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Abstract: Agricultural success hinges on strategic crop selection, directly influencing yield, financial stability, and risk management for
farmers. Despite integrating machine learning techniques, many current systems function as opaque “black boxes,” leading to reluctance
among farmers who need both precision and transparency in crop recommendations. This study introduces a novel, interpretable approach
for crop selection using climate and soil data, employing the AdaBoost classifier, renowned for its high accuracy and ability to prioritize
misclassified data points.

To enhance transparency and foster trust among farmers, we incorporate SHapley Additive Explanations (SHAP) to elucidate the model’s
decision-making process. Our system analyzes diverse parameters such as nitrogen, phosphorus, potassium, pH, temperature, humidity, and
rainfall to suggest suitable crops for cultivation. Evaluated on a comprehensive dataset of 22 crops, our approach achieves exceptional
accuracy (99.77%) compared to conventional and boosted models, with rapid processing times (0.5 seconds per prediction). SHAP
interpretations clarify the impacts of various climate and soil factors on crop suitability, offering farmers clear justifications for the
recommendations provided.

By combining accuracy with transparency, our system empowers farmers to make informed decisions about their land, leading to
improved yields and increased profitability. This interpretable system represents a significant advancement in developing efficient and
reliable Al tools for sustainable crop selection in agriculture. We envision a future where farmers can embrace Al-driven tools with
confidence, fostering a more sustainable agricultural landscape.

Keywords: Interpretable Crop Selection, AdaBoost Classifier, SHAP Explanations, Sustainable Agriculture, Decision Support

System

1. INTRODUCTION

Agriculture, the cornerstone of human sustenance and
prosperity, extends beyond mere food production, pro-
foundly impacting the global economy, livelihoods, and
survival itself [1], [2]. A pivotal challenge in agriculture
is selecting the appropriate crops for cultivation, a decision
that can significantly influence a farmer’s success. Subop-
timal choices can lead to substantial economic losses and
disrupt the entire agricultural landscape. While traditional
methods and emerging Al-driven approaches aim to aid
farmers, limitations in accuracy and transparency hinder
widespread adoption.

Previous studies have made notable contributions to
this evolving landscape. For instance, an Automated Crop
Selection Model (ACRM) utilizing an optimized convolu-
tional neural network (CNN) achieved an accuracy of 98.2%
for crops such as maize, wheat, and rice in Egypt, with
maize and rice attaining accuracies of 98.7% and 98.1%,
respectively [3]. Another method proposed advising farmers
on crop selection based on weather characteristics, soil
features, and market prices using the ARIMA model and
logistic regression, achieving a 2.25 RMSE and 94.24%
accuracy [4]. Research targeting arid regions with machine

learning techniques highlighted the random forest model’s
remarkable accuracy of 99.45%, effectively suggesting ap-
propriate crops based on diverse environmental parameters

[5].

Further advancements include a crop selection system
for small-scale farmers, integrating weather, soil, and crop
prices with an effective ARIMA weather model (RMSE:
2.254) and a multi-logistic regression model, which outputs
94.24% accuracy [6]. Another study presented a platform
combining machine learning and the Internet of Things
(IoT) to forecast crop yield, suggest crops, and identify
diseases, achieving 99.2% accuracy in disease detection and
99% accuracy in crop selection using the ResNet model and
random forest classifier, respectively [7]. Additionally, an
ensemble model using majority voting demonstrated 99.4%
accuracy for crop selection [8], while an IoT framework for
precision agriculture using multilayer perceptron, JRip, and
decision table classifiers reached 98% accuracy [9].

Despite these advancements, a significant barrier per-
sists — trust. Many existing systems function as opaque
“black boxes,” causing reluctance among farmers who lack
confidence in the selections provided. Farmers need not
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only precise crop selection but also an understanding of
why a particular crop is suggested. This knowledge instills
confidence and empowers them to make informed decisions.

This study addresses this gap by introducing an in-
terpretable machine learning-based crop selection system
tailored for 22 different crops. Our system analyzes diverse
parameters such as nitrogen, phosphorus, potassium, pH,
temperature, humidity, and rainfall to suggest suitable crops
for cultivation. Crucially, we leverage the AdaBoost classi-
fier known for its accuracy and ability to prioritize misclas-
sified instances. More importantly, our system incorporates
SHapley Additive Explanations (SHAP), enabling it to pro-
vide explainable insights into the decision-making process.
This transparency fosters trust and empowers farmers to
make informed decisions about their land.

By combining accuracy with transparency, our system
aims to empower farmers to cultivate success. We envision a
future where farmers can embrace Al-driven tools with con-
fidence, leading to improved yields, increased profitability,
and ultimately, a more sustainable agricultural landscape.

The paper is structured as follows: Section 2 delves into
the materials and methods employed in our study, detailing
the data used and the specific machine-learning techniques
implemented. Section 3 presents the results, showcasing
the system’s performance and key findings. This section
also discusses these results, exploring their implications
and limitations. Finally, Section 4 concludes the paper by
summarizing the key contributions and outlining future
research directions.

2. MATERIALS AND METHODS

This study proposes an interpretable AdaBoost
classifier-based crop selection system aimed at achieving
accurate selection while providing farmers with clear
explanations of the decision-making process. The proposed
approach, outlined in Figure 1, consists of two main
stages: offline and online. The offline stage involves
constructing the proposed model, which includes data
preprocessing, feature selection, data augmentation, and
training the AdaBoost classifier. The online stage focuses
on leveraging the trained AdaBoost model to provide
real-time selection for farmers. Additionally, SHAP is
used to analyze the trained model, identifying how specific
climate and soil factors contribute to the selected crop
for each prediction. This provides farmers with clear,
understandable explanations.

A. Data Sources and Exploratory Analysis

This study utilized a publicly available dataset retrieved
from Kaggle [10]. The dataset comprises 2,200 observa-
tions, each representing a specific crop. This translates to
100 data points for each of the 22 different crops considered
in the study. The dataset offers valuable information about
several parameters crucial for crop selection, including
nitrogen (N), phosphorus (P), potassium (K), temperature,
humidity, pH, and rainfall.

1) Univariate Analysis

Univariate analysis, as described by [11], examines
the characteristics and distribution of individual variables
within a dataset. By analyzing each variable separately,
we gain insights into its central tendency (average value),
spread (variability), and shape (distribution of values). De-
scriptive statistics provide a summary of the data distribu-
tion, including:

e Quantile statistics: Minimum, maximum, and me-
dian values provide basic information about the data
spread.

e Descriptive statistics: Skewness, kurtosis, and stan-
dard deviation offer deeper insights:

o Skewness: Measures the asymmetry of a distri-
bution, indicating whether it leans to one side
(positive) or the other (negative).

o Kurtosis: Describes the shape of the distribu-
tion tails, indicating if they are peaked (more
extreme values), flat (fewer extreme values), or
similar to a normal distribution.

o Standard deviation: Measures the spread of
data points around the mean, indicating how
variable the data is.

Table I summarizes the quantile and descriptive statistics
for each variable.

e Median values: Analyzing median values alongside
minimum and maximum values helps understand the
central tendency and potential concentration of data
points. For example, high median values close to
minimum values for N, P, and K suggest a higher
concentration of low values in these variables.

e Data dispersion: High standard deviation values for
N, P, K, humidity, and rainfall indicate greater data
spread, while low values for temperature and pH
suggest that their data points are clustered closer to
the mean.

e Data symmetry: Positive skewness values for N, P,
K, and rainfall indicate right-skewed distributions.
The negative skewness for humidity indicates a left-
skewed distribution. The temperature and pH have
near-zero skewness, suggesting nearly symmetrical
distributions.

e Distribution shape: Kurtosis values close to 0 in-
dicate normal distributions, while values between 0
and 3 suggest heavy tails close to normal. A negative
kurtosis (N) indicates a short tail, while high values
(> 3) for K indicate a more peaked distribution.

Understanding the data distribution is crucial for iden-
tifying potential relationships and patterns within the data.
For example, the normal distributions of pH and tempera-
ture suggest their values are relatively independent of other
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Figure 1. The general architecture of the proposed approach.

TABLE 1. Descriptive statistics.

Features Min Max Median Standard Deviation Mean  Skewness Kurtosis

N (mg/kg) 0 140 37 36.9 50.55 0.5 -1.05

P (mg/kg) 5 145 51 33.05 53.36 1.01 0.85

K (mg/kg) 5 205 32 50.6 48.14 2.4 4.4

Temperature (°C) 8.8  43.7 25.6 5.06 25.61 0.18 1.2
Humidity (%) 14.3 100 80.5 22.3 71.48 -1 0.3
pH 3.5 9.9 6.43 0.774 6.46 0.3 1.6

Rainfall (mm) 20 299 95 55 103.46 0.96 0.6

variables. Conversely, the skewed and dispersed distribu-
tions of other features might be linked to the diversity of
crops and potential outliers present in the data.

2) Bivariate Analysis

Bivariate analysis, as described by [11], explores the
relationships between two variables within a dataset. It
evaluates their correlation, which can be positive (variables
increase together), negative (one increases while the other
decreases), or zero (no linear relationship). Correlation
coefficients quantify the strength and direction of this re-
lationship.

Figure 2 presents a correlation matrix that visually
depicts the correlation coefficients between each pair of
variables. The results indicate a strong positive correlation
(0.74) between phosphorus (P) and potassium (K). This
suggests that higher levels of P in the soil are often
accompanied by higher levels of K, and vice versa. This
finding might be attributed to factors such as the application
of fertilizers containing both nutrients or the natural co-
occurrence of these elements in certain soil types.

Other pairs in the matrix exhibit weaker or negligible
correlations, suggesting less pronounced or absent linear
relationships between those variables. These findings can
inform further investigations into the factors influencing
crop growth and guide the development of targeted crop

selection strategies.

B. Data Preprocessing

The initial phase of our data preprocessing involves
mitigating missing data using median imputation [12]. This
method replaces missing values with the median value of
the corresponding feature, effectively filling the gaps in the
dataset.

Next, we address outliers by employing the z-score
technique [13] to identify and manage data points that
significantly deviate from the norm. Outlier management
techniques can involve removing outliers or transforming
them to reduce their influence on the analysis.

Following outlier management, we perform numerical
data normalization using a MinMax scaler [14]. This en-
sures that all numerical features are on a standardized
scale, typically between O and 1. Normalization improves
model convergence during training and often leads to better
performance.

Finally, we address categorical data, representing differ-
ent crop types. We use label encoding [15] to transform
them into numerical representations. This conversion facil-
itates the seamless integration of categorical features into
machine learning models for tasks such as prediction and
classification.
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Figure 2. Correlation coefficients among variables.

C. Data Augmentation

While our dataset contains 2,200 observations represent-
ing 22 different crop types, each class contains only 100
data points. This can hinder the effectiveness of machine
learning model training. To address this challenge, we
implemented data augmentation, a technique that artificially
expands the dataset size while preserving its inherent char-
acteristics.

Our augmentation strategy focused on increasing the
number of data points per class from 100 to 300. This
ensures a balanced representation of each crop type within
the dataset. Importantly, the augmentation process targeted
individual classes to avoid introducing biases or distorting
the overall data distribution. The following equation math-
ematically represents the augmentation process:

Raugmented = Noriginal + (Rtarget - Roriginal) xC (1)

where:

Raugmentea: Total number of rows in the augmented dataset
(6600 rows)

Noriginai: Original number of rows in the dataset before
augmentation (2200 rows)

Riarger: Desired number of rows per class after augmentation
(300 rows)

Roriginai: Number of rows per class in the original dataset
before augmentation (100 rows)

C: Number of unique classes or crops (22 classes).

D. AdaBoost for Crop Selection

Crop selection tasks in agriculture often involve complex
datasets with numerous features representing climate, soil
characteristics, and other factors. AdaBoost, a powerful

ensemble learning algorithm, has demonstrated success in
handling such challenging classification tasks, making it
well-suited for our purposes [16], [17].

Our AdaBoost-based model leverages climate and soil
characteristics data to select suitable crops. The algorithm
builds a “’strong” classifier by iteratively combining multiple
“weak” classifiers. Each iteration focuses on data points
misclassified by previous iterations, assigning them higher
weights to guide the learning process. This approach leads
to a robust and accurate model for crop selection.

Let’s denote the dataset as D = (X,Y), where X
represents the N features and Y represents the target crop
labels. AdaBoost iteratively updates the weights w; assigned
to each data point (x;, y;) based on the model’s error at each
iteration t. Here, G,(x) is the weak classifier at iteration z.
The final AdaBoost model is a weighted combination of
these weak learners:

T
F(x) = ) aGi(x) @
t=1

where F(x) is the final “strong” classifier, @, is the
contribution weight of the weak classifier G,(x), and T is
the total number of iterations.

This AdaBoost-based approach offers several advan-
tages. First, it effectively addresses high-dimensional data
with potentially nonlinear relationships. This is because
AdaBoost utilizes multiple weak learners, each capable of
capturing different aspects of the data, ultimately leading
to a more robust and flexible model. Second, AdaBoost
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assembles multiple weak learners into a stronger and more
accurate classifier. By combining the predictions of individ-
ual learners, AdaBoost reduces the overall error rate and
improves the model’s ability to generalize to unseen data.

E. Implementation and Optimization

We developed the model using Python 3.7 and Google
Colab. To achieve optimal performance, we employed an
iterative trial-and-error approach to fine-tune various train-
ing options and model parameters. The chosen AdaBoost
classifier configuration includes the following:

e n_estimators = 50: Number of weak learners con-
tributing to the final prediction.

o base estimator = RandomForestClassifier: Tree-
based model used as the base learner.

e Learning rate = 0.001: Controls the influence of
individual weak learners on the ensemble’s output.

e random state = 0: Ensures reproducibility of results
across different runs.

Evaluating the performance of our proposed model is
crucial. We use metrics such as accuracy, precision, recall,
and Fl-score to assess how well the model identifies suit-
able crops and avoids selecting unsuitable ones.

F. Interpretable Crop Selection with SHAP

Understanding the factors influencing crop selection is
crucial for both interpretability and building trust in the
model. To achieve this, we leverage SHapley Additive
ExPlanations (SHAP) [18], a powerful technique for ex-
plaining individual predictions made by complex models
such as our AdaBoost classifier. SHAP helps us identify
the key drivers behind each selection for a specific crop.

SHAP assigns a SHAP value to each feature in a
prediction, representing its fair share of the predicted crop
class. These values are calculated by comparing the original
model’s prediction to predictions made on feature subsets,
resembling a cooperative game where each feature “ex-
plains” a portion of the prediction (Algorithm 1).

Algorithm 1 Interpretable Crop Selection with SHAP

Require: Machine learning model f (AdaBoost), dataset
X, number of classes K (22 crops)
1: for k — 1 to K do

2: explainery < Initialize SHAP explainer for class k

3: shap _values; < Compute SHAP values for X and
class k using Eq. (7)

4: Combine the shap values;, with the existing
SHAP values (the specific method depends on li-
brary/framework)

5: end for

6: for k — 1 to K do

7: Feature _importance;, «— Compute feature impor-

tance for class k using individual class SHAP values
8: end for
9: return feature importancey
feature importance for each crop

> Return interpretable

For our model f predicting one of 22 crop classes for
a specific instance x, SHAP values are calculated using:

SHAP(f,x;, ) = ¢ - ). [filxs Ulxeh) = filxs)] - 3)

SCF\{xi}

where:
e x; is an individual feature.
e [ represents the specific crop class (1 to 22).

e S is a subset of features in the model (f) excluding
Xi.

e f; denotes the model’s prediction for class k.

o f(xs U {x;}) and f(xg) are the model’s predictions
on instances containing only features in S with and
without x;, respectively.

e ¢ is the normalizing factor specific to class k, cal-
culated similarly to the single-class case:

1
00 = T D Uilws) = (O] @)

SCF

SHAP values provide insights into the influence of
features on the predicted crop class. Here, how to interpret
them:

o Higher positive SHAP values: These features push
the prediction toward a specific crop class. In other
words, instances with higher values for these features
are more likely to be predicted as that specific crop.

o Lower negative values: These features push the
prediction away from that class. Conversely, instances
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with higher values for these features are less likely to
be predicted as that specific crop.

o The magnitude of the SHAP value: This reflects
the relative importance of the feature in influencing
the selection. Larger absolute values (positive or neg-
ative) indicate a stronger influence on the predicted
crop class compared to features with smaller SHAP
values.

By analyzing SHAP values, we obtained valuable in-
sights into the factors driving crop selection. This allows
us to:

e Understand the rationale behind each prediction.

o Identify critical features influencing crop suitability
under different scenarios.

e Assess the model’s fairness and potential biases based
on feature contributions.

e Improve model interpretability and build trust in the
selection of stakeholders.

3. Resurrs aNp Discussion

This section presents the findings of our study, evalu-
ating the proposed model’s performance for crop selection.
Moreover, we applied XAl methods such as SHAP to the
analysis output.

A. Evaluation of AdaBoost Performance

We evaluated the proposed model for crop selection,
focusing on both its efficiency and predictive ability. We
used key metrics such as accuracy, precision, recall, and F1
score to assess how well the model could make accurate
predictions.

Figure 3 depicts the AdaBoost Classifier’s accuracy and
error rate trends during training and testing. The error
rate steadily decreases from 0.06 to 0.003, indicating ef-
ficient learning. This improvement extends to the testing
error, decreased from 0.054 to 0.004, demonstrating strong
generalizability to unseen data. Conversely, both training
and testing accuracy increase from 0.95 and 0.945 to
nearly 0.998 and 0.999, respectively, signifying effective
misclassification minimization and high accuracy without
overfitting.

We evaluated the effectiveness of the AdaBoost classifier
for crop selection by comparing it to several other models
(SVM, DT, KNN, XGBoost, LightGBM, and Bagging).
Table II and Figure 4 present this comparison.

AdaBoost achieved the highest accuracy (99.77%), sur-
passing other models by up to 0.46%, such as Bagging
(99.54%) and XGBoost (99.31%). The Precision, Recall,
and Fl-score metrics all achieve perfect scores of 100%,
indicating AdaBoost’s ability to identify positive instances
while accurately minimizing false positives.

AdaBoost had the lowest number of misclassified in-
stances (3) compared to the other models (Table II).
Moreover, AdaBoost exhibits commendable computational
efficiency, boasting a fit time of 0.57 seconds (Table II),
making it highly practical for crop selection applications.

The confusion matrix (Figure 5) visualizes misclassi-
fications, offering insights into potential overlaps between
crop classes. For example, minor misclassifications exist
between “Rice” and “Jute”, and “Blackgram” and “Moth-
beans”. This suggests some feature similarities between
these classes, potentially impacting the model’s decisions.
Notably, the model maintains a false positive rate (FPR)
of 0, meaning that it rarely identifies negative instances
(non-recommended crops) incorrectly as positive, ensuring
greater accuracy in its selection.

These results solidify AdaBoost as a strong candidate for
real-world crop selection, especially in Tationally limited
settings, due to its exceptional accuracy and efficiency

B. SHAP Values: Interpretable Crop Selection

Understanding which features in our proposed model
contribute most to its predictions is crucial. Adaboost fea-
ture importance utilizes a permutation technique to assess
the impact of individual features. However, it can be suscep-
tible to biases. When features are highly correlated (e.g., “P”
and “K” with a correlation of 0.74), their importance might
be overestimated or underestimated, leading to potentially
misleading results. Additionally, it does not capture the
direction and magnitude of a feature’s influence, meaning
it cannot distinguish between features with positive or
negative contributions.

SHAP values address these limitations by employing
a game theory approach to calculate a feature’s specific
contribution to a prediction. This allows SHAP to:

e Account for dependencies between features, provid-
ing a more accurate picture of individual importance.

e Capture the direction and magnitude of influence,
revealing whether a feature has a positive or negative
impact on the prediction and its relative strength

Figure 6 and Figure 7 visually represent the differences
between the methods. We observe discrepancies in the
ranking of features, highlighting the potential biases of
feature importance. For example, the strong correlation
between "P” and ”K” might inflate their importance in the
feature importance plot.

SHAP values provide a more refined analysis, indicating
“humidity” as the most influential feature, followed by “N”
and ”K”. Furthermore, the impact of features varies across
crops: ’rainfall” significantly affects rice and pigeon peas
but minimally impacts kidney beans. Similarly, humidity”
strongly influences “mungbean” peas but has a weaker
effect on watermelon.
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Figure 3. AdaBoost Classifier: Accuracy and Error Rate Trends.
TABLE II. Comparative Analysis of Performance Metrics Across Various Models.
Models ~ Correctly Incorrectly ooy (%) Precision (%) Recall (%) Fl score (%) Fit time (s)
1nstances mnstances
SVM 1308 12 99.09 99 99 99 0.07
KNN 1299 21 98.41 99 98 98 0.003
DT 1299 21 98.41 98 98 98 0.037
Bagging 1314 6 99.54 100 100 100 9.7
XGB 1311 9 99.31 99 99 99 12.3
LGB 1305 15 98.86 99 99 99 4.5
AdaBoost 1317 3 99.77 100 100 100 0.57

We investigated the impact of various features on se-
lected crops using SHAP values. While our dataset en-
compasses 22 crops, this analysis focuses on rice, maize,
chickpea, and banana to illustrate the variation in feature
importance across different crops. Figure 8 and Figure 9
present SHAP summary plots for each of these four crops.

Crop-Specific Interpretations:

Rice: Rainfall is the most important factor for
rice selection, with a strong positive SHAP value.
This translates to areas receiving more rainfall be-
ing more suitable for rice cultivation due to their
water-intensive nature. Conversely, low rainfall re-
gions might be discouraged by the model due to
insufficient water availability, potentially leading to
poor crop growth and yield. However nitrogen also
has a positive influence, it plays a less significant
influence than rainfall. Adequate nitrogen levels are
still crucial for rice growth, and soils lacking nitrogen
might not be suitable for rice planting. Humidity

exhibits a positive influence, suggesting that humid
environments generally favor rice growth. However,
high humidity can become detrimental, potentially
increasing the risk of disease outbreaks.

Maize: Similar to rice, nitrogen plays a crucial role
in maize selection, with a positive SHAP value.
Low nitrogen levels could negatively impact maize
yield and quality, potentially leading the model to
discourage maize cultivation in such areas. While the
influence of humidity is weaker than that of rice, it
still exhibits a positive influence on maize selection,
suggesting that maize can tolerate a wider range of
humidity levels than rice. However, excessively high
humidity can still be detrimental. Adequate potassium
availability is also crucial for maize, as indicated
by the positive SHAP value. Low potassium levels
could hinder maize growth and development. Rain-
fall generally has a positive influence on the model
selection, similar to rice. However, excessively high
rainfall can also be detrimental, potentially leading to
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Figure 5. Confusion matrix visualization for AdaBoost classifier.
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Figure 7. Feature Importance Analysis using SHAP.

waterlogging and reduced crop yield.

o Chickpea: The SHAP plot reveals a positive influ-
ence of humidity on chickpea selection. This sug-
gests that moderate humidity levels are suitable for
chickpea growth. However, excessively high humid-
ity can still be detrimental, similar to the other
crops discussed. Potassium emerges as another crucial
factor, with a positive SHAP value indicating the
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Figure 9. Decision Plot for Rice, Maize, Chickpea, and Banana Selection.
importance of adequate potassium availability for optimal chickpea growth and yield. While nitrogen,
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temperature, rainfall, and pH also have positive SHAP
values, their influence is less significant compared to
potassium. Insufficient levels or unsuitable values of
these features could still negatively impact chickpea
growth and yield.

o Banana: The SHAP plot reveals a positive influence
of nitrogen on banana selection, highlighting the im-
portance of sufficient nitrogen availability for banana
growth and fruit production. However, excessively
high nitrogen levels could also be detrimental, po-
tentially leading to issues such as compromised fruit
quality or increased disease susceptibility. Both potas-
sium and phosphorus exhibit positive SHAP values,
indicating that adequate levels of these nutrients are
also important for banana selection. Rainfall had a
slightly positive influence, suggesting that moderate
rainfall is beneficial for banana cultivation. However,
excessively high or low rainfall can be detrimental,
potentially leading to waterlogging or drought stress,
respectively.

Our approach underscores the significance of both ac-
curacy and explainability in crop selection systems. By
integrating SHAP values, we not only enhance the pre-
dictive capability but also offer transparent insights into
the features that steer the model’s decisions for various
crops. This transparency provides farmers and agricultural
professionals with a deeper understanding of the decision-
making process, fostering trust and potentially catalyzing
broader adoption of these Al-powered tools.

The agricultural sector is increasingly turning to ma-
chine learning to harness its analytical power. These al-
gorithms excel at processing complex datasets, uncover-
ing insights that traditional statistical methods struggle to
discern. Our study aimed to develop a highly accurate
and interpretable crop selection model, leveraging the Ad-
aBoost algorithm to minimize false positives and optimize
prediction accuracy. This dual emphasis on accuracy and
interpretability sets our work apart from previous studies,
offering farmers valuable insights alongside reliable crop
selection.

Accurate crop selection relies heavily on understanding
the intricate interplay of climate and soil characteristics. Our
model was evaluated on a diverse dataset encompassing 22
crops. Rigorous data cleaning addressed missing values and
outliers, followed by a crucial feature selection step. By
employing correlation coefficients, we identified the most
influential factors for model training, focusing our attention
on the most relevant information to enhance performance.

Our AdaBoost model achieved outstanding results:
99.77% accuracy, 100% precision, recall, and F1-score.
This represents a significant improvement over existing
models. For example, while ACRM achieved high accuracy
for specific Egyptian crops (98.7% for maize and 98.1%
for rice) [3], others such as random forest (99.45%) [5]

and an IoT-based framework (98%) [9] displayed lower
performance. These enhancements translate to tangible ben-
efits for farmers, with minimized false positives leading to
more reliable predictions and ultimately, better decision-
making. In the context of crop selection, the significance
of minimizing false positives cannot be overstated, as any
misclassification poses substantial risks and potential losses
for farmers.

In time-sensitive agricultural scenarios, model efficiency
is equally crucial. Our AdaBoost model boasts a rapid
training time of 0.57 seconds, compared to 8.05 seconds for
previous models such as the MLP [9]. This efficiency trans-
lates to optimized resource utilization, making AdaBoost
a compelling choice for real-time decision support. Faster
training times pave the way for practical applications, em-
powering farmers with quicker and more efficient decision-
making tools.

Bridging the gap between model predictions and ac-
tionable insights for farmers is essential. We utilize SHAP
values, a powerful interpretability technique, to determine
how climate and soil factors influence crop selection. Our
analysis reveals humidity as the most influential factor,
underscoring its substantial impact on model predictions.
This aligns with established agricultural knowledge, as hu-
midity significantly affects plant health, water use efficiency,
and overall productivity. Understanding this key driver
empowers farmers to optimize irrigation strategies based
on expected rainfall and humidity levels, or adjust planting
schedules accordingly. Nitrogen (N) follows closely as
a crucial factor, highlighting its importance for various
plant processes such as photosynthesis and protein syn-
thesis. Potassium (K) emerges as another significant factor
impacting various plant functions. A moderate influence
is observed for rainfall, emphasizing the importance of
adequate soil moisture management. Additionally, temper-
ature and pH have a moderate influence, playing a role in
the model’s decision-making process by affecting nutrient
availability and diverse plant functions. These SHAP results
not only aid in comprehending our model’s decision-making
process but also offer valuable insights into crop selection.
They enhance the interpretability and understanding of the
model’s predictions for stakeholders and farmers alike. By
demystifying the model’s inner workings, farmers can grasp
its reasoning and feel more confident in its selection. This
transparency builds trust and encourages wider adoption of
Al in agriculture, ultimately leading to the development of
even more interpretable and effective Al models for diverse
agricultural applications.

While this research demonstrates the potential of inter-
pretable Al for crop selection, it is important to acknowl-
edge its limitations. The current dataset might not fully
capture all regional variations or crop types. Future research
could focus on enriching the dataset and exploring other
interpretable Al techniques to further empower farmers with
data-driven insights and contribute to the development of

http://journals.uob.edu.bh


http://journals.uob.edu.bh

\
N

W

Lk

30 My,
%,
W

&

200

WCH
"’”'wj M’hamed Mancer; et al.: Interpretable Crop Selection for Optimized Farming Decisions.

sustainable and efficient agricultural practices.

4. CONCLUSIONS

In conclusion, this research underscores the effectiveness
of interpretable machine learning in developing highly
accurate and efficient crop selection systems. By leveraging
the AdaBoost algorithm, our system achieved an impressive
99.77% accuracy and a rapid fit time, rendering it suitable
for real-time decision support in agriculture. By minimizing
false positives and enhancing predictive capabilities, this
system significantly mitigated financial risks for farmers
and enhanced their decision-making processes. Moreover,
the incorporation of SHAP values provided invaluable
insights into the model’s reasoning, allowing farmers to
comprehend how climate and soil factors influence crop
selection. Notably, humidity emerged as the most critical
factor, emphasizing the significance of considering water
availability in crop selection decisions.

While this research work primarily focused on a specific
dataset and model, it lays the groundwork for further
research exploring diverse data sources, advanced inter-
pretability techniques, and user-friendly decision support
tools. By combining high accuracy, interpretability, and
efficiency, this approach heralds the advent of Al-powered
tools that empower farmers and contribute to sustainable
agricultural practices.
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