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Abstract: Software-defined networks (SDNs) play a fundamental role in the core infrastructure of 5G networks. Therefore, the concern 
for SDN security has become critical, and DDoS attacks are one of the most significant threats to SDN as the attacker focuses on a 
single point, which is the controller, and thus leads to the failure of the entire network. In this study, we present Deep Attack Detection 
(DeepAD), a novel approach to detect DDoS attacks using a deep neural network with a novel activation function. The proposed 
activation function, SETAF, is based on the features of exponential and sigmoid functions as well as dynamic thresholding and thus 
adapts to traffic changes and is able to distinguish different DDoS attack patterns. The DeepAD model is implemented and tested on 
the CICIDS2017 dataset. In addition, the proposed model using SETAF activation function is compared with the standard sigmoid 
activation function and the loss function ratio is less than 0.01 with an accuracy of 0.99. On the other hand, the proposed DeepAD 
model was implemented on an SDN environment using Mininet emulator and POX controller, and the experimental results proved the 
effectiveness of the DeepAD approach in significantly improving the accuracy and speed of DDoS detection. 
   
Keywords: DeepAD, DNN, CICIDS2017, SETAF, DDoS, SDN.

1. INTRODUCTION  
Software-defined networks (SDNs) are closely linked 

to 5G networks to provide various services and manage 
them more easily; Due to the presence of a central layer 
responsible for managing and controlling other network 
devices  [1]. The SDN network architecture consists of 
three layers: the data plane, the control plane, and the 
application plane as shown in Figure 1.  

The data plane includes network devices such as 
switches and routers that support the OpenFlow protocol, 
while the control plane includes one or more control units 
and is connected to the data plane via the southbound 
interface and is responsible for managing the data plane 
through the OpenFlow protocol, where it works to build the 
routing table in OpenFlow Switch [2]. As for the 
application layer, it consists of a group of services that 
operate on the network, such as firewall application, load 
balancing, quality of service, etc., and the application layer 

is linked to the control layer through the Northbound 
Interface. 

However, SDN security is the core of 5G infrastructure 
security [1]. There are many security challenges facing 
SDN architecture, but DDoS attack is the most common 
attack on SDN networks, and it greatly affects service 
delivery, causing financial damage as well as targeting the 
reputation of the network in providing services [2]. DDoS 
attack focuses the attack on the control layer, thus disabling 
the controller from network management and harming 
ordinary users and the services provided. Although many 
intrusion detection techniques are available, they fail to 
accurately detect DDoS attacks due to the dynamic nature 
of network traffic [3]. 

Machine learning methods are widely used as an 
essential part of network security, especially in detecting 
attacks, due to their ability to identify complex patterns and 
adapt to multiple scenarios [4], [5].  
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Figure 1.  SDN architecture. 

Artificial neural networks represent one of the most 
important modern trends and are based on deep learning, in 
which a group of interconnected nodes is used as a network, 
which is formed in the form of layers similar to the human 
brain [6]. Deep neural networks (DNNs) use a set of tools 
and functions, including the activation function used within 
the layers, including the output layer, which fundamentally 
affects the performance of DNNs [7,8]. 

 In this study, we propose deep attack detection 
(DeepAD), which is an approach that uses a new activation 
function in the output layer of the DNN to detect DDoS 
attacks in SDNs more accurately and dynamically. 

The sigmoid exponential threshold activation function 
(SETAF) is the function proposed in DeepAD. It is 
specifically proposed to improve the performance and 
efficiency of DDoS attack detection and is based on the 
characteristics of DDoS attacks, such as window traffic 
volume and traffic height; moreover, it is proportional to 
the dynamic change of network traffic. Therefore, through 
the features of activation function, DeepAD can more 
accurately and effectively distinguish between normal 
traffic and DDoS attacks. 

The remainder of this paper is organized as follows: In 
Section 2, the main literature on emerging technologies that 
use deep learning to identify DDoS attacks and advanced 
network security is reviewed. In Section 3, the proposed 
approach and the proposed activation function SETAF are 
explained. In Section 4, detailed information about the 
dataset used during training and the mechanism for 
implementing the proposal on an SDN environment are 
provided. In Section 5, the DeepAD evaluation criteria are 

described, and the SETAF activation function is compared 
with standard functions. In Section 6, concluding remarks 
along with recommendations for further research are 
presented. 

2. RELATED WORKS 
In the past few years, many mechanisms have been 

used to manage SDN DDoS attacks, which is characteristic 
of the new period. Polat et al. (2020) [9] created an SDN 
DDoS detection system, which analyses and filters traffic 
and selects features in a control plane. Different machine 
learning methods, such as ANN, KNN, SVM and naive 
Bayes, were used for detection of DDoS attacks. However, 
how to overcome the delicate borderline between accuracy 
and the technical constraint of any computational system 
remains unclear. 

Ujjan and his group of researchers (2020) [10] furthered 
the previous techniques by opting to use a DNN, which 
they attached to Snort 2 IDS. The experimental setup that 
uses adaptive polling alongside sFlow data showed signs of 
potential in detecting DDoS attacks along the way. The 
robotisation of workplaces would entail a further increase 
in the sophistication and accuracy of the robots’ strategy. 

An SDN solution was proposed in 2022 by Anyanwu et 
al. [11] mainly for the sake of the prevention of DoS in 
VANETs. The initial manifestation of an intrusion 
detection model came with the application of AI 
algorithms, such as the fast learnable algorithm of GSCV 
or the radial basis function of the SVM classifier. However, 
detecting DDoS formally is seen to be with certain level of 
success still lacking in generalisations. An experimental 
study demonstrated that precision and efficiency should be 
improved in the future. 

According Fouladi et al. (2022) [12], SDN networks 
definitely continue to be susceptible to traditional DDoS 
attacks. In addition, they granted a concrete design that 
helps indent and eradicate the risk. The statistical 
information from network traffic was extracted using 
discrete wavelet transform and then analysed with an 
autoencoder neural network to detect DDoS attacks. The 
activation of the DDoS detection mechanism led to a 
decrease in processing costs due to the average hit rate in 
the switch flow table. 

Singh and Jayakumar introduced a thorough approach 
to identifying and stopping DDoS attacks within the SDN 
architecture in 2022 [13]. This system comprised two 
processes: identifying DDoS attacks and deploying 
countermeasures. Initially, characteristics were identified, 
then the IU-ROA was utilised for efficient feature 
selection; ultimately, the deep CNN model was applied for 
classification. During the second phase, a bait detection 
method was utilised to disable the intruder node. 

In 2022 [5], Kareem and his team utilised machine 
learning to create a method for identifying DDoS attacks in 
SDN network data. They applied a feature selection 
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algorithm and multiple experiments to isolate a fitting 
feature set capable of categorisation in SDN settings. The 
evaluation of the efficiency and high accuracy rates of the 
PART classifier using multiple metrics established it as a 
strong classifier. The results revealed that ML algorithms, 
feature selection methods and the PART classifier applied 
to the SDN network are remarkably efficient in detecting 
DDoS attacks. 

The authors of Al-Dunainawi et al. (2023) [14] 
proposed the introduction of Mininet along with a Ryu 
controller and a 1D-CNN system dedicated to identifying 
and combating DDoS assaults in an environment which is 
based on SDN. The 1D-CNN system identifies deviations 
which are given as the labelled network traffic data for 
training and are indicative of DDoS attacks. In this manner, 
the model could be more accurately tuned in a shorter 
period due to the NSGA-II’s seven hyperparameter fine-
tuning. The control system, i.e. RYU, aims at strengthening 
the network structure by employing suitable prevention 
strategies and modifying network regulations when it 
intends to cut down identified risks. Numerous tests 
conducted in a simulated SDN setting with an actual DDoS 
attack dataset verified the impressive 99.99% accuracy in 
detecting the method. 

3. PROPOSED ATTACK DETECTION IN SDN: DESIGN 
AND METHODOLOGY 

This section contains implementation details and our 
proposed method for identifying a DDoS attack. Our 
method is based on DNN; however, we include a new 
activation function called SETAF. The DDoS detection 
approach in an SDN context is summarised in Figure 2, and 
the next subsections discuss our methodology in depth. 

 
Figure 2.  SDN-based proposed DDoS detection. 

A. DeepAD: Methodology 
A specialized method called DeepAD uses a 

sophisticated DNN model to analyze DDoS attack traffic in 

SDN systems. The process of building a DeepAD model 
goes through several stages, starting from preprocessing 
the CICIDS2017 dataset and building the trained DDNN 
model to evaluating and validating the performance of the 
trained model. The following explains the main steps in 
building the model. The block diagram illustrates these 
steps in Figure 3. 

 
Figure 3.  General diagram of DDNN. 

We used a data preprocessing step in our work to 
improve DDoS attack detection efficiency. On the basis of 
their real-time operability and classification performance, 
four robust characteristics were chosen for this: Fwd IAT 
mean, destination port, destination IP and packet length 
mean [15]. We used data transformation techniques to 
obtain these characteristics to operate with the neural 
network model. This involved encoding the intended 
feature (labels) into numerical values using label encoding 
and turning IP addresses into scalar values for more 
straightforward representation. Additionally, we scaled the 
feature values within the range of [0, 1] by using min–max 
normalisation. Within the neural network model, this 
normalisation guaranteed comparability and 
interpretability. 

Last, we split the dataset into testing and training sets, 
dividing it into 30% and 70%, respectively. This part was 
crucial to the training, evaluation and acquisition of an 
objective metric for the generalisation ability of the model. 

While DDNNs are constructed from four layers in the 
model building stage. These layers include the first layer, 
which is the input layer that represents the traffic 
parameters, the second layer, which represents the first 
hidden layer, the third layer, which is the second hidden 
layer, and the fourth layer, which is the output layer, in 
which the traffic is classified as natural or attack, 
depending on the activation function used in it, which is 
SETAF, as shown in Figure 4, which also illustrates the 
connection structure of the DDNN architecture. 
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Figure 4.  DDNN architecture. 

• Starting from the initialization input data, the input 
layer takes four features to the model from the 
preprocessed CICIDS2017 dataset. 

• The first hidden layer consists of 128 neurons. The 
operations of the nodes are represented by adding 
bias, matrix multiplication and using and 
activating the rectified linear unit (ReLU). This 
layer can generate its outputs on the basis of the 
capabilities of the operations that it features. 

• Similar to the first hidden layer, the second hidden 
layer consists of 64 neurons. The outputs of the 
previous layer were used as its inputs, which were 
multiplied using matrix multiplication and addition 
with bias and then passed through the ReLU 
activation function. 

• The output layer, which is the last layer in the 
architecture, consists of a neuron capable of 
generating classification results. Thus, three types 
of operations were implemented: matrix 
multiplication, bias addition and a new activation 
function called SETAF, which is explained in 
detail in the next subsection. 

Several techniques were used during training to 
optimise the model parameters. The model is trained by 
maximising the cross-entropy loss function [16] to 
determine the difference between the predicted and true 
derivatives. The model performance has already been 
improved by tuning the parameters and minimising the loss 
function using the Adam optimiser [17]. Furthermore, 
among the evaluation criteria, accuracy was chosen as a 
measure of how well the model predicts outcomes. 

B. Formulation of SETAF  
The SETAF is an improvement of the activation 

functions commonly used in DNNs. By combining the 
beneficial features of sigmoid, exponential and threshold 

activation functions, SETAF obtains increased efficiency 
in the performance of its networks. Below is the method of 
calculating and deriving the SETAF equation. 

In DNNs, the activation function plays the role of 
Sig(x); however, it is prominently known as the sigmoid 
function. As indicated by Eq. (1), it converts input values 
into a range between 0 and 1, resulting in a continuous and 
restricted activation response. 

Sig(x) = 	
1

1 +	𝑒!"
 

(1) 

Firstly, Eq. (2) is used to scale the sigmoid function by 
an alpha α factor. 

 
   (2) 

Secondly, Eq. (3) illustrates the exponential function. 

Exp(x) = 	 e#    (3) 

Thirdly, Eq. (4) reveals that the squared distance 
function, also known as the squared difference function, 
represents the squared difference or squared difference 
between x and the threshold value. 

    (4) 

Eq. (4) may be used to obtain a number between 0 and 
1 by inputting Eq. (4) into Eq. (3) after multiplying Eq. (4) 
by −1 to obtain a negative value for the exponential 
function, as shown in Eq. (5). 

    (5) 

The beta β factor in Eq. (6) also scales the exponential 
component. 

     (6) 

Lastly, Eq. (7), also known as the SETAF equation, is 
produced by fusing Eqs. (2) and (6). 

 
    (7) 

One way to simplify the equation is shown in Eq. (8). 

     (8) 

Enhancing DNN efficiency through a responsive and 
adaptive reaction is the aim of the SETAF. The use of 
sigmoid, exponential and threshold components gives a 
high degree of nonlinearity. Moreover, SETAF is endowed 
with characteristics that enable it to adjust parameters for 
particular requirements of the problem so that one can 
manipulate it differently to suit the purpose.  

Exponential growth or decay patterns of data can be 
easily described through mathematical modelling. Such 
mathematical models allow the researchers to portray 
complex data relationships accurately. That is, SETAF can 
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handle nonlinear relationships because a simple sigmoid 
function may not be able to give an accurate picture of such 
relationships reliably. 

4. EXPERIMENTAL RESULTS AND ANALYSIS 
In this section, we present the training and evaluation 

results of the approach using the widely recognized 2017 
CICIDS dataset [18], in addition to implementing this 
approach in simulating SDN topologies. 

A personal computer with 7.9 GB memory and an Intel 
Core i7 CPU E7500 running at a dual frequency of 3.4 GHz 
was set up to create a realistic SDN simulator and evaluate 
the model’s performance during the training and testing 
phases. 

 

A. Utilising the CICIDS2017 Dataset for Model 
Training and Testing 
The program was developed in Python language and 

PyCharm IDE using the environment. The datasets were 
split, where 70% of the data is allocated as the training set 
and 30% of data is kept apart for testing purposes. Normal 
traffic was designated as 0, and attacks were designated as 
1. The training dataset utilized for constructing the model 
consisted of 158,022 records. The model was trained for 
100 epochs, representing the number of complete passes 
over the training dataset during training. Each epoch 
consists of multiple iterations, where the model receives 
batches of data and updates its parameters on the basis of 
the calculated loss and optimization algorithm. 

Figure 5 demonstrates the results of the loss function 
for the training and validation phases of the model. A low 
loss value, particularly below 0.09 as seen in this instance, 
indicates strong performance in accurately predicting the 
desired output. Meanwhile, Figure 6 displays the accuracy 
results for the training and validation phases of the model. 
In this scenario, an accuracy value above 0.99 signifies 
exceptional performance in accurately predicting the 
desired output. 

The good results for loss value and accuracy are due to 
the use of the SETAF, which characterizes the DeepAD 
model with nonlinearity and thus enables it to learn 
complex patterns. 

 
Figure 5.  Training and validation accuracy. 

 

 

Figure 6.  Training and validation loss function. 

Figure 7 presents the results of accuracy, recall, 
precision, F-score and specificity for the test data. 
Additionally, a mean squared error of 0.0032 was recorded. 
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Figure 7.  Evaluation results for binary classification of testing data. 

B. Implementation and Evaluation Results of DeepAD in 
SDN Topology 
We used an SDN architecture with a Pox controller 

serving as the control plane to implement DeepAD. The 
Pox controller is mostly written in Python and is selected 
for certain research objectives due to its lightweight and 
adaptable design. 

VMware Workstation 15.5.7 was utilised in the 
implementation of the SDN network topology. Two virtual 
computers that were expressly set up to run Ubuntu 20.04 
LTS were part of the configuration. One of the virtual 
machines utilised Mininet, enabling the creation of 
OpenFlow switches and end devices for the data plane [19]. 
The topology, depicted in Figure 8, adopted a tree structure 
with a depth of 2 and comprised five switches and 64 hosts. 

  

 
Figure 8.  Mininet-constructed SDN network topology. 

Open vSwitch was employed to handle forwarding, 
whilst network traffic packets were generated using Scapy, 
a versatile tool with capabilities for packet generation, 
sniffing and manipulation. Using Scapy, we generated two 
types of traffic: normal traffic and DDoS attack traffic. 

The other virtual machine acted as a control plane, 
hosting the Pox controller, a software that acts as a network 
operator and communicates with network devices via the 
OpenFlow protocol. The Pox controller facilitated 

centralized control and network management, acting as an 
interface between switches and control applications [20]. 

DeepAD was implemented as an application within the 
Pox controller to detect DDoS attacks. This 
implementation involves generating attack traffic and 
targeting either a single host or a specific group of hosts 
within the SDN data plane. Figure 9 illustrates the attack 
traffic captured by the Wireshark tool, which utilises 
spoofed IP addresses displayed in the source column to 
target destination IP addresses, such as 10.0.0.10, 
10.0.0.11, 10.0.0.12, 10.0.0.13 and so on. 

DeepAD is implemented as an application within the 
Pox controller to detect DDoS attacks. This 
implementation includes generating attack traffic targeting 
a single host or a specific set of hosts within the SDN data 
plane, generating normal traffic, and monitoring the 
proposed model and its ability to detect the attack.  

Figure 9 shows the generated attack traffic to attack 
multiple hosts captured by Wireshark, which uses the 
spoofing IP addresses displayed in the source column to 
target specific destination IP addresses, such as 10.0.0.10, 
10.0.0.11, 10.0.0.12, 10.0.0.13, and so on. 

 
Figure 9.  Analysis of attack traffic captured by Wireshark. 

Upon receiving the traffic information, the Pox 
controller server utilises the DeepAD model for traffic 
classification. The DeepAD model analyses the incoming 
traffic and determines whether it should be classified as 
normal or an attack. Figure 10 visually represents the 
detection of an attack using the DeepAD model. 

0.988 0.99 0.992 0.994 0.996 0.998 1

Recall

Precision

F-Score

Accuracy

Specificity

Evaluation Metrics Results
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Figure 10.  Detection of DDoS traffic. 

In the context of SDN emulator, network performance 
metrics, namely CPU utilization and RAM network 
utilization, were calculated in the presence and absence of 
a DDoS attack. Figure 11 shows the CPU and RAM 
network utilization measurements in an SDN network 
before and during the attack.  

By comparing the results of the CPU and RAM network 
utilization metrics before and during the attack, we notice 
the significant performance degradation caused by the 
attack. The high CPU utilization during the attack indicates 
increased processing requirements to handle the attack 
traffic or computational overhead of security mechanisms, 
which in turn damages the network infrastructure and the 
performance of normal users. Also, the increased traffic on 
the network leads to increased RAM network utilization, 
which leads to higher memory requirements due to the 
effects of the attack on data processing and storage. 

 
Figure 11.  CPU and RAM of SDN before and under attack. 

The link latency between Host 2 and Host 3 was also 
measured in both scenarios before and during the DDoS 
attack, where link latency refers to the time it takes for a 
packet to traverse a link between two hosts. Figure 12 

illustrates the difference between latency in an SDN 
environment. 

 
Figure 12.  Figure 12: Link latency in an SDN network. 

The link latency was measured using the ping command in 
the Mininet command line interface, as shown in Figure 13. 
In this figure, we illustrate the steps to accurately measure 
link latency in the case before and during the attack. 

 
Figure 13.  The Link Latency Calculation by PING Command Between 

Host 1 and Host 2 

When comparing the results of link latency 
measurements before and during the attack, we can 
conclude that the attack has affected the performance of the 
link between hosts in addition to the burden on the entire 
network and the control layer in particular.  

The increase in link latency during the attack indicates 
potential network congestion, longer packet processing 
times, or network resource constraints caused by the attack 
activity, which negatively affects normal users and the 
performance and availability of the network. In addition, 
these measurements provide valuable metrics about the 
effects of attacks on network response and help in 
developing strategies to mitigate latency-related issues, 
thereby enhancing the overall performance and security of 
the SDN network. 
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5. EVALUATION OF DEEPAD METHODOLOGY 
A comparative analysis was conducted with a standard 

DNN model that employed the sigmoid activation function 
to evaluate the performance of the DeepAD model. By 
contrast, the DeepAD model utilised the SETAF 
specifically designed for anomaly detection. Both models 
were trained using the same dataset and adhered to the 
defined training and test data splits. Also, both models used 
the same batch size, optimiser and loss function throughout 
training, and they experienced the same number of epochs, 
making the comparison between the DeepAD model and 
the normal DNN model fair.  

The performance analysis is shown graphically in 
Figure 11, which focuses on the accuracy and loss of 
training and validation. 

 
Figure 14.  Visualising performance: standard DNN model and DeepAD 

model. 

Using the sigmoid function as the typical activation 
function, Figure 11(A) shows the accuracy and loss 
throughout training and validation. Conversely, Figure 
11(B) shows the accuracy and loss during training and 
validation that are obtained when SETAF is used. Both 
plots reveal that the training and validation losses 
dramatically dropped from 0.085 to 0.01. This drop 
indicates an improvement in the model’s ability to 
minimise the difference between predicted and actual 
values, resulting in more accurate predictions. Lower loss 
values often suggest a better capacity to identify and extract 
the fundamental patterns and characteristics from the data. 

 

When SETAF is used instead of the standard sigmoid 
activation function, the loss function is reduced further, as 
revealed by the analysis of the two graphs. In this case, the 
efficiency of the model that the SETAF helps to improve 
will be increased. 

The testing phase then used test data to evaluate the 
models’ performance accurately, as we calculated recall, 
precision, accuracy, F1 score and specificity for the 
standard model and DeepAD, as shown in the Figure 12. 

This is due to the limitations of the sigmoid activation 
function in detecting DDoS attacks. These limitations lie in 
its inability to distinguish between different levels of DDoS 
attacks because DDoS attacks can vary in severity and 
scale, and the sigmoid activation function may not provide 
the flexibility needed to capture these nuances. 
Additionally, datasets are often unbalanced, with DDoS 
attacks being a minority group compared with normal 
traffic. Thus, the sigmoid activation function produces 
results that are biased towards the dominant class, which is 
normal traffic. This leads to lower sensitivity in detecting 
DDoS attacks and higher false negative detection rates.  

In general, these limitations reduce the effectiveness of 
the sigmoid activation function in detecting DDoS attacks, 
especially in dealing with varying attack severity and 
imbalanced data distributions. 

Meanwhile, SETAF enhances differentiation by 
providing a more flexible output range, enabling better 
discrimination of different levels of DDoS attacks in terms 
of intensity and scale. Additionally, SETAF improves 
sensitivity in handling imbalanced datasets commonly 
encountered in DDoS detection. By adjusting the 
exponential threshold, SETAF mitigates bias towards the 
dominant class (normal traffic), leading to improved 
sensitivity in detecting DDoS attacks and reducing false 
negative rates.  

Moreover, SETAF maintains the nonlinear properties 
of sigmoid activation, facilitating the learning of complex 
patterns and nonlinear relationships in DDoS data. By 
incorporating an exponential threshold, SETAF extends the 
learning capability of the sigmoid function, enabling 
enhanced adaptation to the specific characteristics of DDoS 
attacks. 
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Figure 15.  Comparison of performance metrics: standard DNN model 
and DeepAD model. 

6. CONCLUSIONS 
In this study, a new approach, DeepAD, is proposed, 

which consists of a DNN model consisting of two hidden 
layers. This approach is mainly based on a new activation 
function called SETAF. The SETAF activation function 
combines the features of both sigmoid and exponential 
functions, as well as thresholding for more nonlinearity, 
which works to detect different attack patterns and thus 
enhance security in SDN. DeepAD has demonstrated the 
success of SETAF in attack detection, with a detection 
accuracy of 0.996 for DDoS attacks and a low error rate of 
0.0037. This result indicates that DeepAD is a promising 
solution for effective DDoS detection in SDN 
environments. 

Future work can focus on optimising SETAF 
parameters to make them become more reliable and must 
consider evaluating the performance of SETAF in real 
SDN environments under different network disturbances to 
provide a comprehensive view of its stability and practical 
importance. 
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