
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. XX, No.X (XXX-XX)

Optimizing State Space Integral Controllers for DC-DC Buck
Converters Using FPGA-Based Genetic Algorithms

Mini K. Namboothiripad1

1Department of Electrical Engineering,
1Agnel Charities’ Fr. C. Rodrigues Institute of Technology, Vashi

1 Navi-Mumbai, Maharashtra, India.

Abstract:The state space integral controller approach is highly effective for precise and efficient voltage control of DC-DC buck
converters, which are crucial in a wide range of applications. This paper presents strategies for implementing a Genetic Algorithm (GA)
to tune the gain parameters of a state feedback controller with integral action using FPGA technology. The GA optimizes controller gains
to achieve desired dynamic performance and zero steady-state error under multiple constraints. By leveraging the parallel processing
capabilities of FPGAs, the GA’s parallel behavior can be effectively utilized to accelerate computations. We implemented the GA on a
PYNQ-Z2 SoC FPGA using Vivado high-level synthesis tools, starting with a population of 12 solutions and running for 20 iterations.
Our results show that the GA effectively tunes gains to meet various overshoot and settling time requirements while maintaining zero
steady-state error. Additionally, we observed a 5.3-fold speed-up in execution with our 100 MHz customized design compared to the
650 MHz ARM processor. By using an FPGA board with more resources, the design clock frequency and thus the throughput and
acceleration could be improved further. Integrating GA with FPGA technology significantly reduces the latency for computation making
it highly beneficial for any GA based real-time applications.
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1. Introduction
Buck converters, also known as step-down DC-DC

converters, are crucial in modern power electronics for
their ability to efficiently reduce higher input voltages to
lower output voltages. Their cost-effectiveness and flexi-
bility make them the preferred choice for a wide range
of applications, including consumer electronics, automotive
systems, telecommunications, industrial automation, and
embedded systems [1]–[4].

Buck converters are essential components for ensuring
efficient voltage regulation [5], [6]. They minimize energy
loss and heat generation, allowing for compact and space-
saving designs [7]. These converters provide stable voltage
levels that are vital for the reliable operation of laptops,
smartphones, LED drivers etc. [8].

Effective voltage control in buck converters is es-
sential for ensuring stable output and achieving optimal
performance. To improve both transient and steady-state
behavior, various control strategies are suggested in the
literature, such as Proportional-Integral-Derivative (PID),
fuzzy, model predictive, artificial neural network (ANN),
state feedback control etc. [9]–[12].

PID control is widely favored due to its simplicity and
effectiveness in maintaining the desired output voltage by
adjusting the duty cycle of the pulse-width modulation
(PWM) signal [13]–[15]. However, PID control technique
relies on a linearized system model for the controller design.
While Fuzzy logic and ANN approaches are suitable for
handling nonlinearities, they often lack formal mathematical
analysis [12]. Model predictive control offers robust perfor-
mance but is highly dependent on the system model and
can be computationally expensive [16]. In contrast, state-
space control effectively handles multi-variable systems
and constraints, making it suitable for complex and high-
performance applications [17]. It provides a comprehensive
approach by modeling the DC-DC converters using first-
order differential equations that describe the system in terms
of state variables, such as inductor current and capacitor
voltage [18]–[21].

Various papers delve into the detailed modeling, gain
design and loop implementation aspects of DC-DC convert-
ers using state-space representation [22]–[26]. Additionally,
the design and implementation of state feedback with inte-
gral controllers for DC-DC converters, highlighting their
enhanced performance, is explained by many researchers
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[16], [27]. By utilizing feedback from internal states and
including integral action, these methods enable precise reg-
ulation of output voltage and improved dynamic response
[28]. However, in this case, tuning involves the solving
of a higher order polynomial with multiple optimization
constraints which may have to be handled using a heuristic
approach.

Genetic Algorithm (GA) is one of the most effective
heuristic method, known for its robust global optimiza-
tion capabilities in complex, non-linear search spaces. By
mimicking natural evolutionary processes, GA efficiently
explores and exploits the search space to find near-optimal
solutions for a wide range of optimization problems. Many
papers are available, in which the PID controller tuning is
optimized using GA, due to its robust global search capa-
bility and effectiveness in handling non-linear optimization
problems [29]–[32]. The GA-based approach ensures an
optimal set of PID parameters by iteratively improving solu-
tions through selection, crossover, and mutation processes,
ultimately enhancing system performance metrics such as
overshoot, settling time, and steady-state error.

GAs are inherently parallel and can be easily imple-
mented on parallel computing architectures such as Field-
Programmable Gate Arrays (FPGA) [33], [34]. Exploiting
this parallelism allows for faster convergence to optimal
solutions, making them suitable for real-time applications.
This high-performance integration allows GAs to solve
complex optimization problems more rapidly and effec-
tively, leveraging the hardware acceleration provided by
FPGAs [35], [36]. However, expertise in hardware logic
design and programming is necessary for the FPGA based
computations. With the development of high level synthesis
tools, the algorithm can be coded using high level languages
such as C, Python etc. and can be converted to hardware
descriptive languages for the implementation on FPGA [37],
[38].

In this paper, we employ a state space approach to
control the transient and steady-state behavior of the buck
converter, a method well-suited for handling nonlinear
dynamics. Incorporating a state feedback controller with
integral action enables us to attain the desired transient
response while eliminating steady-state error. However, the
increased system order presents challenges in precisely
placing the poles to meet multiple optimization constraints.
To overcome this complexity, we advocate for utilizing GA
to fine-tune the controller gains, harnessing their heuristic
optimization capabilities. Moreover, by implementing the
GA on an FPGA, we can capitalize on parallel processing
to accelerate convergence towards an optimal solution.

Numerous studies explore voltage control in buck con-
verters, including those employing the state space approach.
However, our method introduces a novel approach by uti-
lizing FPGA-based GA for tuning the gain parameters to
achieve desired behavior. We implemented the GA algo-
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Figure 1. DC-DC Buck Converter Circuit

rithm on a PYNQ-Z2 SoC FPGA, initializing a population
with 12 solutions and execute for 20 iterations. Our findings
confirm the effectiveness of the algorithm in tuning gains
for various desired overshoot and settling times, all while
maintaining zero steady-state error.

Remarkably, with our 100 MHz custom IP, we observed
a 5.3 times acceleration in execution speed compared to
running the algorithm on a 650 MHz ARM processor.
The acceleration remained consistent even with a slightly
larger population or more iterations, despite the custom
IP design operating at a clock frequency of 70 MHz,
due to the resource constraints of the PYNQ-Z2 board.
A higher speed-up is achievable for larger populations or
more iterations with a more resource rich FPGA board.
Our approach benefited significantly from the Vivado high-
level synthesis tools developed by Xilinx, facilitating the
translation of the ’C’ coded algorithm into a hardware
descriptive language for FPGA implementation.

2. Sate SpaceModelling of Buck Converter
A buck converter, shown in Fig. 1, is a DC-DC power

converter that reduces DC voltage from a higher level to
a lower level. Due to the presence of two energy storage
elements in a buck converter, it becomes necessary to define
two state variables.

These variables can be selected as the current flowing
through the inductor and the voltage across the capacitor.
The state space representation of the buck converter can be
derived using averaging techniques by incorporating both
the ON and OFF states of the switch.

During ON condition, the state space representation can
be derived as follows: Since the diode is OFF, by applying
Kirchhoff’s Voltage Law, the relation becomes,

VL = Vi − Vc (1)

where Vi is the input voltage and VL and Vc are the voltage
across the inductor and the capacitor respectively. With IL
as the current through the inductor with inductance L, the
equation can be written as,

dIL

dt
=

Vi

L
−

Vc

L
(2)

Considering Ic as the current through the capacitor and R
as the resistance, the Kirchhoff’s Current Law equation can



3

Duty 
Cycle

iL vCvCiL 1
C

-1
RC

-1
L

Vi
L

Figure 2. State Space representation of Buck Converter

be expressed as,

Ic = IL −
Vc

R
(3)

which can be re-written as,
dVc

dt
=

IL

C
−

Vc

RC
(4)

Equation 2 and 4 can be expressed in matrix form as, dIL
dt

dVc
dt

 = 0 −1
L

1
C − 1

RC

 [ IL
Vc

]
+

 1
L

0

Vi (5)

Vo =
[
0 1

] [ IL
Vc

]
(6)

Similarly, during the OFF condition of the switch, with the
diode ON, state space representation can be derived as,

 dIL
dt

dVc
dt

 = 0 −1
L

1
C − 1

RC

 [ IL
Vc

]
+

[
0
0

]
Vi (7)

Vo =
[
0 1

] [ IL
Vc

]
(8)

However, the control input to the buck converter is the
ON/OFF signal to the switch with the duty cycle D. Thus
state equation with input D can be derived using the
averaging technique, ie. Equation 5 * D + Equation 7*(1-D)
and can be simplified as, dIL

dt
dVc
dt

 = 0 −1
L

1
C − 1

RC

 [ IL
Vc

]
+

Vi
L

0

D (9)

and the output equation is,

Vo =
[
0 1

] [ IL
Vc

]
(10)

The above state space model can be represented using the
signal flow graph as shown in Fig. 2. The desired transient
behaviour can be achieved by adding the state feedback
gains k1, k2 from the state variables IL and Vc respectively
to the input. However, this arrangement does not make the
output steady state value to the required value.

The error in the output is determined by taking the
output feedback and comparing it with the reference value.
The steady state error can be reduced to zero by adding an
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Figure 3. State Space representation of Buck Converter with State
Feedback and Integral Controller

additional integral controller with gain Ke in the forward
path. This entire arrangement is shown in Fig. 3. It is clear
from the figure that, it adds one more integrator and the
order of the system increases by one. Thus the state and the
output equation need to be determined again. Considering
the control input as Duty Cycle D, which is equal to
−k1IL + −k2Vc + r,

dIL

dt
= −

Vc

L
+

Vi

L
(−k1IL + −k2Vc + r) (11)

in which r = KeXe where Xe is the newly added state
variable due to the integral controller. However, it is clear
from Fig. 3 that the equation for dVc

dt remains same as that
of 4. The new state equation corresponds to the derivative
of Xe is,

dXe

dt
= Vre f − Vo = Vre f − Vc (12)

Thus the new state equation can be written in matrix form
as, 

dIL
dt

dVc
dt

dXe
dt

 =

−

Vik1
L

−1
L −

Vik2
L

ViKe
L

1
C − 1

RC 0

0 −1 0


 IL
Vc
Xe

 +

0

0
1

Vre f (13)

and the output equation becomes,

Vo =
[
0 1 0

]  IL
Vc
Xe

 (14)

By comparing the characteristic equation of 13 with the de-
sired characteristic equation, the controller gains k1, k2 and
Ke can be determined. However, finding the characteristic
equation of 13, which involves the determinant of sI − A
where A is the system matrix in 13, becomes complex due
to the presence of s, especially for larger system matrices.
Also, an optimum gains need to be determined to satisfy all
the given transient and steady state parameters. Therefore,
it is proposed to use heuristic optimization methods such as
GA to determine the optimum value as the controller gains.

3. Genetic Algorithm to Tune the Controller Gains
Genetic Algorithm (GA) is a computational technique

used to solve search problems by mimicking the natural
selection process of evolution where the fittest individ-
uals are more likely to survive and produce offspring.
This algorithm operates on a population, a set of diverse
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solutions. Within this population, each solution is called
as a chromosome, with its individual components termed
as genes. GA iteratively refines candidate solutions over
generations, by favoring the survival and reproduction of
the most successful solutions.

Refining the solutions to generate new population in-
volves various steps such as fitness evaluation, cross over,
mutation etc. Initially, fitness of each individual is evaluated
by using a user defined fitness function. Subsequently,
highly fit individuals are forming pairs known as parents,
and are chosen for reproduction. Reproduction involves
crossover and mutation to facilitate the creation of poten-
tially improved offspring.

Crossover is the main operation to explore the search
space and it is performed with a probability called crossover
probability PC . This operation involves the mixing of chro-
mosomes of parents to produce two offspring, facilitating
the offspring to inherit a diverse mixture of desirable char-
acteristics from both parents. By producing random changes
in the offspring, called mutation, new characteristics can be
introduced with the offspring. It enhances the exploration
of the search space and thus the quality of the potential
solution. The mutation operation is also performed with a
probability called mutation probability, PM .

In GA, the initial generation may either be specified
by the user or generated randomly. Following the crossover
and mutation, the new generation replaces the previous one,
evolving iteratively until a predefined stopping criterion is
reached. However, crossover and mutation introduce a risk
of losing the optimal solution. To address this concern, a
strategy is adopted such that the best individual from a pop-
ulation is safeguarded and included in the new population.

In our approach to determine the controller gains, an
initial population of 12 feasible solutions, or chromosomes,
is considered and the iterations are performed for 20 gener-
ations. The controller gains k1, k2 and Ke are considered
as the genes in each chromosome. The fitness of each
chromosome is assessed using an error function, which
serves as the basis for selecting chromosomes for the next
generation.

The genes of each chromosome, representing the con-
troller gains k1, k2 and Ke, are used to determine the
damping ratio ζ, natural frequency ωn and settling time
Ts. The error function, Err, is defined by comparing these
values with their user specified desired values as given in
equation 15.

Err = α(ζcal− ζdes)+β(Tsdes−Tscal)+γ(ωncal−ωndes) (15)

Here, ζcal is the calculated damping ratio (from the chro-
mosome) and ζdes is the desired (user specified) damping
ratio. Similarly, Tsdes and ωndes are the desired values of
settling time and natural frequency respectively, and Tscal
and ωncal are the values calculated from each chromosome.

The fitness of each chromosome is determined by taking
the inverse of the respective error value.

The values α, β and γ are weight factors for proper
tuning of controller gains. In our design, these weight
factors are made larger in case of ζcal < ζdes and Tscal >
Tsdes to ensure the percentage overshoot and the settling
time do not exceed the desired values.

After evaluating fitness, the solutions are sorted based
on their fitness values, and the top-performing solutions are
selected for crossover operations. In our design, the top
four solutions are chosen for crossover to generate offspring.
These top solutions are paired as parents, and by exchanging
some genes within each pair, new offspring are created. To
extend the search space, neighbors of the fittest solutions
are generated by averaging the genes of each pair with the
top four solutions.

The new population consists of the top four solutions,
four offspring from the crossover, and four neighbors of
the fittest solutions. Mutation is then performed by slightly
modifying a gene in any random chromosome, except for
the top solution, to further explore the search space.

Now the process is continued for fixed number of
iterations or generations to make the algorithm converge
to a better solution. Overall algorithm can be summarized
as follows:

Algorithm 1 :Genetic Algorithm to tune the controller gains

1: Initialize the number of populations, N pop
2: Initialize chromosomes in the initial population.
3: Initialize the number of generations, NGen
4: for (Iter = 0; Iter < NGen; Iter + +) do
5: for (S ol = 0; S ol < N pop; S ol + +) do
6: ζcal, Tscal and ωcal ← Genes
7: Error ← Equation 15
8: Fitness ← 1

error
9: end for

10: Sort the population with the fitness values
11: Parents ← Top-performing chromosomes
12: Offspring ← Crossover operation with parents
13: Neighbourhoods ← Average(Top-performing ones)
14: New population ← Offspring, Neighbourhood &

Top-performing ones.
15: Mutated Population ← Change any gene of any

chromosome except the top-performer.
16: end for
17: Controller gains ← Top-performer of last generation

Although this algorithm appears sequential, several
parts, such as the fitness evaluation of each chromosome,
the crossover operation, and the calculation of neighboring
chromosomes for the top performers, can be executed in
parallel. This parallelization can significantly reduce overall
computational latency. Therefore, we propose using an
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FPGA for the GA computation.

4. Genetic Algorithm Implementation on FPGA
An FPGA consists of components such as Look-Up

Tables (LUTs), DSP blocks, flip-flops, I/O pads, Block
RAM, and PLLs, which can be interconnected to perform
desired computations. Although FPGA-based designs are
reprogrammable, the development process involves several
stages, including programming with Hardware Description
Languages (HDLs), compilation, synthesis, fitting, and tim-
ing analysis. Consequently, the overall development process
can be quite complex and time-consuming.

However, High-Level Synthesis (HLS) tools like Vivado
HLS enable programming using C/C++, which is then con-
verted to HDL. This approach makes it easier to accelerate
algorithms with intensive computations, even for those with
limited hardware coding knowledge. Additionally, Vivado
HLx tools facilitate hardware-software codesign. This pro-
cess involves implementing a subset of the desired system,
which needs acceleration, on the programmable logic (PL)
part of the System on Chip (SoC) FPGA board, while the
remaining portion is implemented on the processing system
(PS) available on the SoC. This approach allows for efficient
utilization of both hardware and software resources.

The GA algorithm for tuning a state space based integral
controller for a buck converter is implemented using Vivado
tools on Xilinx’s PYNQ-Z2 FPGA board, which belongs to
the Zynq 7000 SoC family [39]. This board features 650
MHz ARM Cortex-A9 dual core PS with 512MB DDR-
Dynamic RAM (DDR-DRAM) and PL with 13,300 logic
slices (each with four 6-input look up tables (LUTs) and
8 flip-flops (FF)), 630 KB block RAM (BRAM) and 220
DSP slices.

It is decided to implement the entire GA on PL by
taking the circuit parameters, desired damping ratio, natural
frequency and settling time as input as shown in Fig. 4.
The initial population is stored on the BRAM to reduce the
communication latency between the PL and the PS. The
outputs are the controller gains k1, k2 and Ke.

Our SoC-based FPGA implementation encompasses
several key stages: First, we utilize Vivado HLS to convert
C/C++ code into HDL code, which is then transformed
into intellectual property (IP). Next, we employ Vivado
HLx tools to integrate this customized IP with the ZYNQ
processing system and generate the bitstream. Finally, we
use Vivado Software Development Kit (SDK) to write code
for the PS to control and communicate with the PL, and
then build and download these to the FPGA.

Using the Vivado HLS tool, first, the GA algorithm func-
tionality in C/C++ is verified by performing a C-simulation
with a C-test bench. Next, the code is C-synthesized to
generate RTL logic in VHDL/Verilog. During the synthesis,
arguments in the top-level function are mapped into inter-
faces and input/output ports, sub functions are mapped into

modules, and arrays into memory or registers depending
upon their size and settings.

The AXI interface is the most commonly used for
input/output ports, and the communication protocol between
the PL and the PS is specified by the directive/pragma called
inter f ace [40]. The three AXI protocols are AXI4-Lite,
AXI4, and AXI4-Stream, with corresponding directives
s axilite, m axi, and axis. AXI4-Stream supports data
bursts but is not mapped to memory, whereas AXI4-Lite
and AXI4 transfer data with specified memory addresses.
AXI4-Lite transfers a single data item per address, making
it resource-efficient and simple to design. Given the minimal
number of arguments in our design, we chose to implement
the AXI4-Lite interface as shown below by considering
GA buck IP as the top level function with RLCVi[4],
ZetaWnT s[3] and Output[3] as the input output arguments.

1 vo id GA buck IP ( f l o a t RLCVi [ 4 ] , f l o a t ZetaWnTs [ 3 ] ,
f l o a t Outpu t [ 3 ] )

2 {

3 # pragma HLS INTERFACE s a x i l i t e p o r t=RLCVi
4 # pragma HLS INTERFACE s a x i l i t e p o r t=ZetaWnTs
5 # pragma HLS INTERFACE s a x i l i t e p o r t=Outpu t
6 # pragma HLS INTERFACE s a x i l i t e p o r t= r e t u r n

Here, the argument RLCVi[4] is for inputting the circuit
parameters, resistance, capacitance, inductance and input
voltage, and the argument ZetaWnT s[3] is for inputting the
desired damping ratio, natural frequency and settling time.
The Gains, k1, k2 and Ke, are the elements in the output
argument Output[3].

After C-synthesis, the estimated resource utilization
and latency of the design can be analyzed. If the design
constraints are not met, adjustments to the clock frequency
and optimization directives/pragmas can be made to im-
prove the design. Optimization can be achieved using HLS
directives/pragmas such as array partition, pipeline, and
unroll [37], [38], [40].

During C-synthesis, a larger array is typically mapped
into Block RAM with a maximum of two ports by default.
To enable parallel computations, memory elements need
to be accessed concurrently. The array partition pragma
facilitates this by partitioning the array into multiple RAMs
or registers, allowing parallel access to memory elements
[40].

For loops, default synthesis generates logic for a single
iteration and then sequentially reuses this logic for subse-
quent iterations. The unroll pragma can be used to partially
or fully unroll the loop, creating multiple copies of the
loop body in the RTL logic design. This enables concurrent
execution of all or a specified number of loop iterations,
reducing the overall latency [40]. However, this approach
increases resource utilization, which may lead to higher area
and power consumption.

Operations within a loop are executed sequentially by
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default. Using the pipeline pragma, these operations can
be performed in parallel. This pragma also allows new
iterations to begin processing before the previous ones have
completed, enhancing the parallelism and efficiency of the
design [40].

We start with an initial design derived from verified
C/C++ code and incrementally improve it by integrating the
mentioned optimization directives one by one. This iterative
process continues until the design requirements are fully
met. Once the design constraints are satisfied and optimized,
the design can be packaged as customized intellectual
property (IP) and exported to Vivado HLx. There, it’s
integrated with the processing system for implementation
on an SoC-based FPGA.

The system block, created through Vivado HLx, show-
cases the integration of our customized IP with the Zynq
processing system (PS) via the AXI fabric, as depicted in
Fig. 5. Within this configuration, as illustrated in the figure,
the customized IP, GA S S IC Buck IP 0, is seamlessly
integrated with the ZYNQ (processing system7 0) us-
ing the AXI Interconnect (ps7 0 axi periph). The cus-
tomized IP and the ZYNQ PS are highlighted for easy
reference.

After the creation of an HDL wrapper for the design,
it progresses through simulation, synthesis, implementation
(including fitting and routing), and the generation of a bit-
stream tailored for the PYNQ-Z2 FPGA board, facilitated
either through graphical user interface or Tool Command
Language (Tcl) codes.

Figure 6. Resource Utilization Report from HLx

Upon completion, the implemented design undergoes
rigorous verification to ensure timing constraints are met
and to assess resource utilization. The power analysis is
also conducted. The verification reveals that all specified
timing constraints are satisfied, and the resource utilization
is well within control, as depicted in Fig. 6, which shows
total resource utilization of 33% LUT, 17% FF, 3% BRAM,
and 60% DSP.

The power analysis report, as shown in Fig. 7, indicates
a total on-chip power of 1.721 W, comprising 1.578 W
dynamic and 0.143 W static utilization. Within the dynamic
utilization, the PS7 contributes 1.256 W, with the remaining
attributed to DSP, BRAM, Logic, clock, etc.

The bit-stream file generated is exported to the Xilinx
SDK, where an application program is developed in C/C++
to initiate processes and facilitate communication between
the PS and the PL of the SoC FPGA.

For the GA based controller gain calculation, the param-
eters of the buck converter circuit, along with the desired
damping ratio, natural frequency, and settling time, are
transmitted to the PL using memory-mapped instructions.
The instruction Xil Out32(u32Addr, u32Value) is utilized
to write a specified 32-bit value into a designated address.
Similarly, the Xil In32(u32Addr) instruction is employed
to read 32-bit output gains from the specified address.
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Figure 7. Power Analysis Report from HLx

u32Addr incorporates the base address, and the offset
address which varies depending on the specific memory
requirement. Integer pointers are necessary for the input-
output communication with floating-point values.

Below are excerpts from our application program code
demonstrating the writing to and reading from the imple-
mented hardware along with the start and ap done control
signals.

1 Xil Out32 ( BaseAddr+0x10 , * ( ( i n t * )&RLCVi [ 0 ] ) ) ;
2 Xil Out32 ( BaseAddr+0x14 , * ( ( i n t * )&RLCVi [ 1 ] ) ) ;
3 Xil Out32 ( BaseAddr+0x18 , * ( ( i n t * )&RLCVi [ 2 ] ) ) ;
4 Xil Out32 ( BaseAddr+0x1C , * ( ( i n t * )&RLCVi [ 3 ] ) ) ;
5 Xil Out32 ( BaseAddr+0x20 , * ( ( i n t * )&ZetaTsWn [ 0 ] ) ) ;
6 Xil Out32 ( BaseAddr+0x24 , * ( ( i n t * )&ZetaTsWn [ 1 ] ) ) ;
7 Xil Out32 ( BaseAddr+0x28 , * ( ( i n t * )&ZetaTsWn [ 2 ] ) ) ;
8 Xil Out32 ( BaseAddr+0x00 , 1 ) ;
9 w h i l e (0==(2 & Xil In32 ( BaseAddr+0x00 ) ) ) ;

10 Outpu tGa ins [0 ]= Xil In32 ( BaseAddr+0x30 ) ;
11 Outpu tGa ins [1 ]= Xil In32 ( BaseAddr+0x34 ) ;
12 Outpu tGa ins [2 ]= Xil In32 ( BaseAddr+0x38 ) ;

Here, BaseAddr denotes the base address of the IP ports
generated in our design. The offset addresses for each
port to access the input are 0x10, 0x14, up to 0x28, with
the offset address 0x00 designated for the control signal.
The base address of the peripherals are defined at the file
xparameters.h in the BSP folder. The o f f set address of the
ports and the details about the control signal are available at
ip hw.h file, in the same folder. These files are generated
during RTL creation in Vivado HLS and transferred to SDK
upon exporting the design from Vivado HLx.

The control signal 1 indicates the start signal, which
needs to be provided to initiate computation in the PL after
transmitting the input. Polling is then performed to wait
for the control signal to change to ap done. Once the
ap done signal is received, the output values can be read
from the respective offset addresses using memory-mapped
instructions, as shown in the code snippet above.

Building the files in the project directory generates an
executable file (elf). This file, along with the bit-stream file

Figure 8. Output Voltage of the Buck Converter where Vi=12 and
duty cycle=0.4 without any Feedback

from Vivado HLx, can be loaded onto the FPGA board
using the Xilinx Software Command-Line Tool (XSCT).
XSCT is an interactive command-line tool based on the Tcl
that interfaces with Xilinx SDK. The output gains are stored
in the PS’s DDR DRAM for further analysis.

5. Results and Discussions
The buck converter depicted in Fig. 1 is modeled using

state space, as described by equations 9 and 10, coded
and simulated in MATLAB with a duty cycle of 0.4 as
the control input and the voltage across the resistor R as
the output. The circuit parameters for the implementation
are as follows: resistance R = 1Ω, inductance L = 155µH,
capacitance C = 10µF, input voltage Vi = 12 volt.

The output voltage obtained with the open loop system
is shown in Fig. 8, which clearly demonstrates that it settles
to the desired value within 0.8 milliseconds. If the transient
behaviour need to be controlled, such as reducing the
settling time, the state variable feedback method described
in section 2 can be employed.

State variable feedback gains, k1 and k2 are determined
by comparing the desired characteristics equation with the
characteristic equation of the system (Buck converter with
state variable feedback). The corresponding output voltage
is shown in Fig. 9, as dotted line. The design requirements
are specified as 10% overshoot and 0.2 millisec settling
time. The calculated gains are k1=-0.7750 and k2=0.8395.
As seen in the figure, the transient performance objectives
(percentage overshoot and settling time) are met by apply-
ing these state feedback gains. However, the steady-state
voltage is 2.65V instead of the desired 4.8V. This steady-
state error can be eliminated by incorporating an integral
controller, as detailed in section 2.

By adding the integral controller, as illustrated in Fig.
3, the size of the system matrix increases by one, making
the determination of the optimum controller gains more
complex. This complexity necessitates the use of a heuristic
approach. In our method, we use GA, which begins with an
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Figure 9. Output Voltage of the Buck Converter with and without
integral controller: Vi=12, Vref=4.8

initial population and iterates until it converges to the best-
performing solution based on a customized fitness function.

GA is coded in ’C’, and starts with an initial population
of 12 solutions, as described in section 3. The algorithm
executes 20 iterations to determine the best performing
solution using the fitness function defined in equation 15.
The inputs to the functions are ζ, ωn, Ts and circuit
parameters while the outputs are the controller gains.

However, it is observed that the algorithm is paral-
lelizable and the overall execution latency can be reduced
by utilizing its parallel behaviour. Consequently, a custom
design IP, GA S S IC Buck IP, is implemented on a
PYNQ-Z2 SoC FPGA using Vivado tools to tune the state
space integral controller gains using GA, as discussed in
section 4. The IP design uses a 100 MHz clock signal,
resulting in a 10 nsec clock period. In Vivado HLS, the
observed latency for the entire GA computation is 8546
clock cycles, equivalent to 85.46 microseconds.

During on-chip execution, the observed latency is 88.44
microseconds for the entire gain computation using the GA
on the PL, including the time required for PL-PS communi-
cation. This shows that communication latency was reduced
to 3 microseconds by storing the initial population in the
BRAM.

To analyze the achieved acceleration, the same gain
calculation using GA was performed on the 650 MHz ARM
processor available on the SoC, resulting in a latency of
463.46 microseconds. This demonstrates an acceleration
factor of 5.3 when the entire computation is performed
on the PL with a 100 MHz clock, compared to the ARM
processor with a 650 MHz clock. These observations are
detailed in Table I. The computation in the PL includes both
the latency for computation within the PL and the latency
for communication (input-output data transfer) between the
PL and PS. The last column shows the acceleration achieved
by using the PL for the computation.

Further analyzed the computational latency with a larger
population and also considering more number of iterations
for the convergence. The frequency of design, latency and
acceleration corresponds to these cases are also included in
Table I. The frequency of customized IP has to be reduced
to 83 MHz for the case with 40 iterations and to 70 MHz
for the design with 24 solutions in the population. This
is mainly due to the resource constraints with PYNQ SoC
FPGA. However, the acceleration is found to be consistent
even with a lower clock frequency. This shows that the
FPGA computational strategy for GA is effective to achieve
considerably lower latency and can be extended for any GA
application for its real time implementation.

TABLE I. Latency Report in HLS and also During Execution

Design

Latency
with
HLS
(µs)

Latency for GA computation in µs
Comp. in PL
with freq. in
MHz

Comp. in
PS with
650 MHz

Accel.
with
PL

Soln=12,
Iter=20 85.46 88.44µs,

100MHz 463.46µs 5.3

Soln=12,
Iter=40 173.6 176.9µs,

83MHz 915.5µs 5.2

Soln=24,
Iter=20 418.3 421.1µs,

70MHz 2105µs 5.0

The resource utilization and power analysis report using
Vivado HLx is summarized in Table II. With the use of
the array partition pragma for arrays like population and
top-performing solution (to enhance parallel accessibility),
BRAM utilization is minimized to 3%. Due to the numerous
multiplication operations in the fitness calculation, DSP
utilization reaches 60%. LUT utilization stands at 33%,
primarily due to the comparison operations involved in the
sorting process.

TABLE II. Resource Utilization and Power Report Using Vivado
HLx

Design BRAM DSP FF LUT On-chip
% % % % Power (W)

Soln=12,
Iter=20 3 60 17 33 1.721

Soln=12,
Iter=40 3.2 63.2 14.4 30.2 1.733

Soln=24,
Iter=20 4 25 7 16 1.533

The calculated values for various desired transient con-
ditions, such as percentage overshoot and settling time, are
presented in Table III. The percentage overshoot ranges
from 8% to 14% and the settling time varies from 0.2
milliseconds to 0.5 milliseconds. For each set of desired ζ,
ωn, the GA calculated gains, the respective calculated ζ, ωn
along with the corresponding percentage overshoot (%OS)
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and settling time (Ts), are also shown in the table. In all the
cases, the steady state error is found out to be zero because
of the inclusion of the integral term. The results clearly
demonstrate that the GA-calculated gains can achieve the
desired percentage overshoot and settling time, with zero
steady state error, and thus an effective method for tuning.

TABLE III. Desired and Actual Transient Parameters for GA based
State-space Controller Tuning for Buck Converter

Desired Values Values Obtained from FPGA
%OS, Ts ζ, ωn Gains ζ, ωn %OS, Ts

%OS=10,
Ts=2e−4

ζ=0.59,
ωn=3.4e4

k1=2,
k2=-0.8,
Ke=29250

ζ=0.64,
ωn=3.3e4

%OS=7.2
Ts=1.9e−4

%OS=10
Ts=3e−4

ζ=0.59
ωn=2.3e4

k1=1.081
k2=-0.42
Ke=13500

ζ=0.61
ωn=2.6e4

%OS=8.8
Ts=2.5e−4

%OS=10
Ts=4e−4

ζ=0.59
ωn=1.7e4

k1=0.2725
k2=0.097
Ke=4976.5

ζ=0.64
ωn=1.9e4

%OS=7.3
Ts=3.2e−4

%OS=10
Ts=5e−4

ζ=0.59
ωn=1.3e4

k1=0.0635
k2=0.174
Ke=1906.2

ζ=0.59
ωn=1.3e4

%OS=9.7
Ts=4.9e−4

%OS=8
Ts=5e−4

ζ=0.62
ωn=1.3e4

k1=0.08
k2=0.191
Ke=1687.5

ζ=0.63
ωn=1.3e4

%OS=7.7
Ts=4.9e−4

%OS=12
Ts=5e−4

ζ=0.56
ωn=1.4e4

k1=0.045
k2=0.156
Ke=2148.4

ζ=0.56
ωn=1.4e4

OS=11.9%
Ts=4.9e−4

%OS=12
Ts=4e−4

ζ=0.56
ωn=1.8e4

k1=0.37
k2=-0.08
Ke=5000

ζ=0.58
ωn=1.9e4

OS=10.2%
Ts=3.6e−4

%OS=8
Ts=4e−4

ζ=0.63
ωn=1.6e4

k1=0.232
k2=-0.01
Ke=3312.5

ζ=0.63
ωn=1.6e4

OS=7.7%
Ts=3.9e−4

%OS=8
Ts=3e−4

ζ=0.63
ωn=2.1e4

k1=1.362
k2=-0.45
Ke=17000

ζ=0.67
ωn=2.7e4

OS=5.9%
Ts=2.2e−4

%OS=14
Ts=3e−4

ζ=0.53
ωn=2.5e4

k1=1.4
k2=-0.61
Ke=20000

ζ=0.57
ωn=2.9e4

OS=11%
Ts=2.3e−4

The output voltage from the buck converter, by adding
an integral controller with the gains, k1=2, k2=-0.8,
Ke=29250, obtained from the GA computation using FPGA

Figure 10. Output Voltage of the Buck Converter with integral
controller: Vref changed from 6V to 9V at 0.5 msec

(data correspond to %OS=10, Ts = 2e−4, the first row data
in Table III), is also shown in Fig. 9. It is clear that by
adding the integral controller along with state feedback, the
output voltage of the buck converter becomes the reference
voltage 4.8V.

Also, analysed the response by changing the reference
value from 6V to 9V at 0.5 msec and the corresponding
plot is shown in Fig. 10. It clearly indicates that the output
voltage could track the reference voltage with the desired
transient parameters (%OS=10,Ts = 2e−4) at each input step
variation. Reference input is also shown in the figure as
dotted line.

These analysis demonstrates that using GA, we can
determine state space integral controller gains that achieve
the desired transient parameters with zero steady-state error,
specifically for the voltage control of a buck converter.
Moreover, this GA method can be extended to any applica-
tion requiring heuristic parameter optimization, not just DC-
DC power electronic converters. Additionally, implementing
the GA on an FPGA significantly accelerates computations,
making it highly suitable for real-time applications.

6. Conclusion
In this paper, we control the transient and steady-state

behavior of buck converters using a state-space approach,
which is particularly effective for managing nonlinear dy-
namics. This topic is crucial due to the widespread use of
buck converters in power electronics, where precise control
is essential for optimal performance and efficiency. We
propose using a Genetic Algorithm (GA) to tune the gain
parameters of a state feedback controller with integral ac-
tion. The inherent parallelism in GA is effectively leveraged
using an FPGA, specifically implemented on a PYNQ-
Z2 SoC FPGA. We used an initial population of 12 and
ran the algorithm for 20 iterations. The output gains were
verified for various desired overshoot and settling times
while maintaining zero steady-state error. Our results show
that the algorithm optimally tunes the gain parameters to
meet the desired specifications. Additionally, our 100 MHz
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GA implementation on FPGA achieved a 5.3 times speed-up
compared to a 650 MHz ARM processor. For larger pop-
ulations or more iterations required for convergence, using
an FPGA with more resources, GA implementation could
achieve even greater speed-up compared to performing the
entire computation on the processor.
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