

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. #, No.# (Mon-20..)

E-mail:author’s email

 http://journals.uob.edu.bh

Offloading of Indoor Positioning System Using Cloudlet

Framework

Sinjiru Setyawan1, Gede Putra Kusuma2

1,2 Computer Science Department, BINUS Graduate Program - Master of Computer Science,
Bina Nusantara University, Jakarta, Indonesia, 11480

E-mail address: sinjiru.setyawan@binus.ac.id1, inegara@binus.edu2

Received ## Mon. 20##, Revised ## Mon. 20##, Accepted ## Mon. 20##, Published ## Mon. 20##

Abstract: This study evaluates the performance of Indoor Positioning System (IPS) by combining offloading and fingerprinting
techniques using Convolutional Neural Network (CNN) implementing the cloudlet framework. The aim of the research are to
measure the prediction time and battery consumption at various prediction execution location of the CNN model. The execution
locations are mobile device (MD), cloudlet, cloud, and using automatic prediction execution location selection. The Received Signal
Strength Indication (RSSI) data from 8 Bluetooth Low Energy (BLE) beacons are collected using an Android application and will be
used to train the CNN model. The trained CNN model is then used as radio map to predict the coordinates of the MD. Evaluation is
conducted by measuring the battery consumption and prediction speed over 30 minutes while continuously running predictions at
four execution locations. The prediction speed is measured from the start of the prediction until the end of the prediction. The study
results show that the prediction approach using the cloudlet is more efficient on battery consumption compared to other execution
locations. Additionally, the proposed automatic selection method of selecting prediction execution location demonstrates faster
execution speed compared to performing the prediction s at a single location. These findings are important for understanding the
balance between prediction speed and battery consumption efficiency.
Keywords: Indoor Positioning System, Bluetooth Low Energy, Cloudlet Framework, Offloading Method, Convolution Neural
Network

1. INTRODUCTION
The increasing development of wireless technology

has made indoor positioning technology an interesting
topic to discuss. Indoor Positioning System (IPS)
technology has various applications in fields such as asset
tracking, animal tracking, and table number tracking in
the restaurant industry [1]. IPS technology addresses the
limitations of existing location tracking technologies like
GPS. The Global Positioning System (GPS) utilizes
signals from multiple GPS satellites to determine the
receiver's position. However, GPS has limitations, such as
low accuracy indoors due to obstacles like building walls,
signal interference, diverse building structures, and
unreliable indoor communication [2]. IPS technology
becomes essential to determine the position of objects in
indoor environment where GPS signals cannot reach.

To overcome the challenges of indoor tracking,
several technologies have been developed, including
Frequency Modulation (FM), Ultra-wideband (UWB),
Radio Frequency Identification (RFID), WiFi, Bluetooth,

Zigbee, and cellular networks (LTE & 5G) [3]. Bluetooth,
particularly Bluetooth Low Energy (BLE), is commonly
used as an IPS infrastructure due to its relatively high
accuracy (±1-3 meters)[3], affordability, ease of access,
fast data transfer speeds, and widespread infrastructure,
such as BLE-enabled devices in smartphones.

In IPS, one method to determine the location of a
target device is by utilizing Received Signal Strength
Indication (RSSI). RSSI is an indicator of the signal
strength received by a device. It can be used to estimate
the location of a device by measuring the signal strength
from a transmitter or base station to a receiving device.
This method is known as proximity localization[3].
However, this method can only measure the distance
between the device and the signal transmitter, not the
actual direction of the location. Another method utilizing
RSSI is fingerprinting, which requires multiple fixed base
stations. The device measures the RSSI at various points,
creating a radio map used for location tracking based on
received RSSI.

2 Author Name: Paper Title …

http://journals.uob.edu.bh

Fingerprinting in IPS requires processing the collected
RSSI data from various points to create a radio map for
tracking. In some studies, deep learning methods, such as
Convolutional Neural Networks (CNN), are employed for
fingerprinting [4]. CNNs generate a training model that is
then used on the target device to estimate its location
based on received BLE signals. The use of CNNs in
model creation and location prediction demands
significant computational power. When implemented on
devices with limited computing capabilities, like
smartphones (as seen in [5]), it may lead to noticeable
delays in location tracking and increased battery
consumption.

To address the challenges of devices with limited
computing power or limited power sources, one
applicable method is offloading. Offloading involves
transferring computational tasks to devices with higher
computing capabilities. Various offloading frameworks,
such as cloudlet and cloudclone, can be used in IPS, each
with its own advantages and disadvantages. Offloading
illustration can be seen in Figure 1.

Figure 1 Offloading Illustration

This research aimed on to implement and evaluate the
offloading method in the prediction process to determine
the position of an individual. The design used consists of
microcontroller as BLE beacon, smartphone as BLE
signal receiver, a cloudlet server and cloud server as
prediction server that use CNN model as the prediction
processor. We proposed to use cloudlet as an offloading
method because the prediction location is at the edge of
local network with lower network latency than cloud.
With said benefit, using cloudlet as offloading method
was chosen with the hope of better energy efficiency and
faster prediction

2. PREVIOUS WORKS
Research related to computation offloading on mobile

devices has been conducted using various offloading
methods and frameworks. For applications requiring low
latency, commonly used frameworks include CloudLet,
Mobile Edge Computing (MEC), and Edge Computing.
However, for applications not requiring low latency,

offloading methods to Cloud Servers are typically
employed. Most studies on offloading focus on mobile
application offloading, with limited exploration of
offloading implementation in Indoor Positioning System
(IPS) systems.

A study by Marwa Zamzam, Tallal Elshabrawy, and
Mohamed Ashour [6] measured latency and energy
consumption by offloading IPS to Mobile Edge
Computing and Cloud. Three offloading algorithms
(ILLOO, ILLCO, ILLGO) were compared, demonstrating
a 70.36% reduction in processing time when using
MEC/Cloud compared to local processing on the mobile
device. Energy consumption was also 50% more efficient
with offloading than with local computation on the mobile
device.

In another study by Dimitrios Spatharakis et al. (2020)
[7], offloading was applied to a Location-Based Service
with a mobile device as the offloading object. Image
detection processing using an edge server showed a
response time of 5 seconds compared to 30-60 seconds for
local processing, indicating a 5-6 times improvement with
the edge server as the offloading server.

Yanjun Guo, Liqiang Zhao, Yong Wang, Qi Liu, and
Jiahui Qiu [8] implemented fog computing as an
offloading solution. Offloading decisions were made at
runtime, considering the nearest computational node.
Results showed a 1-second delay in cloud computing, 0.5
seconds using fog computing, and 0.2 seconds in
distributed fog computing.

Using game theory for offloading determination,
Marwa Zamzam, Tallal El-Shabrawy, and Mohammed
Ashour [6] achieved a 50% energy saving with the game
computation offloading algorithm compared to local
computing and random offloading.

Imran A. Zualkernan and Mohammed Towheed [9]
compared power consumption and CPU utility for voice
prediction using CNN on a smartwatch. Edge computing
resulted in a larger battery capacity drop due to network
load, with a 14.8% faster battery capacity drop compared
to local computation on the smartwatch.

Jude Vivek Joseph, Jeongho Kwak, and George
Iosifidis [10] implemented offloading strategies
considering parameters such as transmission delay, CPU
clock, tasks, and network path, achieving a 50% reduction
in power consumption.

Saif U. R. Malik, Hina Akram, Sukhpal Singh Gill,
Haris Pervaiz, and Hassan Malik [11] applied the
CloudClone framework, showing a 10% difference in
battery consumption for tested mobile devices with
offloading resulting in lower energy consumption.

Sudip Misra, Bernd E. Wolfinger, Achuthananda M.
P., Tuhin Chakraborty, Sankar N. Das, and Snigdha Das
[12] used auction systems for offloading with cloudlet and

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 3

http://journals.uob.edu.bh

cloud server architecture. Execution duration for cloudlet
was higher than for MD and cloud, measured in
milliseconds (ms), while energy consumption in MD was
greater when offloading for tasks exceeding 20,000.

Tao Huang, Feng Ruan, Shengjun Xue, Lianyong Qi,
and Yucong Duan [13] compared cloud, cloudlet, and
NSDE methods in multimedia workflow, achieving
smaller power consumption and processing time with
cloudlet and NSDE algorithms.

In the final study by S. Erana Veerappa Dinesh and K.
Valarmathi [14], direct cloud offloading strategy
considering battery, network, CPU, and bandwidth
resulted in 33.3% energy savings (Joule).

Based on existing research, several studies compare
offloading to the cloud. However, studies in [6], [7], [8],
[9], [10], [12], [13] utilize Edge Computing or Mobile
Edge Computing, also known as cloudlet, where the
architecture is positioned closer to the mobile device
(MD). The goal of using this framework is to bring the
computing server closer, reducing the time needed for
data transportation over the internet to the cloud server.

Among the studies utilizing cloudlet or edge
computing, study number [9] focused on smartwatch
devices using TensorFlow.js running through a web
browser. The results indicated higher battery consumption
on the edge computer due to additional load during data
transmission to the edge server. Consequently, the
performance when running the application through the
smartwatch itself became more efficient.

From the available research, cloudlet appears to meet
the requirements for IPS research due to its proximity to
users, providing faster processing response times.
However, cloud technology should not be ignored. Cloud
can serve as a backup consideration if the cloudlet is at
full capacity, even with potential time penalties.

3. PROPOSED METHOD
This section describes the offloading technique using

cloudlet, fingerprinting method, and position prediction
method for the IPS.

A. Fingerprinting Method
To predict the position of the mobile device being

tracked, it is necessary to obtain RSSI values of the BLE
beacons. These obtained RSSI values will be used to
make the radio map.

The dataset is collected by obtaining RSSI values at
specific coordinates using the Android application
developed exactly for RSSI collection purpose. This
phase is also referred to as the online phase in the regular
fingerprinting method.

Figure 2 BLE Scanner Application

Data collection is performed at 36 points within the
indoor environment using the application in Figure 2,
documenting 2000 RSSI readings of 8 BLE signals for
every coordinate. Figure 3 contains information about the
BLE beacons location and the points where BLE RSSI is
captured.

Figure 3 BLE Beacon position and measurement points

4 Author Name: Paper Title …

http://journals.uob.edu.bh

The measurement points consists of 8 BLE beacons
using ESP32-C3 as beacons and 6 by 6 grid with 60cm
space between the measurement points.

While collecting RSSI data, the android application
actively filter the received RSSI data so only beacon with
advertising name starting with SJ will be scanned. After
successfully scan the beacons, the RSSI data is saved on
the mobile device and later used for making the radio
map.

After the dataset is collected, the next step before
training is to evaluate the dataset to clean the data from
incomplete or poor-quality entries, such as null values.

B. Position Prediction Model
Before predicting the position of the mobile device

(MD), the collected data needs to be prepared. The
received RSSI data needs to be cleaned from null values
and bad records.

To create a radio map from the collected RSSI data,
fingerprinting step is needed. CNN models will be used
to do the fingerprinting. Before choosing the suitable
CNN model as the model in later experiments, the CNN
models needs to be compared.

There are 3 CNN models to compare. They are
ResNet50, VGG16 and Custom architecture created in
[15]. To compare these models, first the received dataset
needs to be split into 3 parts: training data, validation
data, and test data. These data then used to train the CNN
models.

The model training conducted with implementation of
callbacks for each training epoch. The earlystopping
callback will be used to prevent overfitting of the model
training. The results of the training model then tested
using the test dataset prepared on previous step.

After the training is done, the comparison between
the models are conducted. The comparison consists of
comparing the train accuracy, train validation accuracy
and the test accuracy result. These parameters then used
in comparing the model. Model with the best accuracy
will be used in the offloading experiment.

C. Offloading using Cloudlet
The technique to decide where the offloading will

occur will be determined by the comparison of prediction
speed on 3 execution places : MD, cloudlet, and cloud.
This comparison can be seen on Figure 4

Figure 4 Automatic Offloading execution location selection

The application flow in predicting the location of
the target begins with the smartphone receiving all the
BLE RSSI and storing the data. Next, prediction will start
with comparing when the analysis last taken place. If the
analysis takes place after 10 seconds then the app will do
the analysis again. This 10 seconds pause is designed to
prevent the analysis to take place every time the
prediction occur. This will leads to increased prediction
time and faster battery drain. The analysis consists of
comparing all the time taken to predict in each prediction
location. After the comparison finished, the computation
then takes place on the location with the shortest
prediction time. The prediction diagram can be seen on
Figure 5

Figure 5. IPS Architecture

The decision decided on which prediction place

uses the least prediction time. Then for the next 10
seconds, the offloading will be conducted on selected
location. The resource will then perform the prediction

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 5

http://journals.uob.edu.bh

and send back a response containing the prediction class
and prediction confidence.

4. EVALUATION
The evaluation conducted can be split into two

major parts. The first one is to evaluate the prediction
model using the CNN. After the models are trained,
every model will be tested using the test dataset. Every
model testing results then saved into tables consisting of
validation test accuracy and test accuracy.

The first phase of the evaluation focuses on the
prediction model developed using CNN. This involves a
detailed process starting from the training phase, where
multiple CNN models are trained on the training dataset.
Each model undergoes training involving numerous
epochs and iterations to fine-tune the weights and biases,
ensuring the model learns the underlying patterns and
features from the dataset.

The results of each model's performance are
meticulously recorded in tables, which include detailed
metrics for each epoch and the final validation and test
accuracy. This comprehensive recording allows for a
thorough comparison between different models. By
analyzing these results, the model with the highest test
accuracy and acceptable validation accuracy is selected
for the next phase of evaluation.

After the results of each model have been
recorded, performance measurements and comparisons
between models can be carried out to determine which
model will be used for offloading.

The selected CNN model is then converted into a
TensorFlow Lite (TFLite) format. TFLite is designed to
be lightweight and optimized for mobile and embedded
devices, making it suitable for deployment in various
offloading locations such as cloudlets, mobile devices
(MD), and the cloud. This conversion is crucial as it
ensures the model can run efficiently on different
hardware platforms with minimal resource consumption.

With the TFLite model ready, the next phase
involves evaluating the offloading techniques. This
involves deploying the model to different offloading
locations and measuring the performance metrics. The
offloading locations considered for this evaluation are
cloudlets, mobile devices, and the cloud. Each location
presents unique characteristics and challenges in terms of
latency, computational power, and energy consumption.

The second evaluation will evaluate the offloading
techniques. After the data is uploaded to offloading
locations such as cloudlet, MD, and cloud. So
experiments on offloading methods can be carried out,
The testing will be carried out 4 times according to the
location where the offloading is carried out using the
Android application that has been created.

The results that will be obtained from this
experiment will be the length of prediction time at the

location used and the battery percentage every minute for
30 minutes starting with 100% battery condition for each
method. The prediction time is measured from the start of
the prediction until the prediction produces a coordinate
class. In addition, battery measurements will be measured
every minute while the application is running.

The first test will be carried out with prediction
runs only on MD. In this setup, predictions are made
entirely on the mobile device. This setup tests the model's
performance when leveraging the device's local
computational resources. Key metrics recorded include
prediction time and battery consumption over a specified
period.

The second test will be carried out with
predictions running only on cloudlets. redictions are
offloaded to a nearby cloudlet. This setup aims to balance
between the low latency of edge computing and the
computational capabilities of cloud resources. Metrics
recorded include the time taken to offload the data, the
prediction time, and the resultant battery consumption.

The third test will be carried out with predictions
running only on the cloud. Predictions are offloaded to
the cloud, which typically offers substantial
computational power but at the cost of higher latency
compared to local or edge computing. Metrics include the
time taken for data transmission to and from the cloud,
the prediction time, and battery usage.

The fourth test will be carried out with running
predictions using the location selection method proposed
This method employs a dynamic offloading strategy
based on certain predefined criteria such as current
network conditions, latency, and battery levels. The
system dynamically selects the optimal offloading
location (MD, cloudlet, or cloud) to balance performance
and resource consumption.

The test results then recorded into two tables.
Table I captures the battery percentage over time for each
offloading method. The battery consumption is
monitored every minute for 30 minutes, starting with a
fully charged battery (100%). This data provides insights
into the energy efficiency of each offloading method.

TABLE I. BATTERY CONSUMPTION OVER TIME

Time
elapsed

MD Cloudlet Cloud

5 minutes 95% 98% 98%
10 minutes 70% 87% 85%
N minutes A% B% C%

6 Author Name: Paper Title …

http://journals.uob.edu.bh

TABLE II. PREDICTION TIME FOR PREDICTING LOCATION

No Method Prediction time

1 Cloudlet θ ms

2 Local (MD) θ ms

n … …

After the battery consumption has been recorded,

the received result will be taken from the percentage of
battery used over a 30-minute period starting from a full
charge, recording the percentage every minute. The
resulting data will depict data points of battery
percentage. Subsequently, this data will be input into a
linear regression to obtain the battery consumption rate
for each method. The formula for linear regression is as
follows:

 (1)

The linear regression model in (1) will tell the battery
consumption rate for each prediction location. The best
battery consumption is measured by the slope of the
regression model.

For measuring the duration of the prediction time,
measurements are taken from 36 measurement points
spaced 60 centimeter apart. The prediction time duration
will be measured from the moment the user presses the
prediction button and will stop when the user receives the
coordinates.

Table II records the prediction time for each method.
Prediction time is measured from the start of the
prediction process until the prediction produces a
coordinate class. This metric is crucial in understanding
the latency and responsiveness of the system under
different offloading conditions.
 The best prediction speed will be chosen from the
lowest mean of prediction time on every prediction
execution location.

5. RESULTS AND DISCUSSION
This section will shows the results of the model

prediction and the offloading evaluation results.

A. Prediction Model Results
To choose what model will be used in the

offloading evaluation, there are three CNN model that
need to be tested and evaluated. There are ResNet50,
VGG16, and Custom architecture. The prediction CNN
model architecture can be seen on Figure 6, 7, and 8

Figure 6. Resnet50 model

Figure 7. VGG16 model

Figure 8.. Custom Model model

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 7

http://journals.uob.edu.bh

After training the models using the acquired
dataset, the results then written on Table III

TABLE III. MODEL RESULT COMPARISON

Model Epoch Validation
Accuracy

Validation
Loss

Test
Accuracy

Resnet50 86 0,9927 0,0441 0,9877
VGG16 17 0,0268 3,5841 0,0250
Custom 84 0,9800 0,1250 0,9836

From the model training results, model with the

best validation accuracy and test are Resnet50 with
lowest validation loss. With this result, the model that
will be used on offloading testing is ResNet50. The
selected model then converted into tflite format and
distributed to the prediction execution location.

B. Offloading Evaluation Result
Prediction or task were done on mobile device,

cloudlet server, cloud server directly and using the
proposed offloading technique. The comparison will
compare the battery percentage every minute for 30
minutes span.

TABLE IV. BATTERY CONSUMPTION OVER TIME

Time
elapsed

MD Cloudlet Cloud Proposed
technique

5 min 97% 99% 100% 99%
10 min 95% 98% 98% 97%
15 min 93% 97% 97% 95%
20 min 91% 95% 95% 93%
25 min 89% 94% 94% 91%
30 min 88% 92% 93% 89%

Table IV presents a comparison of the average battery

consumption among devices performing the task. Based
on the results, the best energy efficiency is reflected on
the cloudlet method. This result will be best presented in
graph form.

Figure 9. a) Battery Percentage over time b) linear regression on battery

percentage

As shown in Figure 9, the highest battery
consumption is observed when tasks are performed
directly on mobile devices. This significant consumption
can be attributed to the intensive computational
requirements of running the prediction model locally,
which heavily taxes the device's processor and other
resources. Over a span of 30 minutes, the battery
percentage drops from a full charge of 100% to 88%,
indicating a substantial 12% decline. This steep drop
highlights the energy demands and potential
impracticality of relying solely on mobile devices for
such intensive tasks, particularly in scenarios where
battery life is crucial, such as in the field or during long-
duration use without access to charging facilities.

In contrast, when the task is offloaded to a cloud
server, the battery consumption on the mobile device is
notably less severe. The offloading process involves
transmitting data to the cloud for processing, which,
while still consuming energy, is far less demanding than
executing the task locally. As a result, the battery drop is
not as steep as when the task is performed on the mobile
device. This indicates that cloud offloading can be a
viable strategy for conserving battery life, especially in
applications where preserving device longevity is
important. The reduced energy drain also suggests that
cloud offloading can enhance the user experience by
prolonging device usability before recharging is
necessary.

The optimal battery performance is observed when
tasks are offloaded to a cloudlet. Cloudlets, which are
essentially small-scale cloud servers located closer to the
mobile devices, offer a balanced approach by providing
computational resources with lower latency compared to
distant cloud servers. As illustrated in Figure 9, when
tasks are executed on cloudlets, the battery percentage
drops from 100% to 92% over the course of 30 minutes.
This represents a mere 8% decline, making it the most
energy-efficient offloading method among those
evaluated. The cloudlet's proximity reduces the energy

8 Author Name: Paper Title …

http://journals.uob.edu.bh

cost of data transmission and leverages powerful yet
accessible processing capabilities, thus minimizing the
overall battery drain.

The rate of battery drain in the cloudlet scenario,
calculated at approximately 26% per minute, underscores
the efficiency of this method. The relatively minor
battery depletion compared to local and cloud offloading
demonstrates that cloudlets can effectively balance
computational demand and energy consumption. This
efficiency makes cloudlets particularly suitable for
applications requiring frequent, intensive computational
tasks where maintaining battery life is critical.
Additionally, the reduced latency associated with
cloudlets can enhance the performance and
responsiveness of mobile applications, further
contributing to a positive user experience.

In summary, the comparative analysis of battery
consumption across different offloading methods reveals
that while local processing on mobile devices leads to the
highest energy drain, offloading to cloud servers and
cloudlets significantly mitigates this issue. Cloudlets
emerge as the most advantageous option, offering the
best balance between conserving battery life and
maintaining computational efficiency. This finding
underscores the potential of cloudlets to improve the
sustainability and user satisfaction of mobile applications
that require robust processing capabilities. By
strategically leveraging offloading techniques, developers
can optimize both performance and energy usage, leading
to more efficient and user-friendly mobile solutions.

The second comparison is comparing the prediction
time across different execution locations. Prediction or
task will be done on mobile device, cloudlet server, cloud
server and using the proposed offloading technique. The
comparison will compare the duration of the task
between task execution locations. Then the prediction
time comparison can be seen on Figure 10

Figure 10 Execution time on all locations

The execution time on mobile device averaging
around 35ms with maximum of 57ms and minimum of
27ms. The execution time on cloudlet averaging around
43ms with maximum of 78ms and minimum of 27ms.
The execution time on cloud averaging around 135ms

with maximum of 186ms and minimum of 27ms. The
execution time using proposed technique averaging
around 24ms with maximum of 33ms and minimum of
27ms.

The differences of the execution duration between the
task execution duration can be seen clearly on the Figure
10. The highest average duration of task execution were
on the cloud. The second highest were taken on the
cloudlet and the fastest execution time were executed on
the using the proposed method.

6. CONCLUSION AND FUTURE WORKS
In summary, the shortcomings of the current indoor

positioning systems (IPS), especially in difficult
situations with bad GPS signals, were solved by
implementing a novel strategy. For location prediction, a
convolutional neural network (CNN)-based
fingerprinting method in conjunction with offloading
techniques was used. The experimental findings provided
important new information about the system's
performance, particularly with prediction time and power
consumption at different execution sites.

Offloading duties to cloudlet servers resulted in
significant improvements in energy efficiency, as
demonstrated by reduced power usage when compared to
mobile devices and direct cloud server execution. But
using the proposed technique the time taken to process
the data is significantly decreased. The improvement of
the suggested strategy is highlighted by the alignment of
these results with the original goal of overcoming
location tracking technology limitations, particularly in
indoor environments with spotty GPS signals.

In the future, optimization solutions for the execution
of mobile devices should be investigated. Possible
segmentation of tasks or algorithmic improvements to
lower power consumption should be taken into account.
Further system optimization depends on exploring
dynamic offloading rules, including edge computing
technologies, and improving the CNN-based
fingerprinting model. In order to guarantee that the
created IPS systems satisfy user expectations and
preferences, user-centric research should also be carried
out to obtain a comprehensive understanding of the trade-
offs between power consumption, prediction time, and
user experience.

In summary, the study not only demonstrates the
advantages of offloading for performance in IPS but also
lays the groundwork for future research and development
in the area, tackling the issues mentioned in the
introduction..

ACKNOWLEDGMENT
The writers thank Computer Science Department,

BINUS Graduate Program - Master of Computer Science,
Bina Nusantara University for supporting the research.

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 9

http://journals.uob.edu.bh

REFERENCES
[1] K. Szyc, M. Nikodem, and M. Zdunek,

“Bluetooth low energy indoor localization for
large industrial areas and limited infrastructure,”
Ad Hoc Networks, vol. 139, p. 103024, Feb.
2023, doi: 10.1016/J.ADHOC.2022.103024.

[2] S. Bian, P. Hevesi, L. Christensen, and P.
Lukowicz, “Induced magnetic field-based indoor
positioning system for underwater
environments,” Sensors, vol. 21, no. 6, pp. 1–25,
Mar. 2021, doi: 10.3390/s21062218.

[3] S. M. Asaad and H. S. Maghdid, “A
Comprehensive Review of Indoor/Outdoor
Localization Solutions in IoT era: Research
Challenges and Future Perspectives,” Computer
Networks, vol. 212, p. 109041, Jul. 2022, doi:
10.1016/j.comnet.2022.109041.

[4] T. Jian et al., “Radio Frequency Fingerprinting
on the Edge.” [Online]. Available:
https://github.com/neu-spiral/RFonEdge

[5] K. N. Alinsavath, L. E. Nugroho, Widyawan, and
K. Hamamoto, “Indoor location tracking system
based on android application using bluetooth low
energy beacons for ubiquitous computing
environment,” Journal of Communications, vol.
15, no. 7, pp. 572–576, Jul. 2020, doi:
10.12720/jcm.15.7.572-576.

[6] M. Zamzam, T. Elshabrawy, and M. Ashour, “A
minimized latency collaborative computation
offloading game under mobile edge computing
for indoor localization,” IEEE Access, vol. 9, pp.
133861–133874, 2021, doi:
10.1109/ACCESS.2021.3115157.

[7] D. Spatharakis et al., “A scalable Edge
Computing architecture enabling smart
offloading for Location Based Services,”
Pervasive Mob Comput, vol. 67, Sep. 2020, doi:
10.1016/j.pmcj.2020.101217.

[8] Y. Guo, L. Zhao, Y. Wang, Q. Liu, and J. Qiu,
“Fog-Enabled WLANs for Indoor Positioning,”
in 2019 IEEE 89th Vehicular Technology
Conference (VTC2019-Spring), IEEE, Apr. 2019,
pp. 1–5. doi: 10.1109/VTCSpring.2019.8746592.

[9] I. A. Zualkernan and M. Towheed,
“Computational Offloading of Convolutional
Neural Network on a Smart Watch,” in 2020
International Conference on Artificial
Intelligence in Information and Communication,
ICAIIC 2020, Institute of Electrical and
Electronics Engineers Inc., Feb. 2020, pp. 203–
207. doi: 10.1109/ICAIIC48513.2020.9064970.

[10] J. V. Joseph, J. Kwak, and G. Iosifidis, “Dynamic
Computation Offloading in Mobile-Edge-Cloud
Computing Systems,” in 2019 IEEE Wireless
Communications and Networking Conference

(WCNC), IEEE, Apr. 2019, pp. 1–6. doi:
10.1109/WCNC.2019.8885461.

[11] S. U. R. Malik, H. Akram, S. S. Gill, H. Pervaiz,
and H. Malik, “EFFORT: Energy efficient
framework for offload communication in mobile
cloud computing,” in Software - Practice and
Experience, John Wiley and Sons Ltd, Sep. 2021,
pp. 1896–1909. doi: 10.1002/spe.2850.

[12] S. Misra, B. E. Wolfinger, M. P. A.
Achuthananda, T. Chakraborty, S. N. Das, and S.
Das, “Auction-Based Optimal Task Offloading in
Mobile Cloud Computing,” IEEE Syst J, vol. 13,
no. 3, pp. 2978–2985, Sep. 2019, doi:
10.1109/JSYST.2019.2898903.

[13] T. Huang, F. Ruan, S. Xue, L. Qi, and Y. Duan,
“Computation offloading for multimedia
workflows with deadline constraints in cloudlet-
based mobile cloud,” Wireless Networks, vol. 26,
no. 8, pp. 5535–5549, Nov. 2020, doi:
10.1007/s11276-019-02053-z.

[14] S. Erana Veerappa Dinesh and K. Valarmathi, “A
novel energy estimation model for constraint
based task offloading in mobile cloud
computing,” J Ambient Intell Humaniz Comput,
vol. 11, no. 11, pp. 5477–5486, Nov. 2020, doi:
10.1007/s12652-020-01903-5.

[15] Sinha and Hwang, “Comparison of CNN
Applications for RSSI-based Fingerprint Indoor
Localization,” Electronics (Basel), vol. 8, no. 9,
p. 989, Sep. 2019, doi:
10.3390/electronics8090989.

Sinjiru Setyawan born in Indonesia
on year 2000. The writer finished
bachelor degree on Bina Nusantara
University Indonesia on year 2022
and now studying master of computer
science on Bina Nusantara University
Indonesia

Gede Putra Kusuma received PhD
degree in Electrical and Electronic
Engineering from Nanyang
Technological University (NTU),
Singapore, in 2013. He is currently
working as a Lecturer and Head of
Department of Master of Computer
Science, Bina Nusantara University,
Indonesia. Before joining Bina
Nusantara University, he was

10 Author Name: Paper Title …

http://journals.uob.edu.bh

working as a Research Scientist in I2R – A*STAR, Singapore.
His research interests include computer vision, deep learning,
face recognition, appearance-based object recognition,
gamification of learning, and indoor

	1. Introduction
	2. Previous Works
	3. Proposed Method
	A. Fingerprinting Method
	B. Position Prediction Model
	C. Offloading using Cloudlet

	4. Evaluation
	5. Results and Discussion
	A. Prediction Model Results
	B. Offloading Evaluation Result

	6. Conclusion and Future Works
	Acknowledgment
	References

