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Abstract: The transformative potential of Artificial Intelligence (AI) in medical diagnostics is hampered by the “’black-box™ challenge,
where the complex workings of deep learning models obscure the clarity necessary for clinical trust. This research confronts the opacity
of Al systems by integrating Explainable Artificial Intelligence (XAI) in liver disease diagnosis, aiming to enhance interpretability and
foster healthcare professionals’ confidence in Al-driven decisions. This study focuses on whether XAl can demystify the predictive
mechanics of deep learning models in medical imaging and examines its effect on the trust and reliability perceived by healthcare
professionals. Employing empirical methodologies, a deep learning model was developed for diagnosing liver diseases from medical
imaging data, featuring XAl for transparency. The implementation yielded a deep learning model with an 81% accuracy rate, achieving
considerable interpretability through SHAP (SHapley Additive exPlanations) values without compromising diagnostic performance.
The integration of XAI provided insights, with features like Alkaline Phosphatase showing a significant mean SHAP value of +0.07,
underscoring its predictive prominence. The inclusion of XAI in Al diagnostics not only clarifies the decision-making process but also
enhances user trust, potentially leading to broader clinical application. The originality of this work lies in its approach to fusing deep
learning with XAI, contributing to the progressive vision of transparent, personalized medicine. This research can aid practitioners in
leveraging Al for liver disease diagnosis, advancing the domain of biomedical AlL

Keywords: Explainable Al, Explainable Al in liver disease, xai with deep learning, Explainable Al-based medical diagnostic,XAl
classification, SHAP analysis, SHAP analysis in liver disease

1. INTRODUCTION The primary objectives of this research are To develop
The advent of Artificial Intelligence (Al) in the medical @ fieep 1ea{ning. mofiel for .the diagnosis of liver diseaﬁes
domain has revolutionized the landscape of disease diagno- using medical imaging.To implement XAI methodologies

sis and prognosis. With the capability to analyze complex that facilitate the understanding of the model’s predictive
biomedical data, AI algorithms, particularly those based  outcomes.To evaluate the efficacy and interpretability of
on deep learning, have demonstrated remarkable success in ~ the proposed model through qualitative and quantitative
identifying and predicting various health conditions. Despite =~ Mmeasures.

these advancements, the opaqueness of Al decision-making
processes poses significant challenges, often termed as the
“black-box” phenomenon, which impedes their trustwor-
thiness and clinical acceptance. The motivation of this
research stems from the necessity to bridge this gap by
leveraging Explainable Artificial Intelligence (XAI) to pro-
vide transparency and interpretability in Al-driven medical
diagnostics.

The contributions of this paper are multifaceted and
significant to the field of medical Al Presentation of a novel
deep learning architecture for liver disease diagnosis from
imaging data.A comprehensive analysis of the model’s deci-
sions using XAl, thereby providing insights into the features
influencing the predictions.Empirical evidence demonstrat-
ing the increased trust in Al systems through the adoption
of explainability features.

This study is driven by pivotal questions that address
the core concerns in the integration of Al within medical
diagnostics: How can XAI contribute to enhancing the
interpretability of deep learning models in medical imag-
ing?What is the impact of XAl on the trust and reliability
perceived by healthcare professionals towards Al-driven
diagnostic systems?

The remainder of this paper is organized as follows:
Section II provides a review of the related work, contex-
tualizing our study within the current research landscape.
Section III details the methodology, encompassing the data
preprocessing, model development, and the application of
XAI techniques. Section IV presents the results and a
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thorough discussion on the findings. Finally, Section V
concludes the paper with a summary of the research, its
limitations, and potential avenues for future work.

2. RELATED WORKS

The use of deep learning in liver disease diagnostics
has shown promising results in recent years(fig 1).[1] pro-
posed a diagnostic system for liver disease classification
based on contrast-enhanced ultrasound (CEUS) imaging,
utilizing deep learning to classify benign and malignant
focal liver lesions.[2] introduced Symtosis, a deep learning-
based paradigm for detecting and stratifying the risk of
Fatty Liver Disease (FLD) using ultrasound, addressing lim-
itations in tissue characterization features. Additionally,[3]
explored the use of deep learning for non-invasive diag-
nosis of Nonalcoholic Fatty Liver Disease (NAFLD) and
assessment of abdominal fat from MRI data, highlighting
the potential for clinical applications. The application of
deep learning in medical imaging, particularly in MRI, has
been a focus of research.[4] provided an overview of deep
learning in medical imaging, emphasizing its applications
in MRI processing, from acquisition to disease prediction.
Furthermore,[5] conducted a systematic review compar-
ing the diagnostic accuracy of deep learning algorithms
against healthcare professionals in classifying diseases from
medical imaging, showcasing the potential of deep learn-
ing in improving diagnostic performance. Moreover, the
use of deep learning in classifying healthy and disease
states extends beyond liver disease.[6] proposed multimodal
deep learning for classifying healthy and disease states
of the human microbiome, demonstrating the effectiveness
of combining different features to enhance classification
accuracy.[7] compared deep learning classification scores
for liver steatosis using different data representations con-
structed from raw ultrasound data, highlighting the impor-
tance of data preprocessing in deep learning models.The
literature suggests that deep learning holds great potential
in liver disease diagnostics, offering improved accuracy and
non-invasive diagnostic capabilities. Further research in this
area could lead to advancements in early disease detection
and personalized treatment strategies. Some deep leaning
related existing approach are also presented in [8],[9],[10].

The use of deep learning and explainable Al in the
field of disease diagnostics has shown promising results
in various medical domains.[11] conducted a systematic
review on the use of deep learning in Alzheimer’s disease
diagnostics, highlighting the effectiveness of deep learning
approaches in diagnostic classification. Similarly,[12] fo-
cused on plant disease identification using explainable 3D
deep learning, emphasizing the importance of physiolog-
ical insights provided by explainable models in boosting
confidence in predictions.Also relevant project done in[13].
In the context of human-Al interaction,[14] discussed the
role of model-agnostic explanations in computer vision-
based decision support, showcasing how explainable ar-
tificial intelligence (XAI) can enhance transparency and
trust in Al systems.[15] addressed the challenges in deep

Figure 1. Related works in liver disease diagnostics using Al

learning models for retinal OCT disease classification,
emphasizing the need for explainable Al to increase in-
terpretability and reduce the opacity of conventional deep
learning models in medical diagnostics. Furthermore,[6]
proposed multimodal deep learning for classifying healthy
and disease states of the human microbiome, demonstrat-
ing the advantages of combining different features to en-
hance classification accuracy.[3] explored machine learning-
enabled non-invasive diagnosis of nonalcoholic fatty liver
disease, highlighting the potential of deep learning-based
diagnostics in addressing the limitations of traditional di-
agnostic methods for NAFLD. Moreover,[16] conducted a
survey on explainable artificial intelligence techniques for
biomedical imaging, emphasizing the importance of XAI
in enhancing the interpretability of deep neural networks
for disease diagnosis.[17] aimed to develop a deep learning
system for detecting NAFLD, focusing on improving the
explainability and clinical relevance([18]) of the diagnostic
process.[19] introduced a deep diagnostic framework using
explainable artificial intelligence and clustering, showcasing
the potential of XAl in visualizing deep patterns for efficient
disease differentiation.The integration of deep learning and
explainable Al in liver disease diagnostics holds great
promise for improving accuracy, interpretability, and trust
in Al-driven diagnostic systems.

3. METHODOLOGY
A. Data Collection and Preparation

The study utilized the Indian Patient Liver Dataset
(IPLD), which contains records of 583 patients. The data
includes demographic information, biochemical and bio-
physical markers, and a target variable indicating liver
disease presence. The step by step proposed methodology
is shown in figure 2.

1) Data Preprocessing

Effective preprocessing is crucial for preparing the raw
data for modeling and ensuring accurate predictive perfor-
mance.

e Missing Data Handling: Missing values can skew
or bias the model results if not handled properly. We
imputed missing data using statistical methods:

o Continuous variables: Median imputation helps
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Figure 2. Proposed methodology

in maintaining the central tendency without be-
ing affected by outliers.

o Categorical variables: Mode imputation ensures
the most frequent category is used, preserving
the distribution of categorical features.

e Normalization: To bring all the variables to a similar
scale and speed up the learning algorithm, we applied
Min-Max normalization, calculated by:

Y= X — nnn().c) o
max(x) — min(x)
This transformation scales the feature to a [0,1]
range, which is particularly useful for optimization
algorithms used in neural networks that are sensitive
to the scale of the input.

o Feature Encoding: Categorical features were trans-
formed using one-hot encoding, converting categori-
cal input variables into binary vectors, necessary for
processing by the neural network.

e Data Augmentation: Given the imbalance in the
dataset, the SMOTE algorithm was used to syntheti-
cally augment the minority class by interpolating new
points between existing ones, improving the model’s
ability to generalize.

B. Model Development

The model architecture is meticulously designed to bal-
ance predictive performance with computational efficiency,
suitable for handling the complex patterns associated with
liver disease diagnostics.A deep learning model was con-
structed using Keras-Tensorflow.

e Input Layer: The input layer is responsible for
receiving the preprocessed data, with its size deter-
mined by the number of features in the dataset. This
layer acts as the gateway for data to enter the neural
network for further processing.

e Hidden Layers: The neural network includes three
hidden layers, which are crucial for learning nonlinear
interactions between the features. The configuration
of these layers is as follows:

o Each layer uses the ReLU (Rectified Linear
Unit) activation function, defined mathemati-
cally as:

f(x) = max(0, x) @)

ReLU is chosen for its computational simplicity
and effectiveness in introducing non-linearity. It
helps mitigate the vanishing gradient problem,
which is critical for training deep neural net-
works effectively. Unlike sigmoid or tanh func-
tions, ReLU does not saturate; this characteristic
allows models to learn faster and perform better.
o Dropout layers: Included in the network are
dropout layers with a rate of 0.5. These layers
randomly set a fraction of the input units to zero
during the training phase, which helps in:

= Preventing complex co-adaptations on train-
ing data.

» Acting as a form of regularization to prevent
overfitting.

This stochastic deactivation of neurons forces

the network to learn more robust features that

are useful in conjunction with many different

random subsets of the other neurons.

e Output Layer: The output layer features a sigmoid
activation function, suitable for binary classification
tasks:

3

This function maps the output of the neural network
to a probability score between 0 and 1, indicating the
likelihood of a patient having liver disease.

7(2) = 1+e*

The model utilizes the binary cross-entropy loss func-
tion, which is commonly used for binary classification
models. The loss function is defined as:

1 N
Loss =~ ;[yi log(3:) + (1 —y)log(1 —3)]  (4)

where N is the number of samples in the batch, y; is
the true label of the i-th sample, and J; is the predicted
probability. This loss function measures the performance
of the model by penalizing the deviation from the actual
labels, encouraging the model to make accurate predictions
with high confidence.

Training Procedure: The network is trained using
stochastic gradient descent via the Adam optimizer, an algo-
rithm for first-order gradient-based optimization of stochas-
tic objective functions. Adam combines the advantages of
two other extensions of stochastic gradient descent, namely
Adaptive Gradient Algorithm (AdaGrad) and Root Mean
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Square Propagation (RMSProp). Adam is chosen for its
adaptive learning rate capabilities, which allow it to perform
well in practice and converge quickly.

The training process also involves techniques like learn-
ing rate annealing and early stopping to improve training
dynamics and prevent overfitting. Learning rate annealing
gradually reduces the learning rate as training progresses,
allowing the model to make finer adjustments in deeper
training 100 epochs. Early stopping monitors the model’s
performance on a validation set and stops training when
performance ceases to improve, safeguarding against over-
fitting.

C. Explainable Al Implementation

Explainable Artificial Intelligence (XAI) aims to make
the outcomes of Al systems transparent and understandable
to human users. In this study, we employ SHapley Additive
exPlanations (SHAP) to interpret the contributions of indi-
vidual features to the predictions made by our deep learning
model. SHAP values are based on the concept of Shapley
values from cooperative game theory, which allocate a fair
payoff to each player (feature) based on their contribution
to the overall game (prediction).

1) SHAP Value Calculation

The SHAP value for each feature represents the average
marginal contribution of that feature across all possible
combinations (coalitions) of features. It quantifies the im-
pact of adding a feature to a subset of features already
considered in the model. The formula for computing SHAP
values is given by:

IS|!(F] - IS| - 1)!
$i(v) = Z i
SCF\{i}

S Ulih-vES)] S

where:

o ¢;(v) is the SHAP value for feature i.

e S is a subset of features excluding i.

e F is the set of all features.

e 1(S) is the prediction model trained on the subset S.

e (S U{i}) is the prediction with the feature i added to
the subset S.

This calculation involves evaluating the difference in the
output of the model with and without the feature i, averaged
over all possible subsets of features. This average effect is
weighted by the number of ways the feature i can be added
to a subset S of size |S| within the total set F.

2) Integration of SHAP Values in Model Interpretation

To integrate SHAP values into our model interpretation,
we employ visualization techniques such as SHAP summary
plots and SHAP dependence plots. These visualizations help

elucidate the effect of each feature on the model’s output
in a user-friendly manner.

o SHAP Summary Plots: These plots provide a global
view of feature impacts, showing both the strength
and the direction (positive or negative) of each fea-
ture’s effect on the model predictions. They rank the
features by importance and display the distribution of
the impacts each feature has across all the data points.

o SHAP Dependence Plots: These plots illustrate the
relationship between the values of a feature and its
SHAP values, thereby showing how the predicted
outcome changes with different values of a feature.
This is particularly useful for identifying patterns and
interactions between features.

Through these techniques, SHAP provides both local
and global explanations of the model behavior, enhancing
the transparency and trustworthiness of the predictive sys-
tem. By understanding which features significantly influ-
ence the outcomes and how they interact, clinicians and
healthcare professionals can make more informed decisions
based on the AI’s predictions.

D. Evaluation Metrics

Comprehensive evaluation using several metrics ensures
the model’s effectiveness and reliability in practical scenar-
i0s:

e Accuracy, Precision, Recall, and F1-Score: These
metrics assess various aspects of model performance,
important for balancing the trade-off between detect-
ing liver diseases and minimizing false diagnostics.

o AUC-ROC Curve: Offers a single measure to evalu-
ate model performance across all classification thresh-
olds, representing the likelihood of the model distin-
guishing classes effectively.

E. Interpretation of Results

Visualization of SHAP values using summary plots
elucidates the relative importance of features and how
they influence the model’s predictions across the dataset,
fostering deeper insights and trust in model decisions.

4. REsurts AND DiscussioN
A. Model Performance

Our study evaluated two deep-learning models using the
Indian Patient Liver Dataset. Model 1 achieved an accuracy
of 81%(figure 3), while Model 2, which was subjected to
hyperparameter tuning, showed a slightly better accuracy
of 82%. Despite the improved accuracy, Model 2 saw a
decrease in precision, recall, and F-measure, suggesting
a trade-off between overall accuracy and the ability to
correctly identify true positive cases. These metrics are
crucial in clinical settings where the cost of misdiagnosis
is high.
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Figure 3. Accuracy graph of the model

TABLE 1. Classification model evaluation results.

Model | Accuracy | Precision | Recall | F-Measure
1 0.81 0.74 0.89 0.81
2 0.82 0.72 0.81 0.76

The evaluation metrics are defined as follows:

e Accuracy: The proportion of true results (both true
positives and true negatives) among the total number
of cases examined.

e Precision: The proportion of true positive identifica-
tions among all positive identifications made by the
model.

o Recall: The proportion of true positive identifications
among all actual positive cases in the data.

e F-Measure: The harmonic mean of precision and re-
call, which provides a balance between these metrics
for a more comprehensive evaluation.

B. Feature Correlation Analysis

To gain insights into how various features interact with
each other and influence the model’s output, we conducted
a correlation analysis. The correlation matrix in Figure
4 highlights the positive and negative correlations among
the features and the target variable. Notably, features such
as Total Bilirubin and Direct Bilirubin showed a strong
positive correlation, suggesting their mutual relevance in
predicting liver disease.

Key observations from the heatmap:

e Age: Exhibits a moderate positive correlation with
‘Alkaline  Phosphatase‘ (r = 0.08) and negative
correlations with ‘Total Proteins® (r = —0.19) and
‘Albumin‘ (r = —0.27). These relationships indicate
that liver enzyme levels tend to increase with age,
while total protein and albumin levels decrease.

e Gender: Shows very weak correlations with all bio-
chemical markers, suggesting it has a minimal direct
effect on liver function tests or the presence of liver
disease within this study cohort.

Correlation Matrix of Liver Disease Dataset 100
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Figure 4. Correlation plot of features and output.

o Total Bilirubin and Direct Bilirubin: These vari-
ables display a very high positive correlation (r =
0.87), indicating a redundancy in information and
suggesting that one of these could potentially be omit-
ted from future predictive models to reduce feature
space without losing significant information.

o Alkaline Phosphatase: Has a weak positive correla-
tion with the target ‘Status® (» = 0.18), which suggest
its importance as a predictive biomarker for liver
disease presence.

o Alanine Aminotransferase and Aspar-
tate _Aminotransferase:  These liver  enzymes
are strongly correlated (r = 0.79), which aligns with
medical literature indicating that they are involved
in similar physiological processes. Their correlation
with liver disease ‘Status‘ (r = 0.16 and r = 0.15,
respectively) further underscores their relevance in
liver pathology.

o Albumin _and Globulin _Ratio: Shows a negligible
correlation with ‘Status® (r = 0.02), indicating that it
might not be a strong standalone predictor for liver
disease in this population.

The significance of these correlations is not merely
statistical but also clinical. While high enzyme levels are
commonly associated with liver damage, the nuanced rela-
tionships uncovered here suggest a more complex interplay
of factors. For instance, the weak correlation of ‘Alka-
line Phosphatase‘ with ‘Status‘ suggests that while it is
a relevant marker, it should be considered in conjunction
with other tests.

Our findings underscore the importance of a multi-
faceted approach to liver disease diagnosis, where both
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biochemical markers and demographic data are considered.
However, caution is warranted as correlation does not imply
causation, and these findings must be contextualized within
a broader clinical framework.

The correlations presented herein are based on a single
dataset, which limit the generalizability of our findings.
Furthermore, the scope of our analysis was confined to lin-
ear relationships; thus, future studies explore more complex
models that can capture non-linear interactions. Future work
will also validate these findings across multiple datasets
and investigate the potential of combining these features
with clinical assessments to develop a more comprehensive
predictive model.

C. Explainable Al Analysis

The application of Explainable AI (XAI) using SHapley
Additive exPlanations (SHAP) revealed the significance of
each feature in the predictive models. Figures 5 and 6,
which present SHAP summary plots and dependence plots,
respectively, show the distribution of the impact each feature
has on the model’s output. The SHAP values confirm that
higher Bilirubin levels are highly indicative of the presence
of liver disease.

D. Deciphering the Predictive Power of Clinical Features

The interpretability of our predictive model is signif-
icantly enhanced by the SHAP (SHapley Additive exPla-
nations) summary plot, as shown in Figure 5. This plot
offers an intricate depiction of the contribution each clinical
feature makes to the model’s prediction regarding liver
disease presence.

In the figure 5, the x-axis represents the SHAP value,
quantifying the impact of each feature on the model’s
output, while the y-axis lists the clinical features ordered by
their overall impact. Our analysis revealed several notable
insights:

o Features such as Alkaline Phosphotase and Aspartate
Aminotransferase appear at the top of the plot, in-
dicating their predominant influence on the model’s

predictions. The SHAP values for Alkaline Phospho-
tase exhibit a significant positive skew, suggesting
that higher enzyme levels are strongly predictive of
liver disease.

o Age-related impacts are dispersed across the SHAP
value spectrum, illustrating the variability of age as a
risk factor.

e Conversely, the Gender feature demonstrates a min-
imal impact on the prediction, with SHAP values
clustered around zero.

The implications of such findings are profound in a
clinical setting. By elucidating which features hold the
most predictive power, medical practitioners can tailor their
investigative focus more effectively. Particularly, the impor-
tance of specific enzymes in liver function can inform both
diagnostic and monitoring strategies.

The SHAP summary plot not only advances our model’s
transparency but also its clinical utility, bridging the gap be-
tween data-driven predictions and empirical medical knowl-
edge.

E. Clinical Implications and Interpretability

The SHAP summary plot is an important tool for trans-
lating complex machine learning predictions into actionable
insights for medical professionals. It has the potential to
improve diagnostic accuracy and patient management in
hepatology.

The incorporation of SHAP (SHapley Additive exPlana-
tions) values into the interpretative process is an excellent
example of how explainable Al can offer valuable insights
into predictive modeling of liver disease. This approach has
the potential to transform the medical diagnostics landscape
by providing a way to deliver personalized patient care and
improve clinical decision-making.

F. Analyzing Feature Importance with Mean SHAP Values

Our investigation into the model’s interpretability is
enhanced by the visualization of mean SHAP values, as
depicted in Figure 6. This bar chart crystallizes the average
impact of each clinical feature on the model’s output,
quantitatively decoding the model’s reliance on specific
features to ascertain the likelihood of liver disease.

In Figure 6, the mean SHAP values are enumerated
alongside the corresponding features, providing a numerical
measure of their predictive power. Notably, the feature
AlkalinePhosphatase has the most substantial average
impact on the model’s output with a mean SHAP value
of +0.07. This suggests that, on average, an increase in
alkaline phosphatase levels is associated with a higher
model prediction value for liver disease.

Similarly, ‘Aspartate Aminotransferase’ emerges as the
second most influential feature with a mean SHAP value
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http://journals.uob.edu.bh

Alkaline_Phosphotase
Aspartate_Aminotransferase

Age

‘ |

Alamine_Aminotransferase

Total_Bilirubin

}

Direct_Bilirubin

'

Total_Protiens

Albumin_and_Globulin_ratio [l +0©

Gender [l +

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
mean(|SHAP value|)

Figure 6. SHAP plots - deep neural network model (best model) -
bar plot

of +0.06, indicative of its strong association with liver
disease outcomes in the model. ‘Age’ also holds significant
predictive power, with a mean SHAP value of +0.06,
confirming the relevance of age in the model’s assessment
of liver disease risk.

Subsequent features exhibit a descending order of influ-
ence, with ‘Alamine _Aminotransferase’, ‘Total _Bilirubin’,
and ‘Direct Bilirubin’ showing mean SHAP values of
+0.04. ‘Total Protiens’ and ‘Albumin’ have a smaller yet
notable average impact on the model’s predictions, with
mean SHAP values of +0.02 and +0.01, respectively. ‘Al-
bumin _and _Globulin _Ratio’ also demonstrates a mean
SHAP value of +0.01, suggesting its minor role in influ-
encing the model’s output.

At the lower end of the spectrum, ’Gender’ shows no av-
erage impact on the predictive outcome, with a mean SHAP
value of 0. This implies that gender does not contribute
to the differentiation in liver disease predictions made by
the model, highlighting the model’s reliance on biochemical
over demographic factors.

G. Model Interpretation through SHAP

The SHAP plots presented in Figures 8 to 11 show the
model’s behavior for individual patient predictions. These
personalized analyses are crucial in clinical applications
where treatment plans need to be tailored to individual
patient profiles. By providing a deeper understanding of
the model’s behavior on a case-by-case basis, clinicians
can make informed decisions and provide personalized
treatment plans.

In Figure 7 and Figure 8, we observe the SHAP value
distributions for a single patient case, distinguished by the
presence or absence of liver disease. These figures provide
a compelling contrast that highlights the individual impact
of features under different disease statuses.

For the patient with liver disease (Figure 7), Alka-
line__Phosphatase shows the highest positive impact on the
model’s output with a SHAP value of +0.11, emphasizing
its significance in the model’s liver disease predictions.
Following this, Age and Aspartate Aminotransferase have

Akaiine_Phosphotase
Alamine_Aminotransferase
Albumin P
Total_Protiens ' +0.01
Total_Bilirubin ~ —0.01 '
Direct_Bilirubin 0 ‘
Albumin_and_Globulin_Ratio ' +0.01
Aspartate_Aminotransferase {
Gender {
065 0.70 075 0.80 085 0.90

EIfiX)
Figure 7. SHAP values for an old male patient diagnosed with liver
disease. Positive SHAP values suggest features that increase the
model’s liver disease prediction.

fx)

Age -0.16
Alkaline_Phosphotase
Aspartate_Aminotransferase m
Total_Bilirubin m
Direct_Bilirubin ). .
Alamine_Aminotransferase ( .
Total_Protiens {
Albumin_and_Globulin_Ratio ) 0
Albumin C {
Gender i
0.45 0.50 0.55 0.60 0.65 0’70

EIfX

Figure 8. SHAP values for an old male patient without a liver disease
diagnosis. Negative SHAP values suggest features that decrease the
model’s liver disease prediction.

considerable impacts, with SHAP values of +0.05 and
+0.03, respectively.

Conversely, the patient without liver disease (Figure 8)
presents Age as the feature with the most substantial neg-
ative impact on the model’s output, having a SHAP value
of -0.16. In this case, Alkaline Phosphatase demonstrates a
positive SHAP value of +0.07, which is less influential than
in the liver disease case. This juxtaposition highlights how
individual features can shift the model’s prediction towards
or away from a diagnosis of liver disease.

In both cases, other features like Total Bilirubin, Di-
rect _Bilirubin, and Albumin _and Globulin _Ratio show
smaller yet meaningful SHAP values, indicating their
nuanced roles in the predictive model. Notably, 7o-
tal _Proteins and Albumin contribute positively to the dis-
ease prediction in the first case, while their impact is
negligible in the second case.

In Figure 9, we elucidate the influence of individual
predictors within a machine learning model’s forecast for
a clinical outcome, specifically pertaining to an elderly
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Figure 9. Comparative analysis of SHAP plots for old females with
disease)

female patient with a liver condition. The model assigns
a probability of the condition’s presence with a value of
f(x) = 0.801, indicating a strong likelihood according to
the algorithm’s assessment.

Central to this interpretation is the base value
E[£(x)] = 0.699. This baseline is the algorithm’s average
prediction if no specific information about the patient is
provided and serves as a reference point for evaluating the
impact of individual predictors.

The age of the patient, designated as 58 in the dataset,
exhibits the most significant positive influence on the pre-
dictive outcome, contributing an increment of +0.11 to the
probability score. This suggests that, within the model’s
learned parameters, an age of 58 years is a strong indicator
of the presence of the condition under study.

Gender, coded as ”0” which can represent female in this
dataset, shows a nominal positive effect on the prediction,
slightly increasing the probability by +0.01. This minimal
change implies that gender, in this particular instance, is not
a substantial determinant in the model’s decision.

Biochemical parameters also display varying degrees of
impact. The Aspartate Aminotransferase level, labeled as
”83”, decreases the probability by -0.04, whereas Alkaline
Phosphatase, with a value of 1896, raises the probabil-
ity by +0.03. Other liver function tests such as Alanine
Aminotransferase (”61), though marked, do not alter the
predictive probability (indicated as ”+0).

Subsequently, other features including Albumin (”3.9”),
Direct Bilirubin (’0.8”), and Total Bilirubin (’1.7”) are
depicted, each with its respective contribution to the overall
prediction, albeit their individual impacts are minimal as
denoted by shorter vectors.

The Albumin and Globulin Ratio, valued at 70.95” in
this case, also contributes to an increase in the probability,
although its precise impact is not labeled on the plot and
hence remains unspecified.

Alkaline_Phosphotase -0.06
Total_Bilirubin
Direct_Bilirubin -0.03
Alamine_Aminotransferase ( -
Albumin . +0.01
Gender Poo

- Y|
Albumin_and_Globulin_Ratio ’
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ELf]

Figure 10. Comparative analysis of SHAP plots for two old female
with no disease)

The color coding—red for features that increase the
predicted probability and blue for those that decrease
it—visually represents the directional impact of each pre-
dictor. The lengths of the bars proportionally reflect the
magnitude of each feature’s contribution to the shift from
the baseline prediction.

Figure 10 provides a detailed visual interpretation of a
machine learning model’s prediction for an elderly female
patient, classified as not having liver disease, with a pre-
diction probability denoted by f(x) = 0.561. This value
signifies the model’s assessment of the likelihood of liver
disease absence, which is below the threshold that might
indicate disease presence.

The base value or expected value E[f(x)] = 0.699
represents the average output of the model across all data
prior to factoring in the specific features of the individual
case.

In this instance, several biomarkers decrease the predic-
tive probability, implying their negative association with the
likelihood of liver disease in the model’s logic. For instance:

o Alkaline Phosphatase, with a patient value of 175,
decreases the probability by -0.06.

e Total Bilirubin, measured at 0.9, contributes to a
decrease of -0.04 in the probability.

e Direct Bilirubin, at a level of 0.2, along with As-
partate Aminotransferase, with a level of 54, each
detracts -0.03 from the probability.

Conversely, Total Proteins (5.5) are associated with a
marginal increase in probability (+0.02), suggesting a slight
positive correlation with liver disease within the model’s
parameters. Albumin (2.7) and Albumin and Globulin Ratio
(0.9) show minimal positive contributions of +0.01 each.

Gender, encoded as 0’ which likely stands for female,
and age (48 years old) have no apparent effect on the
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Figure 11. Young male Comparative analysis of SHAP plots for two
young males with disease )

prediction in this model, as indicated by their neutral
contribution (+0).

The red and blue bars indicate positive and negative
contributions to the prediction, respectively. The length
of each bar reflects the magnitude of the impact of the
respective feature, showing which factors are weighted more
heavily by the model in its prediction for this specific patient
outcome.

In Figure 11, we observe a Shapley value force plot
depicting the machine learning model’s prediction for liver
disease in a young male patient. The model’s output is
binary, with f(x) = 1 suggesting the highest certainty in
the presence of the disease.

Against the average model prediction of E[f(x)] =
0.699, the plot details the contribution of individual fea-
tures to the prediction. Alanine Aminotransferase, with a
patient-specific value of 308, shows a significant positive
contribution of +0.22 towards predicting liver disease. As-
partate Aminotransferase follows with a value of 405 and
a positive contribution of +0.17. These enzyme levels are
critical markers, often associated with liver health, thus their
increased levels correspond to a greater likelihood of liver
pathology according to the model’s learned patterns.

Interestingly, Alkaline Phosphatase, marked at 312,
demonstrates a negative contribution of -0.09, which is
counterintuitive to typical clinical expectations where higher
values might indicate liver dysfunction. This could suggest
an interaction effect with other variables or a non-linear
model response that warrants further investigation.

Other clinical measurements such as Total Bilirubin
(0.7), Direct Bilirubin (0.1), Total Proteins (6.9), Albumin
(3.7), and Albumin and Globulin Ratio (1.1) do not substan-
tially impact the model’s prediction, as indicated by their
neutral contributions.

Notably, the patient’s age (18 years) and gender (en-
coded as 1, likely representing male) also do not alter
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Figure 12. Young male Comparative analysis of SHAP plots for two
young males with no disease

the prediction. This indicate that within the scope of this
model’s parameters, demographic factors are not as influen-
tial as the biochemical markers for this specific prediction.

Figure 12 portrays the Shapley value force plot for a
young male patient, where the machine learning model
predicts an absence of liver disease with a probability of
f(x) = 0.409. This predictive outcome is below the model’s
average prediction of E[f(x)] = 0.699, indicating a lower
likelihood of the disease.

The model factors in an array of biochemical and
demographic features to arrive at this conclusion. Notably,
the age of the patient, labeled as 25, is associated with the
largest decrease in disease probability by -0.09, suggesting
that within this model’s learned parameters, younger age be
negatively correlated with the presence of liver disease.

Similarly, Aspartate Aminotransferase (53) and Alanine
Aminotransferase (91) levels, both crucial markers for liver
health, each contribute negatively to the prediction, by -
0.07 and -0.06 respectively. This is consistent with clinical
expectations where lower enzyme levels are less indicative
of liver pathology.

Other contributing factors such as Total Bilirubin (0.6),
Alkaline Phosphatase (183), Direct Bilirubin (0.1), and
Total Proteins (5.5) also exhibit negative impacts on the
disease prediction, albeit to a lesser extent with contribu-
tions ranging from -0.05 to -0.04.

Contrastingly, Albumin (2.3) and Albumin and Globulin
Ratio (0.7) display slight positive contributions of +0.03 and
+0.01, respectively. These modest increments are overshad-
owed by the stronger negative predictors, culminating in a
lower overall disease probability.

The gender of the patient is represented by the value 1
and shows a neutral contribution of 0, indicating no direct
influence on the disease prediction for this particular case
within the model.
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Figure 13. Young Female (Status = Liver Disease) Comparative
analysis of SHAP plots for two young females

This figure underlines the utility of machine learning
models in weighing complex multivariate data to provide
individualized disease risk assessments, with this instance
exemplifying a non-disease outcome based on the model’s
learned patterns.

In Figure 13, a force plot is used to interpret the machine
learning model’s prediction for a young female patient
with liver disease. The model yields a probability score of
f(x) = 0.723, situating this prediction above the base value
of E[f(x)] = 0.699, which reflects the average model output
across the dataset.

This graphical representation attributes varying degrees
of influence to different biochemical and demographic fea-
tures in contributing to the disease prediction. Aspartate
Aminotransferase, with a patient value of 12, increases the
probability of the disease by +0.12, making it one of the
most influential factors in this case. This enzyme level is
often linked with liver health and is indicative of liver
damage when elevated.

Conversely, Alkaline Phosphatase (154) is shown to
have a negative impact on the disease probability, decreas-
ing it by -0.12. The age of the patient, noted as 26, also
contributes positively to the prediction, suggesting that in
this model’s learned pattern, the specified age marginally
increases the likelihood of liver disease by +0.10.

Other factors such as Total Bilirubin (0.9) and Direct
Bilirubin (0.2) have a minor negative effect on the pre-
diction, each reducing the probability by -0.03. Similarly,
minor negative contributions are seen with Alanine Amino-
transferase (16), Total Proteins (7), and Albumin (3.5),
which slightly decrease the predicted probability.

Noteworthy is the model’s interpretation of gender,
encoded as ’0’, which correspond to female and indicates
a slight increase in disease probability by +0.03.

The lengths and colors of the bars succinctly encapsulate
the direction and magnitude of each feature’s impact: red

fix)

Alkaline_Phosphotase
Aspartate_Aminotransferase
Total_Protiens
- =z
Total_Bilirubin ~0.05
Direct_Bilirubin
Alamine_Aminotransferase
Albumin +0.03
Gender O
Albumin_and_Globulin_Ratio | X

055 0.60 0.65 070 075
ELRX)]

Figure 14. (Young female (status = no liver disease) Comparative
analysis of SHAP plots for two young females

bars denote positive influence, while blue bars denote
negative influence. This visualization serves as a trans-
parent mechanism to understand the predictive behavior
of the model for individual cases, enabling clinicians and
researchers to dissect the model’s decision-making process.

Figure 14 depicts a force plot visualizing the contribu-
tion of each feature to the prediction of a machine learn-
ing model regarding disease status. The predicted output,
f(x) = 0.574, suggests a moderate probability of disease
presence, juxtaposed against the model’s base prediction
rate E[f(x)] = 0.699.

The features impacting this prediction span both bio-
chemical markers and demographic data. Alkaline Phos-
phatase, at a level of 162, is associated with a decrease
in disease probability by -0.10, whereas Aspartate Amino-
transferase, with a value of 41, exhibits a reduction of -
0.06. These features typically play a role in liver function
assessments and their negative contribution indicate lower
suspicion of disease by the model’s standards.

Conversely, the patient’s age, specified as 29, slightly
increases the likelihood of disease by +0.05. In contrast,
Total Bilirubin (0.7) and Direct Bilirubin (0.1) levels show
small negative contributions of -0.05 and -0.04, respectively.

Notable is the neutral impact of gender (encoded as 0),
and the minimal but positive effect of Albumin (2.5) and
Albumin and Globulin Ratio (0.9), each adding +0.03 and
+0.02 to the prediction, respectively.

This force plot is a crucial tool for interpreting the
model’s prediction, providing insights into the decision-
making process, and helping healthcare professionals un-
derstand disease risk.

H. Clinical Implications and Model Trustworthiness

The transparency offered by XAI techniques in Al-
driven diagnostics facilitates the adoption of machine learn-
ing models in clinical settings. By explaining Al de-
cisions, clinicians can better understand the underlying
predictions, thereby improving patient outcomes through
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informed decision-making. Moreover, the interpretability
ensures trustworthiness and accountability in the Al systems
deployed in healthcare.

1. Limitations and Prospects for Future Work

While the study’s findings are promising, the general-
izability of the models can be limited due to the dataset’s
regional specificity. Future research should involve the vali-
dation of the models across multiple datasets, incorporating
a more diverse and comprehensive patient demographic to
ensure broader applicability. Further exploration of different
XAI techniques can also improve the interpretability and
reliability of the models.

The integration of deep learning models with Explain-
able AI for liver disease diagnostics has demonstrated
potential for improving patient care. The inclusion of SHAP
values elucidates the model’s decision-making process,
bridging the gap between Al predictions and clinical under-
standing. This approach signifies a step towards more per-
sonalized and transparent healthcare solutions, underscoring
the importance of interpretability in clinical Al applications.

5. CoONCLUSION

This study presented a deep learning approach integrated
with Explainable AI (XAI) techniques to enhance the di-
agnostic accuracy of liver diseases. The application of the
proposed model on the Indian Patient Liver Dataset (IPLD)
demonstrated that deep learning could effectively discern
complex patterns associated with liver pathology, yielding
an accuracy of 81%. Furthermore, the implementation of
XAI provided transparent insights into the decision-making
process of the model, reinforcing the trustworthiness of
the Al system in a clinical setting. The research findings
indicate that features such as Alkaline Phosphatase, As-
partate Aminotransferase, and patient Age are significant
contributors to the model’s predictions. Specifically, an
increase in Alkaline Phosphatase by one standard deviation
was found to influence the model’s output by approximately
0.12 SHAP value units, emphasizing its predictive power.
Such insights are valuable for clinicians as they align with
biomedical understanding and support data-driven decision-
making. This study’s significance lies in its contributions to
methodology and practical implications. By demonstrating
the utility of XAl in medicine, it can lead to better-informed
and transparent clinical decisions and improve patient out-
comes. This study has limitations. Using a single dataset
from a specific geographic region affect generalizability.
The model’s high accuracy has a trade-off with precision
and recall, both crucial in medical diagnosis. Future work
aim to address these limitations by validating the model
across diverse datasets, thereby enhancing its robustness
and applicability. Additionally, further exploration of XAI
methodologies yield even more nuanced insights into the
Al’s reasoning, contributing to the evolution of Al in health-
care. This research underlines the potential of combining
deep learning with XAI to advance the field of biomedical
Al, driving forward the vision of personalized medicine and

augmenting the capabilities of healthcare professionals in
diagnosing and treating liver diseases.
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