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Abstract: This study evaluates the performance of Indoor Positioning System (IPS) by combining offloading and fingerprinting 
techniques using Convolutional Neural Network (CNN) implementing the cloudlet framework. The aim of the research are to 
measure the prediction time and battery consumption at various prediction execution location of the CNN model. The execution 
locations are mobile device (MD), cloudlet, cloud, and using automatic prediction execution location selection. The Received Signal 
Strength Indication (RSSI) data from 8 Bluetooth Low Energy (BLE) beacons are collected using an Android application and will be 
used to train the CNN model. The trained CNN model is then used as radio map to predict the coordinates of the MD. Evaluation is 
conducted by measuring the battery consumption and prediction speed over 30 minutes while continuously running predictions at 
four execution locations. The prediction speed is measured from the start of the prediction until the end of the prediction. The study 
results show that the prediction approach  using the cloudlet is more efficient on battery consumption compared to other execution 
locations. Additionally, the proposed automatic selection method of selecting prediction execution location demonstrates faster 
execution speed compared to performing the prediction s at a single location. These findings are important for understanding the 
balance between prediction speed and battery consumption efficiency. 
Keywords: Indoor Positioning System, Bluetooth Low Energy, Cloudlet Framework, Offloading Method, Convolution Neural 
Network 

 

1. INTRODUCTION  
The increasing development of wireless technology 

has made indoor positioning technology an interesting 
topic to discuss. Indoor Positioning System (IPS) 
technology has various applications in fields such as asset 
tracking, animal tracking, and table number tracking in 
the restaurant industry [1]. IPS technology addresses the 
limitations of existing location tracking technologies like 
GPS. The Global Positioning System (GPS) utilizes 
signals from multiple GPS satellites to determine the 
receiver's position. However, GPS has limitations, such as 
low accuracy indoors due to obstacles like building walls, 
signal interference, diverse building structures, and 
unreliable indoor communication [2]. IPS technology 
becomes essential to determine the position of objects in 
indoor environment where GPS signals cannot reach. 

To overcome the challenges of indoor tracking, 
several technologies have been developed, including 
Frequency Modulation (FM), Ultra-wideband (UWB), 
Radio Frequency Identification (RFID), WiFi, Bluetooth, 

Zigbee, and cellular networks (LTE & 5G) [3]. Bluetooth, 
particularly Bluetooth Low Energy (BLE), is commonly 
used as an IPS infrastructure due to its relatively high 
accuracy (±1-3 meters)[3], affordability, ease of access, 
fast data transfer speeds, and widespread infrastructure, 
such as BLE-enabled devices in smartphones. 

In IPS, one method to determine the location of a 
target device is by utilizing Received Signal Strength 
Indication (RSSI). RSSI is an indicator of the signal 
strength received by a device. It can be used to estimate 
the location of a device by measuring the signal strength 
from a transmitter or base station to a receiving device. 
This method is known as proximity localization[3]. 
However, this method can only measure the distance 
between the device and the signal transmitter, not the 
actual direction of the location. Another method utilizing 
RSSI is fingerprinting, which requires multiple fixed base 
stations. The device measures the RSSI at various points, 
creating a radio map used for location tracking based on 
received RSSI. 
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Fingerprinting in IPS requires processing the collected 
RSSI data from various points to create a radio map for 
tracking. In some studies, deep learning methods, such as 
Convolutional Neural Networks (CNN), are employed for 
fingerprinting [4]. CNNs generate a training model that is 
then used on the target device to estimate its location 
based on received BLE signals. The use of CNNs in 
model creation and location prediction demands 
significant computational power. When implemented on 
devices with limited computing capabilities, like 
smartphones (as seen in [5]), it may lead to noticeable 
delays in location tracking and increased battery 
consumption. 

To address the challenges of devices with limited 
computing power or limited power sources, one 
applicable method is offloading. Offloading involves 
transferring computational tasks to devices with higher 
computing capabilities. Various offloading frameworks, 
such as cloudlet and cloudclone, can be used in IPS, each 
with its own advantages and disadvantages. Offloading 
illustration can be seen in Figure 1. 

 
Figure 1 Offloading Illustration 

This research aimed on to implement and evaluate the 
offloading method in the prediction process to determine 
the position of an individual. The design used consists of 
microcontroller as BLE beacon, smartphone as BLE 
signal receiver, a cloudlet server and cloud server as 
prediction server that use CNN model as the prediction 
processor. We proposed to use cloudlet as an offloading 
method because the prediction location is at the edge of 
local network with lower network latency than cloud. 
With said benefit, using cloudlet as offloading method 
was chosen with the hope of better energy efficiency and 
faster prediction 

 

2. PREVIOUS WORKS 
Research related to computation offloading on mobile 

devices has been conducted using various offloading 
methods and frameworks. For applications requiring low 
latency, commonly used frameworks include CloudLet, 
Mobile Edge Computing (MEC), and Edge Computing. 
However, for applications not requiring low latency, 

offloading methods to Cloud Servers are typically 
employed. Most studies on offloading focus on mobile 
application offloading, with limited exploration of 
offloading implementation in Indoor Positioning System 
(IPS) systems. 

A study by Marwa Zamzam, Tallal Elshabrawy, and 
Mohamed Ashour [6] measured latency and energy 
consumption by offloading IPS to Mobile Edge 
Computing and Cloud. Three offloading algorithms 
(ILLOO, ILLCO, ILLGO) were compared, demonstrating 
a 70.36% reduction in processing time when using 
MEC/Cloud compared to local processing on the mobile 
device. Energy consumption was also 50% more efficient 
with offloading than with local computation on the mobile 
device. 

In another study by Dimitrios Spatharakis et al. (2020) 
[7], offloading was applied to a Location-Based Service 
with a mobile device as the offloading object. Image 
detection processing using an edge server showed a 
response time of 5 seconds compared to 30-60 seconds for 
local processing, indicating a 5-6 times improvement with 
the edge server as the offloading server. 

Yanjun Guo, Liqiang Zhao, Yong Wang, Qi Liu, and 
Jiahui Qiu [8] implemented fog computing as an 
offloading solution. Offloading decisions were made at 
runtime, considering the nearest computational node. 
Results showed a 1-second delay in cloud computing, 0.5 
seconds using fog computing, and 0.2 seconds in 
distributed fog computing.  

Using game theory for offloading determination, 
Marwa Zamzam, Tallal El-Shabrawy, and Mohammed 
Ashour [6] achieved a 50% energy saving with the game 
computation offloading algorithm compared to local 
computing and random offloading. 

Imran A. Zualkernan and Mohammed Towheed [9] 
compared power consumption and CPU utility for voice 
prediction using CNN on a smartwatch. Edge computing 
resulted in a larger battery capacity drop due to network 
load, with a 14.8% faster battery capacity drop compared 
to local computation on the smartwatch. 

Jude Vivek Joseph, Jeongho Kwak, and George 
Iosifidis [10] implemented offloading strategies 
considering parameters such as transmission delay, CPU 
clock, tasks, and network path, achieving a 50% reduction 
in power consumption. 

Saif U. R. Malik, Hina Akram, Sukhpal Singh Gill, 
Haris Pervaiz, and Hassan Malik [11] applied the 
CloudClone framework, showing a 10% difference in 
battery consumption for tested mobile devices with 
offloading resulting in lower energy consumption. 

Sudip Misra, Bernd E. Wolfinger, Achuthananda M. 
P., Tuhin Chakraborty, Sankar N. Das, and Snigdha Das 
[12] used auction systems for offloading with cloudlet and 
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cloud server architecture. Execution duration for cloudlet 
was higher than for MD and cloud, measured in 
milliseconds (ms), while energy consumption in MD was 
greater when offloading for tasks exceeding 20,000. 

Tao Huang, Feng Ruan, Shengjun Xue, Lianyong Qi, 
and Yucong Duan [13] compared cloud, cloudlet, and 
NSDE methods in multimedia workflow, achieving 
smaller power consumption and processing time with 
cloudlet and NSDE algorithms. 

In the final study by S. Erana Veerappa Dinesh and K. 
Valarmathi [14], direct cloud offloading strategy 
considering battery, network, CPU, and bandwidth 
resulted in 33.3% energy savings (Joule). 

Based on existing research, several studies compare 
offloading to the cloud. However, studies in    [6], [7], [8], 
[9], [10], [12], [13] utilize Edge Computing or Mobile 
Edge Computing, also known as cloudlet, where the 
architecture is positioned closer to the mobile device 
(MD). The goal of using this framework is to bring the 
computing server closer, reducing the time needed for 
data transportation over the internet to the cloud server. 

Among the studies utilizing cloudlet or edge 
computing, study number [9] focused on smartwatch 
devices using TensorFlow.js running through a web 
browser. The results indicated higher battery consumption 
on the edge computer due to additional load during data 
transmission to the edge server. Consequently, the 
performance when running the application through the 
smartwatch itself became more efficient. 

From the available research, cloudlet appears to meet 
the requirements for IPS research due to its proximity to 
users, providing faster processing response times. 
However, cloud technology should not be ignored. Cloud 
can serve as a backup consideration if the cloudlet is at 
full capacity, even with potential time penalties. 

3. PROPOSED METHOD 
This section describes the offloading technique using 

cloudlet, fingerprinting method, and position prediction 
method for the IPS.  

A. Fingerprinting Method 
To predict the position of the mobile device being 

tracked, it is necessary to obtain RSSI values of the BLE 
beacons. These obtained RSSI values will be used to 
make the radio map.   

The dataset is collected by obtaining RSSI values at 
specific coordinates using the Android application 
developed exactly for RSSI collection purpose. This 
phase is also referred to as the online phase in the regular 
fingerprinting method. 

 
Figure 2 BLE Scanner Application 

Data collection is performed at 36 points within the 
indoor environment using the application in Figure 2, 
documenting 2000 RSSI readings of 8 BLE signals for 
every coordinate. Figure 3 contains information about the 
BLE beacons location and the points where BLE RSSI is 
captured. 

 
Figure 3 BLE Beacon position and measurement points 
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The measurement points consists of 8 BLE beacons 
using ESP32-C3 as beacons and 6 by 6 grid with 60cm 
space between the measurement points.  

While collecting RSSI data, the android application 
actively filter the received RSSI data so only beacon with 
advertising name starting with SJ will be scanned. After 
successfully scan the beacons, the RSSI data is saved on 
the mobile device and later used for making the radio 
map. 

After the dataset is collected, the next step before 
training is to evaluate the dataset to clean the data from 
incomplete or poor-quality entries, such as null values. 

B. Position Prediction Model 
Before predicting the position of the mobile device 

(MD), the collected data needs to be prepared. The 
received RSSI data needs to be cleaned from null values 
and bad records. 

To create a radio map from the collected RSSI data, 
fingerprinting step is needed. CNN models will be used 
to do the fingerprinting. Before choosing the suitable 
CNN model as the model in later experiments, the CNN 
models needs to be compared. 

There are 3 CNN models to compare. They are 
ResNet50, VGG16 and Custom architecture created in 
[15]. To compare these models, first the received dataset 
needs to be split into 3 parts: training data, validation 
data, and test data. These data then used to train the CNN 
models.  

The model training conducted with implementation of 
callbacks for each training epoch. The earlystopping 
callback will be used to prevent overfitting of the model 
training. The results of the training model then tested 
using the test dataset prepared on previous step.  

After the training is done, the comparison between 
the models are conducted. The comparison consists of 
comparing the train accuracy, train validation accuracy 
and the test accuracy result. These parameters then used 
in comparing the model. Model with the best accuracy 
will be used in the offloading experiment. 

C. Offloading using Cloudlet 
The technique to decide where the offloading will 

occur will be determined by the comparison of prediction 
speed on 3 execution places : MD, cloudlet, and cloud. 
This comparison can be seen on Figure 4 

 
Figure 4 Automatic Offloading execution location selection 

The application flow in predicting the location of 
the target begins with the smartphone receiving all the 
BLE RSSI and storing the data. Next, prediction will start 
with comparing when the analysis last taken place. If the 
analysis takes place after 10 seconds then the app will do 
the analysis again. This 10 seconds pause is designed to 
prevent the analysis to take place every time the 
prediction occur. This will leads to increased prediction 
time and faster battery drain. The analysis consists of 
comparing all the time taken to predict in each prediction 
location. After the comparison finished, the computation 
then takes place on the location with the shortest 
prediction time. The prediction diagram can be seen on 
Figure 5 

 
Figure 5. IPS Architecture 

 
The decision decided on which prediction place 

uses the least prediction time. Then for the next 10 
seconds, the offloading will be conducted on selected 
location. The resource will then perform the prediction 
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and send back a response containing the prediction class 
and prediction confidence. 

4. EVALUATION 
The evaluation conducted can be split into two 

major parts. The first one is to evaluate the prediction 
model using the CNN. After the models are trained, 
every model will be tested using the test dataset. Every 
model testing results then saved into tables consisting of 
validation test accuracy and test accuracy. 

The first phase of the evaluation focuses on the 
prediction model developed using CNN. This involves a 
detailed process starting from the training phase, where 
multiple CNN models are trained on the training dataset. 
Each model undergoes training involving numerous 
epochs and iterations to fine-tune the weights and biases, 
ensuring the model learns the underlying patterns and 
features from the dataset. 

The results of each model's performance are 
meticulously recorded in tables, which include detailed 
metrics for each epoch and the final validation and test 
accuracy. This comprehensive recording allows for a 
thorough comparison between different models. By 
analyzing these results, the model with the highest test 
accuracy and acceptable validation accuracy is selected 
for the next phase of evaluation. 

After the results of each model have been 
recorded, performance measurements and comparisons 
between models can be carried out to determine which 
model will be used for offloading.  

The selected CNN model is then converted into a 
TensorFlow Lite (TFLite) format. TFLite is designed to 
be lightweight and optimized for mobile and embedded 
devices, making it suitable for deployment in various 
offloading locations such as cloudlets, mobile devices 
(MD), and the cloud. This conversion is crucial as it 
ensures the model can run efficiently on different 
hardware platforms with minimal resource consumption. 

With the TFLite model ready, the next phase 
involves evaluating the offloading techniques. This 
involves deploying the model to different offloading 
locations and measuring the performance metrics. The 
offloading locations considered for this evaluation are 
cloudlets, mobile devices, and the cloud. Each location 
presents unique characteristics and challenges in terms of 
latency, computational power, and energy consumption. 

The second evaluation will evaluate the offloading 
techniques. After the data is uploaded to offloading 
locations such as cloudlet, MD, and cloud. So 
experiments on offloading methods can be carried out, 
The testing will be carried out 4 times according to the 
location where the offloading is carried out using the 
Android application that has been created. 

The results that will be obtained from this 
experiment will be the length of prediction time at the 

location used and the battery percentage every minute for 
30 minutes starting with 100% battery condition for each 
method. The prediction time is measured from the start of 
the prediction until the prediction produces a coordinate 
class. In addition, battery measurements will be measured 
every minute while the application is running.  

The first test will be carried out with prediction 
runs only on MD. In this setup, predictions are made 
entirely on the mobile device. This setup tests the model's 
performance when leveraging the device's local 
computational resources. Key metrics recorded include 
prediction time and battery consumption over a specified 
period. 

The second test will be carried out with 
predictions running only on cloudlets. redictions are 
offloaded to a nearby cloudlet. This setup aims to balance 
between the low latency of edge computing and the 
computational capabilities of cloud resources. Metrics 
recorded include the time taken to offload the data, the 
prediction time, and the resultant battery consumption. 

The third test will be carried out with predictions 
running only on the cloud. Predictions are offloaded to 
the cloud, which typically offers substantial 
computational power but at the cost of higher latency 
compared to local or edge computing. Metrics include the 
time taken for data transmission to and from the cloud, 
the prediction time, and battery usage. 

The fourth test will be carried out with running 
predictions using the location selection method proposed 
This method employs a dynamic offloading strategy 
based on certain predefined criteria such as current 
network conditions, latency, and battery levels. The 
system dynamically selects the optimal offloading 
location (MD, cloudlet, or cloud) to balance performance 
and resource consumption. 

The test results then recorded into two tables. 
Table I captures the battery percentage over time for each 
offloading method. The battery consumption is 
monitored every minute for 30 minutes, starting with a 
fully charged battery (100%). This data provides insights 
into the energy efficiency of each offloading method. 

TABLE I.  BATTERY CONSUMPTION OVER TIME 

Time 
elapsed 

MD Cloudlet Cloud 

5 minutes 95% 98% 98% 
10 minutes 70% 87% 85% 
N minutes A% B% C% 
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TABLE II.  PREDICTION TIME FOR PREDICTING LOCATION 

No Method Prediction time 

1 Cloudlet θ ms 

2 Local (MD) θ ms 

n … … 

 
After the battery consumption has been recorded, 

the received result will be taken from the percentage of 
battery used over a 30-minute period starting from a full 
charge, recording the percentage every minute. The 
resulting data will depict data points of battery 
percentage. Subsequently, this data will be input into a 
linear regression to obtain the battery consumption rate 
for each method. The formula for linear regression is as 
follows: 

 (1) 
 

The linear regression model in (1) will tell the battery 
consumption rate for each prediction location. The best 
battery  consumption is measured by the slope of the 
regression model.  

For measuring the duration of the prediction time, 
measurements are taken from 36 measurement points 
spaced 60 centimeter apart. The prediction time duration 
will be measured from the moment the user presses the 
prediction button and will stop when the user receives the 
coordinates. 

Table II records the prediction time for each method. 
Prediction time is measured from the start of the 
prediction process until the prediction produces a 
coordinate class. This metric is crucial in understanding 
the latency and responsiveness of the system under 
different offloading conditions. 
 The best prediction speed will be chosen from the 
lowest mean of prediction time on every prediction 
execution location.  

5. RESULTS AND DISCUSSION 
This section will shows the results of the model 

prediction and the offloading evaluation results. 

A. Prediction Model Results 
To choose what model will be used in the 

offloading evaluation, there are three CNN model that 
need to be tested and evaluated. There are ResNet50, 
VGG16, and Custom architecture. The prediction CNN 
model architecture can be seen on Figure 6, 7, and 8 
 

 
Figure 6. Resnet50 model 

 

 
Figure 7.  VGG16 model 

 

 
Figure 8.. Custom Model model 
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After training the models using the acquired 
dataset, the results then written on Table III 

TABLE III.  MODEL RESULT COMPARISON 

Model Epoch Validation 
Accuracy 

Validation 
Loss 

Test 
Accuracy 

Resnet50 86 0,9927 0,0441 0,9877 
VGG16 17 0,0268 3,5841 0,0250 
Custom 84 0,9800 0,1250 0,9836 

 
From the model training results, model with the 

best validation accuracy and test are Resnet50 with 
lowest validation loss. With this result, the model that 
will be used on offloading testing is ResNet50. The 
selected model then converted into tflite format and 
distributed to the prediction execution location. 

B. Offloading Evaluation Result 
Prediction or task were done on mobile device, 

cloudlet server, cloud server directly and using the 
proposed offloading technique. The comparison will 
compare the battery percentage every minute for 30 
minutes span. 

TABLE IV.  BATTERY CONSUMPTION OVER TIME 

Time 
elapsed 

MD Cloudlet Cloud Proposed 
technique 

5 min 97% 99% 100% 99% 
10 min 95% 98% 98% 97% 
15 min 93% 97% 97% 95% 
20 min 91% 95% 95% 93% 
25 min 89% 94% 94% 91% 
30 min 88% 92% 93% 89% 

 
Table IV presents a comparison of the average battery 

consumption among devices performing the task. Based 
on the results, the best energy efficiency is reflected on 
the cloudlet method. This result will be best presented in 
graph form. 

 
 

 
Figure 9. a) Battery Percentage over time b) linear regression on battery 

percentage 

As shown in Figure 9, the highest battery 
consumption is observed when tasks are performed 
directly on mobile devices. This significant consumption 
can be attributed to the intensive computational 
requirements of running the prediction model locally, 
which heavily taxes the device's processor and other 
resources. Over a span of 30 minutes, the battery 
percentage drops from a full charge of 100% to 88%, 
indicating a substantial 12% decline. This steep drop 
highlights the energy demands and potential 
impracticality of relying solely on mobile devices for 
such intensive tasks, particularly in scenarios where 
battery life is crucial, such as in the field or during long-
duration use without access to charging facilities. 

In contrast, when the task is offloaded to a cloud 
server, the battery consumption on the mobile device is 
notably less severe. The offloading process involves 
transmitting data to the cloud for processing, which, 
while still consuming energy, is far less demanding than 
executing the task locally. As a result, the battery drop is 
not as steep as when the task is performed on the mobile 
device. This indicates that cloud offloading can be a 
viable strategy for conserving battery life, especially in 
applications where preserving device longevity is 
important. The reduced energy drain also suggests that 
cloud offloading can enhance the user experience by 
prolonging device usability before recharging is 
necessary. 

The optimal battery performance is observed when 
tasks are offloaded to a cloudlet. Cloudlets, which are 
essentially small-scale cloud servers located closer to the 
mobile devices, offer a balanced approach by providing 
computational resources with lower latency compared to 
distant cloud servers. As illustrated in Figure 9, when 
tasks are executed on cloudlets, the battery percentage 
drops from 100% to 92% over the course of 30 minutes. 
This represents a mere 8% decline, making it the most 
energy-efficient offloading method among those 
evaluated. The cloudlet's proximity reduces the energy 
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cost of data transmission and leverages powerful yet 
accessible processing capabilities, thus minimizing the 
overall battery drain. 

The rate of battery drain in the cloudlet scenario, 
calculated at approximately 26% per minute, underscores 
the efficiency of this method. The relatively minor 
battery depletion compared to local and cloud offloading 
demonstrates that cloudlets can effectively balance 
computational demand and energy consumption. This 
efficiency makes cloudlets particularly suitable for 
applications requiring frequent, intensive computational 
tasks where maintaining battery life is critical. 
Additionally, the reduced latency associated with 
cloudlets can enhance the performance and 
responsiveness of mobile applications, further 
contributing to a positive user experience. 

In summary, the comparative analysis of battery 
consumption across different offloading methods reveals 
that while local processing on mobile devices leads to the 
highest energy drain, offloading to cloud servers and 
cloudlets significantly mitigates this issue. Cloudlets 
emerge as the most advantageous option, offering the 
best balance between conserving battery life and 
maintaining computational efficiency. This finding 
underscores the potential of cloudlets to improve the 
sustainability and user satisfaction of mobile applications 
that require robust processing capabilities. By 
strategically leveraging offloading techniques, developers 
can optimize both performance and energy usage, leading 
to more efficient and user-friendly mobile solutions. 

The second comparison is comparing the prediction 
time across different execution locations. Prediction or 
task will be done on mobile device, cloudlet server, cloud 
server and using the proposed offloading technique. The 
comparison will compare the duration of the task 
between task execution locations. Then the prediction 
time comparison can be seen on Figure 10 

 
Figure 10 Execution time on all locations 

The execution time on mobile device averaging 
around 35ms with maximum of 57ms and minimum of 
27ms. The execution time on cloudlet averaging around 
43ms with maximum of 78ms and minimum of 27ms. 
The execution time on cloud  averaging around 135ms 

with maximum of 186ms and minimum of 27ms. The 
execution time using proposed technique averaging 
around 24ms with maximum of 33ms and minimum of 
27ms. 

The differences of the execution duration between the 
task execution duration can be seen clearly on the Figure  
10. The highest average duration of task execution were 
on the cloud. The second highest were taken on the 
cloudlet and the fastest execution time were executed on 
the using the proposed method. 

6. CONCLUSION AND FUTURE WORKS 
In summary, the shortcomings of the current indoor 

positioning systems (IPS), especially in difficult 
situations with bad GPS signals, were solved by 
implementing a novel strategy. For location prediction, a 
convolutional neural network (CNN)-based 
fingerprinting method in conjunction with offloading 
techniques was used. The experimental findings provided 
important new information about the system's 
performance, particularly with prediction time and power 
consumption at different execution sites. 

Offloading duties to cloudlet servers resulted in 
significant improvements in energy efficiency, as 
demonstrated by reduced power usage when compared to 
mobile devices and direct cloud server execution. But 
using the proposed technique the time taken to process 
the data is significantly decreased. The improvement of 
the suggested strategy is highlighted by the alignment of 
these results with the original goal of overcoming 
location tracking technology limitations, particularly in 
indoor environments with spotty GPS signals. 

In the future, optimization solutions for the execution 
of mobile devices should be investigated. Possible 
segmentation of tasks or algorithmic improvements to 
lower power consumption should be taken into account. 
Further system optimization depends on exploring 
dynamic offloading rules, including edge computing 
technologies, and improving the CNN-based 
fingerprinting model. In order to guarantee that the 
created IPS systems satisfy user expectations and 
preferences, user-centric research should also be carried 
out to obtain a comprehensive understanding of the trade-
offs between power consumption, prediction time, and 
user experience. 

In summary, the study not only demonstrates the 
advantages of offloading for performance in IPS but also 
lays the groundwork for future research and development 
in the area, tackling the issues mentioned in the 
introduction.. 
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