : R18×1024 → R16×18×70

where the number of generated coefficients for each channel
is 24 = 16. The down-sampling process at each level reduces
the number of time points to 70. Note that 1024/24 = 64 ̸=

70 because the db4 filter has a length of 8 points, causing
the addition of 7 points to each level in the filtering process.
Therefore, the down-sampling process of 4-level WPD yields
the following sequence of coefficient lengths for each level:

1024 L1−−→ 1024 + 7
2 = 515 L2−−→ 261 L3−−→ 134 L4−−→ 70

3.4 Proposed CNN Architecture

Recently, one-dimensional (1D) CNN architectures have
demonstrated exceptional performance in various signal
processing applications, including the analysis of univariate
signals such as ECG [39] or multivariate data such as EEG
[28]. A significant advantage is the simplified interpretation
of features extracted using 1D kernels on time-series data.
For instance, employing a 2D kernel in an image classifica-
tion task can be visually explained using basic geometry
concepts such as edges and diagonal lines [40].

Similarly, 1D kernels can be analyzed in terms of tem-
poral patterns or frequency information when utilized to
extract features from a time series. Additionally, a 1D
convolution along the channel axis of a multi-channel sig-
nal can indicate the channel that contributes the most to
the extracted feature map. Hence, the developed CNN
architecture comprises only 1D kernels using separable and
depthwise convolutions. The proposed CNN architecture
accepts a 3D matrix as input of the shape (D × C × T ),
where the first dimension (D) represents the stacking of
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bands of 4-level WPD, respectively.

wavelet coefficients, (C) is the stacked EEG channels, and
T is the number of time points in the coefficients. Figure
4a shows an example of a 6-channel 4-coefficient sample.

3.4.1 Spectral Convolution Branch

The first convolution block, termed Spectral Convolution
Block, applies a 1D kernel along the wavelet nodes of each
channel separately, without interference between different
channels. Each kernel generates different weighted com-
binations of the wavelet approximation and details coeffi-
cients. The spectral convolution process has a kernel size of
(D × 1 × 1) with no padding. Therefore, the output of the
spectral convolution block has the shape of (C × T × F ),
where F is the number of feature maps (number of filters).
Figure 4b illustrates the process of the spectral convolution
block.

The second layer, named Tempral Covolution, performs a
separable convolution on the generated feature maps to ex-
tract deeper frequency-related information. The separable
convolution comprises a 1D kernel that is one second long
to capture frequency information at 1 Hz and above. A
level 5 WPD generates an approximation coefficient with a
bandwidth of 1 Hz up to 128/24 = 4 Hz. However, the first
convolution block aggregate wavelet details with different
band-pass frequencies to include the frequency information
from the overall 1-128 Hz bandwidth. In this sense, the
temporal kernel receptive field spans a duration of 1 second
and can extract frequency information of the range (1-128
Hz) while consisting of only (16) samples. The second part
of the temporal convolution performs a pointwise convo-
lution to aggregate the extracted temporal features from
different wavelet coefficient combinations and generate the
final feature maps.

Until now, the network has not included any convolution
across individual channels to extract the spatial information.

The depthwise convolution block applies a 1D kernel along
the channel dimension C left after the spectral convolution
block. In the depthwise convolution, the network uses a
1D kernel of size (C, 1) that only slides along the temporal
dimension T . The depthwise layer learns a frequency-
specific spatial filter for each feature map produced by
the spectral convolution block. The depthwise convolution
block has a parameter called depth multiplier. The depth
multiplier controls the number of output channels that
the depthwise convolution produces. We set the depth
multiplier to 4 to learn four spatial filters for each feature
map separately. An average pooling layer of kernel size
(1 × 1 × 2) follows the depthwise convolution to reduce the
temporal dimension further.

3.4.2 Spatial Convolution Branch

The proposed architecture has a second branch that starts
with a channel-wise convolution. The channel-wise convo-
lution block, named Spatial Convolution Block, performs a
1D convolution operation across EEG channels, ensuring
no interference between frequency bands. The prevention
of interference between wavelet coefficients is obtained by
applying a 1D kernel with a (1, C, 1). The spatial convolu-
tion block learns a spatial filter across different frequency
bands to generate feature maps of shape (D × T × F ). The
spatial convolution branch consists of layers similar to the
spectral convolution branch layers, except that the depth-
wise convolution has a kernel size of (D, 1) in the spatial
branch. The second branch is concatenated with the first
branch to form the final feature map. Figure 4c explains
the process of the spatial convolution block.

Ultimately, the network applies a 1D temporal convolu-
tion to allow the accumulation of concepts learned across
the temporal dimension with a kernel half the size of the
previous temporal kernel. The final feature map then
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passes through two dense layers with units equal to 32
and 1, respectively. The network’s output is derived using
a sigmoid activation function, resulting in a single scalar
value representing the predicted class probability. Figure 5
presents complete configuration details of utilized layers of
the proposed CNN architecture developed in this study.

Input
in=(16 × 18 × 70)

Spectral Convolution Block
nfilters = 16
kernel = (16, 1)
stride = (16, 1)
dilation = (1, 1)
activation = eLU

out=(18 × 70 × 16)

Dropout
rate = 0.4

Temporal Convolution Block
nfilters = 32
kernel = (1, 16)

out=(18 × 55 × 32)

Depthwise Convolution Block
kernel = (18, 1)
depth multiplier = 4
activation = eLU

out=(1 × 55 × 128)

Average Pooling
pool size = (1, 2)

out=(1 × 27 × 128)

Dropout
rate = 0.4

Spatial Convolution Block
nfilters = 16
kernel = (18, 1)
stride = (1, 1)
dilation = (18, 1)
activation = eLU

out=(16 × 70 × 16)

Dropout
rate = 0.4

Temporal Convolution Block
nfilters = 32
kernel = (1, 16)

out=(16 × 55 × 32)

Depthwise Convolution Block
kernel = (16, 1)
depth multiplier = 4
activation = eLU

out=(1 × 55 × 128)

Average Pooling
pool size = (1, 2)

out=(1 × 27 × 128)

Dropout
rate = 0.4

Concatenation
out=(1 × 27 × 256)

Separable Convolution Block
nfilters = 256
kernel = (1, 8)
activation = eLU

out=(1 × 20 × 256)

Average Pooling
pool size = (1, 2)

out=(1 × 10 × 256)

Flatten
out=(2560)

Dense
units = 32
activation = sigmoid

out=(32)

Dense
units = 1
activation = sigmoid

out=(1)

Figure 5: The proposed CNN architecture.

3.5 Training Strategy

The proposed CNN architecture is trained in a subject-
specific scheme. The EEG data of a subject is divided
into groups, as discussed in section 3.2, where each group
involves the data related to a seizure event. The designed
CNN architecture was trained and tested using the Leave-
One-Group-Out (LOGO) cross-validation method. In this
method, the EEG data of one group is used as a test set,
leaving the rest of the groups as a training set. If the
subject has N seizure events, N models are trained using
(N − 1) seizure events data and tested on the remained
seizure event data. Ultimately, the LOGO cross-validation
for the test data split provides robust evaluations of the
model generalization to unseen data. Figure 6 illustrates the
LOGO test data split method. On the contrary, the K-Fold
cross-validation method split the data into K sets randomly,
which causes the model to be evaluated on mixture of data
from different seizure events.

Subject Data

Group 0 Group 1 Group 2 Group 3Grouping Data

Group 0 Group 1 Group 2 Group 3Model 1

Test set

Group 0 Group 1 Group 2 Group 3Model 2

Test set

Group 0 Group 1 Group 2 Group 3Model 3

Test set

Group 0 Group 1 Group 2 Group 3Model 4

Test set

Interictal Preictal Ictal

Figure 6: Grouping and test data split using the Leave-
One-Group-Out cross-validation method.

The training set is further divided into training and
validation sets. While most studies employed a randomly
chosen holdout validation set, we used an ordered selection
of the validation set. The validation set uses every fifth
segment within a class from the training set to construct
the 20% validation set. Compared to the random selection
of validation samples, the proposed split method ensures
that the training and validation sets hold samples with
similar temporal characteristics. Additionally, the ordered
selection delivers deterministic results, and the training
process becomes repeatable.

The holdout validation set prevents the model from over-
fitting using an early stopping condition. The parameter
validation patience is configured to 25, which halts the
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training if the validation loss shows no improvement after
25 epochs. The model training utilizes an Adam optimizer
with a 0.001 learning rate and a 512 batch size. The model
is trained for 500 epochs or until violating the early stopping
criteria. Additionally, the model with the best parameters
before halting the training process was restored to provide
the evaluations on the test set. Given that data labels are
binary, model training employs the binary cross-entropy
loss function. This study discusses only the segment-based
results, as the event-based results can be easily derived
by applying any post-processing method. The accuracy,
sensitivity, and specificity metrics were used to assess the
model’s performance compared to the replicated models.

4 Results

The designed CNN architecture and the developed data
segmentation method was tested using EEG data obtained
from 67 seizure events from 12 patients subset of the CHB-
MIT dataset. The proposed architecture was compared
with five models replicated from the studies of Khan et al.
[20], Truong et al. [21], Xu et al. [23], Lawhern et al. [28], Je-
mal et al. [31]. We closely replicated the same architecture
details and hyperparameters as the original studies. Never-
theless, there are still some differences that were not taken
into account. For instance, Khan et al. [20] employed the
ictal class to train the model in a 3-class classification task.
The replication process was conducted to deliver a compar-
ison using the same data segmentation and cross-validation
techniques presented in this study. Using the same cross-
validation method ensures that the results are comparable
and that the data selection does not bias the model per-
formance. Table 2 presents the comparison results of the
proposed architecture and the replicated models. The table
presents the number of epochs, the elapsed time, and the
performance metrics of the models using KFold and LOGO
cross-validation techniques.

The fastest converging method was the CNN model of
Truong et al. [21], where the proposed architecture is 3
convolution layer deep. Our proposed CNN architecture
has the second fastest convergence training time. The
table also presents the performance metrics in two cross-
validation methods: Random data splitting using K-Fold
cross-validation and the robust LOGO cross-validation
methods. In the K-Fold cross-validation, the proposed
architecture achieved an accuracy, sensitivity and speci-
ficity of 96.68%, 97.41% and 95.95%, respectively. However,
the Randomness of the data splitting may introduce bias in
the model performance and may not provide deterministic
results. The replicated methods dropped down to around
60% accuracy in LOGO cross-validation. The largest drop
in performance was observed in the sensitivity metric, where
the seizure events are from intervals with distinct tempo-
ral characteristics. The proposed architecture provided

significant improvement over other models in the LOGO
cross-validation method. Our architecture achieved an ac-
curacy of 78.00%, sensitivity of 65.17%, and specificity of
90.83%. The second highest sensitivity was achieved by
Khan et al. [20] CNN model with 47.97%.

5 Discussion

Sensitivity quantifies the model’s potential to detect a pre-
ictal segment accurately, whereas specificity measures the
model’s accuracy in classifying inter-ictal segments. There-
fore, it is crucial to enhance sensitivity to improve the
ability to predict a seizure occurrence. However, enhancing
the specificity is essential to avoid inaccurate pre-ictal clas-
sifications, which might lead to false alarms. The model
successfully predicted all seizure occurrences in LOGO
cross-validation in subjects chb01, chb06, chb08, chb12 and
chb14, with a sensitivity of 94% ± 1.5%. Nevertheless, the
improvement in model performance compared to the repli-
cated methods can be attributed to the fact that the model
is reaching a specificity of 90.83% ± 1.6% besides yielding
comparable or higher sensitivity rates. Except for subject
chb14, which has the lowest specificity of 73.89 ± 5.6%, the
proposed architecture consistently reached a specificity of
94.13% ± 0.9%. The only downside of this architecture
requiring further investigation is subject chb18, which has a
0% sensitivity. Figure 7 showcases the subject-specific per-
formance metrics obtained using the LOGO cross-validation
technique to examine the performance of the proposed ar-
chitecture.

5.1 architectural design choices

The replicated methods were selected based on the availabil-
ity of the architecture design details and the reproducibility
of the pre-processing technique. These studies also em-
ployed various pre-processing techniques to compare the
performance of WPD with different transformation meth-
ods. For instance, Khan et al. [20] utilized CWT to extract
the frequency-related features, whereas Truong et al. [21]
used STFT. The CNN architectures of these studies em-
ployed the EEG channel dimension as the input feature map
channel dimension. Hence, the first layer’s kernel of these
models must have as many channels as the EEG input seg-
ment, resulting in a wide spatial receptive field. The kernel
sizes utilized were either (3×3) or (5×5), resulting in a low
receptive field in the frequency and temporal dimensions.
Truong et al. [21] used an FFT window hop size of around
133 samples to down-sample (30 × 256 = 7680) time points
in the original 30-second EEG segment to only 59 time
points in the temporal dimension. The down-sampling of
STFT leads to an expansion of the temporal receptive field
of the model. However, this trade-off causes a substantial
loss of temporal information to accommodate the frequency
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Table 2: The results of the proposed method compared to the replicated architectures.

Author Avg. training
time (seconds)

KFold CV LOGO CV

Acc Sen Spec Acc Sen Spec

Khan et al. [20] 243 80.02 82.00 78.05 60.80 47.97 73.62
Truong et al. [21] 229 92.91 93.84 91.98 59.98 39.71 80.25
Lawhern et al. [28] 487 86.94 85.93 87.95 65.24 47.85 82.62
Xu et al. [23] 470 93.06 96.49 89.64 59.62 37.97 81.28
Jemal et al. [31] 332 90.38 90.71 90.04 61.64 41.95 81.34
This study 233 96.68 97.41 95.95 78.00 65.17 90.83
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Figure 7: The subject-specific accuracy, sensitivity and specificity metrics of the proposed architecture using LOGO
cross-validation. The error bars represent the standard error of the performance metrics.

dimension.
Xu et al. [23] utilized unprocessed EEG segments directly

as the input for their model. The model architecture utilized
lengthy 1D max-pooling kernels in the last convolution layer,
with a cumulative temporal divisor of 1000. Using large
max-pooling kernel sizes, specifically (1 × 10), expanded
the temporal receptive field. However, this came at the
expense of sacrificing the temporal resolution. The model
underwent training using EEG segments of 20 seconds
length. Therefore, the last convolution layer achieved a
temporal receptive field of 12 seconds, using a kernel size
of (3 × 3). However, the spatial receptive field was not
adequately developed since there was no pooling in the
channel dimension, except in the last two convolution layers.
Jemal et al. [31] utilized a max-pooling kernel size of (1×16)
after the first two convolution layers. The architecture of
EEGNet utilized a depthwise convolution kernel of (18 × 1)
kernel size to extract the spatial features. Hence, the spatial
receptive field equals the number of channels in the EEG
segment.

Our model employs the wavelet coefficients of WPD to
further extract the frequency-related information. Further-
more, WPD down-samples the time domain of the EEG
segment without losing any temporal information. This
concept is embedded in the fact that WPD is lossless and
can fully reconstruct the original signal from the coeffi-
cients. Hence, WPD enhances the representation of the
EEG segments, isolates the frequency subbands in the seg-
ments, and reduces the temporal dimension. To address the
limitations of replicated CNN designs, the proposed CNN
architecture has 1D kernels with large receptive fields along
the temporal, frequency subbands and channel dimension.

The proposed architecture consists of two branches that
carry out distinct aggregation of features. The first branch
extracts temporal features aggregated from enhanced coef-
ficients across the channels. In contrast, the second branch
extracts temporal features aggregated from enhanced chan-
nels utilizing the coefficients. The third layer of the ar-
chitecture uses a depthwise kernel to further extract the
spatial features in the first branch and coefficient features
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from the second branch. Thus, this design allows the model
to have a receptive field equal to the number of coefficients
and channels. Additionally, the down-sampling process of
WPD enables the model to have a larger temporal receptive
field without increasing the kernel size or reducing the tem-
poral resolution of the input segment. Table 3 presents the
model architecture and the employed input nature of the
replicated methods and the proposed method. The table
also presents the number of parameters in the CNN model,
the preprocessing method, the segmentation window size,
and the input shape of the EEG segment.

5.2 Performance comparison

The developed model achieved slightly higher or comparable
performance for most subjects. Nevertheless, the proposed
CNN model achieved significantly higher AUC values for
subjects chb05, chb06, chb07, chb09, chb14, and chb15.
Additionally, we can observe that for subject chb01, chb13,
chb14, only the original EEGNet could deliver comparable
results to the proposed model. The only limitation of the
proposed architecture is the inability to classify any pre-
ictal segments of subject chb18. This limitation could be
due to the large gap between the recordings (around 50
hours of missing EEG data from the 90 hours of the subject
session). Figure 8 presents the AUC metric values of the
proposed architecture and the replicated models using the
LOGO cross-validation technique.

The seizure prediction task is highly challenging due to
the high similarity between the pre- and inter-ictal seg-
ments. Additionally, it has been observed that the longer
the temporal distance between the training and testing data
result in a decrease in the model’s performance. Therefore,
the accuracy drop in the specificity is lower than that of the
sensitivity. Using an underlapping factor to under-sample
the longer inter-ictal data segments improved the model’s
performance by including more temporal characteristics.
However, this holds true only for the inter-ictal class where
there are much longer periods available in the subject’s
data. Therefore, to increase the seizure prediction perfor-
mance, the model should be trained on longer periods of
pre-ictal data.

6 Conclusion and Future Work

This study presented a novel wavelet-based 1D CNN ar-
chitecture to develop a segment-based seizure prediction
model. Considering the nature of EEG signals, The pro-
posed model employed Wavelet Packet Decomposition to
enhance the representation of the EEG signals. Addition-
ally, WPD can extract frequency-related details without
increasing the complexity or redundancy of the EEG data.
Moreover, the WPD pre-processing technique can reduce

the temporal dimension in a lossless manner. Therefore,
it is possible to enlarge the receptive field of the model of
small-sized kernels without sacrificing the resolution when
using traditional down-sampling techniques such as pooling
or kernel dilation. The proposed model utilized separable
and depthwise convolution layers to further enhance and
extract deeper features from the wavelet packets.

For a fair comparison with state-of-the-art CNN-based
methods, we replicated five models from recent studies.
Analysis of the replicated models’ architectural limitations
motivated the development of the proposed model. The
proposed design outperformed the replicated models, signif-
icantly improving the seizure prediction ability. The models
were trained using two cross-validation methods: Random
K-fold and Leave-One-Group-Out. While K-Fold delivers
nondeterministic results, the LOGO cross-validation tech-
nique showcases a practical testing situation and assesses
the model generalization ability. the CHB-MIT dataset is
utilized to benchmark the proposed model and the repli-
cated methods. The proposed model outperformed the
replicated models, proving the robustness and reliability of
the proposed architecture.

The EEG data typically contains long intervals of inter-
ictal data, while seizure events with valid pre-ictal periods
are rare, leading to a high data imbalance. Most studies
utilized random under-sampling techniques to reduce the
quantity of inter-ictal samples. This study introduced an
underlapping factor to under-sample the inter-ictal data
samples while maximizing the incorporation of temporal
characteristics. The suggested under-sampling method
improved the certainty of the model’s performance and
increased the specificity of the model, resulting in infrequent
false alarms. However, this under-sampling technique only
applies to the inter-ictal class, where the data is abundant.
To further improve the model’s performance and sensitivity,
the model’s training requires more pre-ictal periods.

A medical application of seizure prediction models re-
quires a high level of explainability and interpretability.
While the proposed architecture has an explainable design,
further investigation using explainable AI techniques is re-
quired to understand the model’s decision-making process.
Further design enhancements require employing the atten-
tion mechanism to focus on the most informative parts
of the wavelet-transformed EEG signals. The attention
module can also deliver a degree of explainability to the
model’s predictions.
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