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Abstract: Natural disasters affect 350 million people annually, in addition to financial losses amounting to billions of dollars. When 

these disasters occur, a quick and accurate response is extremely important. Therefore, obtaining correct information about damage 

locations leads to a rapid and effective response by rescue teams, thus saving the largest number of lives. Rescue teams rely on 

satellite images to determine the affected locations, in addition to the severity of the damage and its causes. However, rescue teams 

need to follow a specific approach that enables them to analyze huge amounts of satellite images accurately and quickly, which 

represents a major challenge for them. Deep Learning can be used to overcome these challenges and provide assistance and support 

efforts. In this research, Siamese U-Net deep learning system with attention technique was applied on two groups of satellite images 

(pre- and post-disaster) for semantic segmentation of buildings and damage level classification. Two-stream of U-network was used 

to generate a buildings segmentation mask as a first step. Then, the decoder extracts high-dimensional feature vectors through 

various operations to generate damage classification mask. Self-attention modules were included to capture important information, 

thus enabling the system to focus on the areas surrounding buildings. The proposed system was evaluated on xBD, a benchmark 

dataset for building damage assessment, and achieved the best segmentation and classification results by conducting several 

numerical and visual comparisons with related works that used the same dataset, and it also provided a higher degree of 

generalizability and reliability. 

 

Keywords: Disaster damage assessment, Satellite imagery processing, Semantic segmentation, Siamese network, Deep 

convolutional neural network. 

 

1. INTRODUCTION 

Natural disasters cause great economic, social and 

material devastation, and their effects extend for years to 

come. In 2019, USA was exposed to 14 natural disasters, 

each of which caused losses estimated at one billion 

dollars [1]. But the real loss is the loss of lives. According 

to recent statistics, the natural disasters kill more than 

90,000 people annually, and they directly affect more than 

350 million others [2]. According to World Health 

Organization (WHO) report, the Turkey-Syria earthquake 

alone killed more than 35,000 people [3]. Given 

environmental analysis of climate, natural disasters will 

increase in number and severity due to the rise of 

greenhouse gas emissions and volatile climate changes 

[4]. Therefore, we need to develop emergency plans and 

create the necessary requirements for disaster recovery. 

Taking into account that the areas affected by disasters are 

difficult to reach and are often isolated, which requires 

using of optimal route determination techniques to reach 

the goals quickly [5]. 

This requires the development of reliable techniques 

and programs that keep pace with these events to help 

specialized rescue teams and emergency responders 

identify the most affected areas that need urgent 

operations to evacuate citizens trapped in damaged 

buildings and treat the wounded [6]. The process of 

counting and evaluating the extent of damaged buildings 

at or after the disaster occur is considered one of the most 

important steps when carrying out relief and humanitarian 

missions. Which is often difficult and poses an immediate 

danger to people on the ground [7], [8]. This requires 

finding alternative solutions to do this remotely. 

Therefore, this study aims to assist humanitarian relief 

teams in rescue and recovery missions, aid routing, and 

resources allocation to areas stricken by natural disasters, 
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by using deep learning techniques on very high resolution 

(VHR) satellite images to evaluate buildings and estimate 

damage levels. 

Commercial satellites are constantly increasing around 

Earth orbit. The companies that own these satellites, like 

DigitalGlobe company [9], are constantly improving the 

generation of (VHR) satellite images, which in turn 

provide accurate assessments of damage levels in 

buildings [10] and high accuracy in identifying and 

tracking targets [11]. With the development of machine 

and deep learning methods, it became possible to analyze 

a huge number of categorical data, text data, time series 

data and numerical data like VHR images [12]. This will 

speed up the assessment of damaged areas and facilitates 

relief operations when disasters strike. In this research, a 

Siamese U-net system is proposed to extract vector 

features from a pair of satellite images, and then generates 

a mask (map) with semantic segmentation of buildings 

and classification of damage levels, as shown in Fig. 1. 

 

Figure 1.  Sample (pair of images and ground truth mask) from xBD dataset, and damage classification mask of the proposed system

The main contributions of this research are: 

• Developing a Siamese deep learning network with 
remote sensing for accurate classification of 
buildings damage levels based on satellite images. 

• Modifying the U-net model to generate a pair of 
binary buildings segmentation masks, in addition 
to damage classification mask, to facilitate 
comparison between pre- and post-disaster 
images. 

• Employing self-attention techniques to focus on 
the areas surrounding buildings and accurate 
classification, especially in disasters that do not 
cause direct damage to buildings, such as floods. 

The remaining part of this research is structured as 

follows: Section 2 presents literature review of various 

DL-based disaster damage assessment methods. Section 3 

explains the proposed methodology and Siamese U-net 

architecture, in addition to a detailed explanation of the 

dataset used and training settings in this research. Section 

4 presents the numerical and visual results and 

comparisons of the proposed system and comparative 

works, in addition to a detailed discussion of the above. 

Finally, Section 5 explains the conclusion of the research. 

 

2. LITERATURE REVIEW 

Standard assessment systems, used to evaluate disaster 
damage and provide fast and accurate classification 
results, require training for all types of natural disasters. 
Much of the literatures focuses on designing a damage 
assessment system for one type of disaster. While other 

literatures provide a binary classification of buildings, 
damaged and undamaged [13], [14]. 

The authors of [15] proposed the use of machine 
learning techniques to assess building damage resulting 
from earthquakes. They used decision tree, random forest, 
support vector machine, K-nearest neighbor and artificial 
neural network techniques to predict buildings damage 
based on simulated earthquake dataset. While the 
performance of the proposed machine learning techniques 
was evaluated on a real dataset of building damage 
resulting from the Nepal earthquake in 2015. 

One of the difficult challenges facing researchers is 
evaluating buildings damaged by flood and tsunami 
disasters [16]. The evaluation process based only on 
detecting damage to the building’s surface is considered 
an inaccurate procedure, as it requires a survey of the 
areas surrounding the buildings as well. A Convolutional 
Neural Network (CNN) was used by [17] to scan interior 
and exterior landmarks and features of buildings after a 
flood. To test the performance of the proposed model, the 
researchers relied on the “Heavy rainstorm in Zhengzhou” 
dataset to classify flood damage levels in rural homes. 
The proposed model provided higher accuracy results 
compared to ResNet-50 [18] and MobileNet-v2 [19] by 
supporting it with visual analysis of image features. 

Datasets that containing satellite images used to assess 
damage of buildings were limited to one type of natural 
disaster like fires [20], hurricanes [21], floods [22] or 
earthquake [23]. While xBD was designed as the first 
dataset containing the largest number of natural disasters 
[24]. xBD is a benchmark large-scale dataset that used in 
the problems of building damage estimation and change 
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detection resulting from natural disasters. It contains 
22,068 VHR satellite images that collect from various 
disasters like hurricanes, floods, fires, earthquakes and 
volcanoes. In addition, it provides ground truth masks 
with four classes of buildings damage. The authors 
proposed the xBD baseline, which consist of two 
networks, for disaster damage assessment. They first fed 
the U-Net with a post-disaster image for building 
segmentation, and then fed the ResNet-50 with a post-
disaster image for damage classification. 

In fact, deep neural networks are used in the field of 
building damage assessment through two tasks: building 
segmentation based on pre-disaster images, and damage 
level assessment based on post-disaster images. Some 
researchers have addressed the use of the two tasks 
separately and sequentially (one- stream) [25]. 

Two different networks were used to perform the 
segmentation and classification tasks separately in [26]. In 
the first step, an image before the disaster occurs is 
entered into the U-net model (based on ResNet-50) to 
generate a binary map for the background and buildings. 
The ResNet-50 encoder based on 3 successive blocks, 
which repeated 3, 4, and 6 times for the block 1, 2, and 3, 
respectively. In the second step, the detected buildings are 
separated and fed into the EfficientNetv2 [27] model 
individually with a 224-pixel image. Instead of classifying 
all the buildings together within the map, each building 
has been clipped individually and then classified into 1-
of-4 damages classes. They fed their network using the 
first tire of xBD dataset, which contains only 7 of the 19 
disaster types in xBD. The results were IoU=0.608 for 
segmentation and F1=0.731 for classification. 

Conversely, other researchers exploited the 
relationship between pre- and post-disaster images to 
process both segmentation and assessment simultaneously 
(two-streams). The important features are extracted from 
the two images and then merged by concatenation [28] or 
subtraction [29]. 

In [30], the researchers proposed using a single 
convolution-based network for both segmentation and 
classification tasks. Based on a pair of pre- and post-
disaster images from xBD dataset, features in each layer 
were extracted to generate a multiple feature map using 
the Feature Pyramid Network (FPN). Then, the Mask R-
CNN network is fed with these features to perform the 
localization and classification tasks simultaneously. By 
extracting 512 features from the input image, their 
proposed network achieved F1=0.835 for localization and 
F1=0.697 for classification. In this paper, we proposed a 
Siamese U-net system with a self-attention module that 
identifies and evaluates disaster-affected areas through 
semantic segmentation and damage levels classification of 
VHR satellite images. 

3. THE PROPOSED METHOD 

This section describes the designing Siamese U-net 
architecture for building semantic segmentation and 
damages levels classification. One part of this architecture 
is the U-net [31], which receives an input image and 
performs analysis and processing on it to generate a 
buildings segmentation mask as a first step. These 
operations done in the encoder, which consists of a set of 
sequential blocks. In this research, 2-encoder with 5-block 
were adopted to extract features from two pairs of input 
images, pre-disaster (I-pre) and post-disaster (I-post), see 
Fig. 2. 

In each block a pair of 3 x 3 2D-convolution were 
used, non-linearity ReLU activation function and batch 
normalization. Then followed by dropout (0.2) to reduce 
the overfitting. Due to the large number of parameters and 
computations resulting from the network structure, the 
dimensions were significantly reduced (downsampling) at 
the end of each block by using a 2 x 2 max-pooling. The 
number of features produced at the end of each block 
doubled, starting with 64 in the first block and reaching 
1024 in the fifth block. The U-net model was modified 
and used again inversely to generate two pairs of masks 
(M-pre and M-post) to facilitate comparison between the 
I-pre and I-post disaster input images. 

On the decoder side, the green region of the Fig. 2, the 
process is reversed. Where the dimensions are increased 
(upsampling) using 4 x 4 2D-convolution-transpose, in 
addition to using 3 x 3 2D-convolution, ReLU and batch 
normalization layers. Besides restoring the initial pixel 
resolution of the raw image, the U-net concatenates and 
shares local information of the features from the blocks of 
the 2-encoder and the new decoder using skip connection. 
Therefore, the decoder extracts high-dimensional feature 
vectors from this information to generate damage 
classification mask (M-damage) through concatenation 
and 2D-convolution operations. This is the second step in 
the proposed system. The feature vectors created by the 
U-net encoders and the independent decoder represents 
the Siamese net which reduced the size of the model and 
the number of learned parameters along training phase in 
comparison to [26], [30]. 

In addition, self-attention modules were placed in the 
Siamese net which helps it focus on the different shapes 
and areas surrounding target buildings when evaluating 
and assessing damage. The attention gates were 
introduced by [32] to help image analysis by capturing 
important features and information passing over skip 
connections. The importance of this step is evident in 
cases of flood and tsunami disasters which may not lead 
to damage to the roofs of buildings. But the surrounding 
water causes major damage inside buildings and leads to 
great loss of life especially in small urban and rural homes 
compared to rise buildings. 
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Figure 2.  The architecture of the proposed Siamese U-net system with self-attention module

Finally, from the last feature vector z we obtained the 
required number of classes N using softmax activation 
function (1). The network then produces a vector with 
predicted probability values P(z) for N-of-classes (2). 
Then, the final classification output y of the input image 
was computed using the maximizing (3). 

 𝜎(𝑧)𝑖 =  
𝑒𝑧𝑖

∑ 𝑒𝑛
𝑧𝑁

𝑛=1
 ()    +   =  () () 

 𝑝(𝑧) = [𝑝(𝑧) , 𝑝(𝑧) , … , 𝑝𝑁(𝑧)] ()    +   =  () () 

 𝑦 = max 𝑝(𝑧) ()    +   =  () () 

A. Dataset 

Dataset used in the process of training and testing the 
proposed system has a major impact in designing the 
system and obtaining good, realistic and reliable results. 
xBD [24] is a benchmark large-scale dataset that used in 
the problems of building damage estimation and change 
detection resulting from natural disasters. One of the xBD 
characteristics is that it provides 22,068 VHR satellite 
images (1024*1024 pixels) covering an area of 45,362 
km2 and contains 850,736 buildings. These data were 
collected from 19 natural disaster events as shown in Fig. 
3, and for these reasons it’s considered the largest dataset 
in this field to date. The xBD dataset was used in this 
research for the following reasons: 

• xBD covers several types of natural disasters such 
as hurricanes, floods, fires, earthquakes and 
volcanoes. This represents a challenge when 
designing DL model for different disasters types. 

• Datasets often provide only two levels of damage: 
“damaged” or “undamaged”. While xBD provides 
masks building polygons with 4 levels of damage: 
(No-damage, Minor-damage, Major-damage, 
Destroyed). 

• The layout of buildings varies in terms of shape, 
size, and density from one region to another, and 
thus the damage of buildings varies with different 
regions. That's why xBD focused on including 
samples from different locations around the world 
as shown in Fig. 3. 

B. Training sitting 

One of the U-net pros when compared to fully 
convolutional neural networks is that it has a lightweight 
architecture that can work on small datasets. However, 
since deeper networks are considered harder to optimized 
and consume more training time compared to shallower 
networks [33]. Therefore, the weights of the first layer 
were initialized using the inceptionV3 network [34] that 
was pre-trained on the large ImageNet dataset. This 
contributed to achieving better convergence and 
improving training time. 
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Figure 3.  Map of disaster types and their distribution around the world in the xBD dataset 

The entire dataset was shuffled and randomly split 
before sending it to the model. 15% of the dataset was 
hold out for model testing. The remaining 85% was split 
in a ratio of 80:20 for model training and validation, 
respectively. Thus, it was confirmed that both train-set 
and test-set now include different images and events, and 
ensuring that the model simulates performance as in a 
real-world scenario when it is fed images it had not seen 
previously. 

The model is trained for 100 epochs with a batch size 
of 32, and the initial learning rate is 1x10-3. Several 
experiments were conducted on the size of the samples in 
each batch, where the image size was reduced from 1024 
pixels to 512*512 and then 256*256. The experiments 
showed that having batches of 16 images with a size of 
256 pixels contributes to reducing memory and time use 
for both training and testing, which is why it was adopted 
in this research. The Adam optimizer [35] is used to 
optimize the training process and compute the learning 
rate which decays until it reaches zero in the last epoch. 
Finally, the binary cross-entropy is used for building 
segmentation loss, and the categorical cross-entropy is 
used for damage levels classification loss. 

It should be noted here that these settings were not 
chosen randomly, but rather many experiments were 
conducted to obtain the best results. The proposed system 
is implemented in python 3.6 with Intel (R) Core i7-
7800X CPU @ 3.50 GHz and Nvidia Titan V GPU. 
During training phase, data augmentation and 
preprocessing operations like (vertical/horizontal flips, 
rotation, sharpening and contrast) were used to reduce 
overfitting and significantly enhance the building 
segmentation and damage classification results [36]. 

4. RESULTS 

During the training phase, the Siamese U-net learns 
how to extract feature vectors from the training set and 
produces a map with building polygons and labeled 
samples for damage classes. A separate validation set is 
employed to evaluate the Siamese U-net during the 
process of adjusting the hyper parameters and throughout 
the training phase. Finally, the testing set is used to 
provide a realistic and unbiased assessment of the 
generalization ability of the system, because it is a 
separate part of the training and validation sets and the 
network has never seen this data before. 

The Intersection over Union (IoU) metric was used for 
semantic segmentation. IoU is a common localization 
metric that used to measure segmentation accuracy and 
compute segmentation errors [37]. IoU computes the 
amount of overlap between two bounding boxes, the 
ground truth buildings mask bounding box (A) and the 
predicted buildings bounding box (B), (Eq. (4)). A high 
IoU value indicates that there is a good match in buildings 
between the ground truth mask and predicted mask, where 
a score of 1 represents a perfect match. The opposite is 
true, as a low IoU value indicates that there is little match 
in buildings between the ground truth mask and predicted 
mask. 

 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑣𝑒𝑟 𝑈𝑛𝑖𝑜𝑛 (𝐼𝑜𝑈) =  
𝐴∩𝐵

𝐴∪𝐵
 ()    +   =  () () 

For damage levels classification, there are many 
metrics that are used to monitor system performance. The 
Accuracy metric is flawed and inappropriate for the 
imbalanced xBD dataset, which will predict more than 
70% towards “no damage” because it represents 75% 
compared to the quantity of the other classes. While F1-
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score is a suitable metric for the imbalanced xBD dataset. 
The performance of Siamese U-net was evaluated during 
the training using F1-score (Eq. (5)). 

 𝐹1 = 2 × 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑟𝑒𝑐𝑎𝑙𝑙
 ()    +   =  () () 

TABLE I.  COMPARISON RESULTS OF THE PROPOSED SYSTEM AND COMPARED WORKS USING IOU AND F1 FOR SEMANTIC SEGMENTATION AND 

DAMAGE LEVELS CLASSIFICATION, RESPECTIVELY 

Model 
IoU 

segmentation 

F1 

No-damage 

F1 

Minor-damage 

F1 

Major-damage 

F1 

Destroyed 

xBD baseline [24] 0.80 0.663 0.143 0.010 0.465 

U-net_EfficientNetB4 [26] 0.72 0.898 0.438 0.547 0.739 

Mask R-CNN_FPN [30] 0.83 0.906 0.493 0.722 0.837 

Siamese U-net [our] 0.88 0.918 0.643 0.796 0.851 
 

Table 1 shows the performance results of Siamese U-
net on the testing set for both semantic segmentation 
(using IoU) and damage levels classification (using F1-
score). To demonstrate the strength of the proposed 
system, a comparison was made with works [26], [30]. 
These works were chosen because their architecture is 
similar to the proposed model, it based on CNN which is 
the basis for U-net, and they used the same xBD dataset. 
Also, because their code is available online, which 
facilitates the process of configuring the training settings 
for all works, thus we ensure objectivity and fairness 
when comparing. Table 1 also shows the numerical results 
of the comparison between the proposed system and 
compared works [26], [30] and xBD baseline too [24]. 

We can see from the table that our proposed system 
achieved superior results for both semantic segmentation 
and damage levels classification and for all damage 
categories compared to [26], [30] and xBD baseline [24]. 

It is clear from the table that all models achieved the 
best performance in classifying no-damage buildings. But 
the real challenge lies in classifying buildings with minor-
damage, as these damages do not appear clearly on the 
surfaces of the buildings, which is why all models achieve 
the lowest levels of accuracy in classifying these 
buildings. 

We observed that models classify damage levels for 
buildings with minor-damage as building with major-
damage, which leads to lower recall rate and hence lower 
F1 score. This is due to the occurrence of some confusion 
in the models when extracting the semantic features 
surrounding the buildings. Buildings are classified as 
minor-damage when they are located in areas of fires, 
volcanic flows, or floods, and these same buildings are 
classified as major-damage when they are completely 
surrounded by these elements, as damage assessment 
experts mention in [38]. 

 

Figure 4.  Visual comparisons of building segmentation and damage classification of the proposed Siamese U-net and compared works
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Fig. 4 shows a visual comparison of three different 
samples (an earthquake, tsunami and flood) from the 
testing set for the proposed system and the compared 
works [26], [30]. The colors of segmentation mask are: 
black (area outside building), green (no-damage), orange 
(minor-damage), pink (major-damage) and red 
(destroyed). Because the xBD baseline achieved poor 
results, it was excluded from the visual comparison. 

The results appear in Fig. 4 that all the works succeed 
to different extents in detecting and segmenting most of 
the buildings. However, our proposed method excels in 
achieving the highest accuracy to draw building boundary. 

For building segmentation, the proposed system 
provided higher segmentation results than the compared 
works. As we noted in Table 1 of the matching results 
between the ground truth mask and predicted mask (IoU 
segmentation), This is also shown in Fig. 4. Where the 
proposed system identifies all buildings and crops them 
close to the size and shape of the ground truth mask. The 
reason for this is that the proposed system used semantic 
segmentation of buildings instead of just localization. This 
is done by first detecting the buildings in the image, then 
drawing a border around it (localization), and finally 
gathering the points of each building using a segmentation 
mask. In addition, we cropped each satellite image with a 
size of 1024*1024 pixels into 16 new images with a size 
of 256*256, instead of just resizing the image itself to 
512*512 or less. This had a significant impact on 
segmentation of very low-resolution buildings, as well as 
reducing memory and time usage for both training and 
testing. 

For damage levels classification, the proposed model 
significantly outperformed the compared works. Here the 
benefit of the concatenation operation appears, which we 
used in the encoder part for both pre- and post-disaster 
images in order to preserve information and important 
features for detecting and classifying buildings. While the 
compared works do images subtracting and concatenating 
only in the decoder part. As mentioned in section 3, The 
self-attention module utilizes feature vectors to capture 
long-range information from buildings and their 
surroundings as well, this had a significant impact on the 
damage classification process. Moreover, the use of data 
augmentation and pre-processing operations such as 
(vertical/horizontal flip, rotation, sharpening and contrast) 
enhanced the segmentation and classification processes.  

Regarding false alarms, the proposed model succeeds 
in avoiding the detection of two false alarms compared to 
the works which failed to avoid them as we can see in the 
lower right region of the images in the first row. This 
issue was repeated again in the third row and along the 
right side of the images for the compared works. 

 

It is clear from the numerical and visual comparisons 
that work [26] obtained the lowest results. This is because 
the researchers first fed the U-Net with a post-disaster 
image for building segmentation. Then for damage 
classification, they fed the EfficientNetB4 with a 224-
pixel image of each individual building. In addition, their 
encoder consists of 3 successive blocks, which repeated 3, 
4, and 6 times for the block 1, 2, and 3, respectively. Such 
complexity method (not end-to-end trainable) with deep 
networks leads to the phenomenon of disappearing 
gradients, as a result of the very slow decrease in gradient 
values, and thus hinders the convergence process in the 
network. Which negatively affected the segmentation and 
classification processes. 

We conclude from the above that our proposed 
Siamese U-net outperforms the methods proposed by the 
works [26], [30] in the damage levels classification by a 
large margin. 

Looking at the third row in Fig. 4 we notice a 
difference in the angle of taking the pre- and post-disaster 
images.  There are also many buildings covered by trees, 
which partially obscure the process of detecting the 
buildings. This prompted us to conduct a new comparison 
to discover the accuracy of the performance of the 
proposed model. 

Fig. 5 presents three challenges between the proposed 
model and compared works. The first challenge involves 
detecting the cloud-covered building that appears at the 
bottom of the image in the first row. The compared works 
fail to detect this building, while the proposed model 
succeeds in detecting it despite the difficulty of seeing this 
building with the naked eye. 

The second challenge involves detecting buildings in 
two images taken at different viewing angles from the 
sensor to the ground, thus causing a slight change in the 
look of the scene. The compared works succeed in 
classifying most buildings but fail to detect two buildings 
located at the top of the images. While the proposed 
model succeeds in detecting these two buildings. 

The last challenge includes detecting buildings 
partially covered by trees and their shades. It is clear from 
the images in the third row that the compared works failed 
to detect some buildings covered with trees. While the 
proposed system succeeds in detecting all buildings, even 
those covered by trees. 

It is clear from all previous comparisons that our 
proposed Siamese U-net, which simultaneously segment 
and assess building damage levels, succeeds with high 
accuracy in different disasters and for various visual 
challenges, while the compared works fail to reach this 
accuracy and evaluate the damage correctly. 
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Figure 5.  The robustness of the proposed Siamese U-net in assessing damage

5. CONCLUSION 

The frequency of natural disasters continues to 
increase, causing a lot of loss of life and property. Rescue 
teams are trying to use all modern techniques to evacuate 
people affected by these disasters first and then to deliver 
the necessary food and medical aid. This paper aims to 
present a system based on deep learning to identify and 
assess damages in sites affected by these disasters. In this 
study, we proposed a Siamese U-net DL system with self-
attention technique for semantic segmentation of 
buildings and classification of damage levels. The 
proposed system trained and tested on xBD satellite 
imagery dataset. With the use of pre-processing 
techniques on pairs of pre- and post-disaster images, the 
U-net model has proven its efficiency in building 
segmentation. Then the Siamese network with attention 
techniques provided the best results in generating damage 
levels classification masks. The performance of the 
proposed system was compared with a number of related 
works that used the same dataset, and the results were 
much better than the compared works. 
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