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Abstract: Healthcare 5.0 focuses on a personalized patient-centric approach, and combines advanced technologies like artificial
intelligence (AI), blockchain, Internet-of-Things (IoT), and Big data to form preventive, proactive, and emotive healthcare. To assure
privacy of electronic health records (EHRs) in Healthcare 5.0, blockchain has emerged as a disruptive technology owing to its properties
of assured immutability, chronology, and transparent nature. Recent research has integrated blockchain technology with deep learning
(DL) models to enhance the predictive capabilities for future disease occurrences. Nonetheless, DL models often necessitate a substantial
volume of labeled data, a resource that may not be readily available in all scenarios.Thus, boosting mechanisms can overcome this
limitation by leveraging small labelled datasets and improve the model generalization capability. Motivated by this, we propose a
scheme, Bl-Boost, which combines extreme gradient boosting (XG) with long short term memory (LSTM) model for making accurate
predictions on EHR data. We store the model predictions on a local interplanetary file systems (IPFS) server, and hash information
is published in main blockchain. Via smart contracts (SCs), we for privacy-preserved access control on the data. The experimental
validation is performed on the benchmark heart failure prediction dataset in terms of accuracy, loss, and precision matrix for LSTM
and XG-Boost LSTM models. We present sample contracts for data sharing, and for blockchain metrics, we validate our performance
of scalability, IPFS cost, and trust probability against collusion attacks. The proposed outcomes indicate that the scheme has strong
potential for viability in real-world deployment scenarios.
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1. Introduction

Recently, the advent of Healthcare Internet-of-Things
(HIoT) has led to the generation of enormous volumes of
data, resulting in significant challenges in managing and
processing data from various sources [1]. According to the
International Data Corporation (IDC), global healthcare data
is projected to reach 163 zettabytes by 2025 [2], driven
by more devices and sensors. Electronic health records
(EHRs) are crucial in modern healthcare, encompassing
patients’ medical history, treatments, medications, etc., but
their volume challenges data processing and prediction [3].
Healthcare 4.0 systems focus on data integration, but varied
formats and fragmentation lead to inaccurate analysis [4][5].

Healthcare 5.0 uses technologies like machine learning,
big data analytics, and blockchain to extract insights from
EHRs and provide personalized care [6]. It combines IoT
protocols, 5G communication, and security solutions to
create a patient-centric model. Blockchain ensures secure,
decentralized trust and promotes interoperability among
healthcare systems, ensuring data integrity and minimizing

errors and fraud.
Every transaction in EHR is recorded and traceable,

reducing administrative costs. However, blockchain alone
isn’t enough for Healthcare 5.0; effective AI support is
essential. Machine learning (ML) and deep learning (DL)
techniques are widely used in EHR analysis. While ML and
DL techniques have shown promising results in healthcare
EHR analysis, there are still some limitations that need
to be addressed. One of the significant limitations is the
requirement of large amounts of high-quality data for train-
ing the models [7]. Another limitation is the difficulty in
interpreting the results of the models [8]. Additionally, there
are concerns regarding the potential for algorithmic bias and
ethical issues in the use of these models [9].

Inspired by the preceding discussions, in this paper, we
propose a framework, Bl-Boost, which integrates blockchain
and XG-Boost to secure and manage EHRs. The scheme
addresses the dual benefits of fast, reliable, and accurate
predictive analysis.The scheme is explained in further sec-
tions of the paper.
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A. Novelty
Recent healthcare analytics leverage ML and DL tech-

niques for EHR insights and sensor-driven real-time patient
monitoring. However, data scarcity and privacy concerns
reduce prediction accuracy. Our framework addresses these
challenges, offering a secure, trusted, and scalable solu-
tion. Combining XG-Boost and LSTM allows operation
with small labeled datasets. Coupled with blockchain and
smart contracts, we ensure transparent EHR access control,
achieving decentralized privacy and high prediction accu-
racy.

B. Organizations
The structure of the paper is as follows: Section 2 intro-

duces key terminologies related to blockchain, healthcare
analytics, gradient boosting, and reviews current state-of-
the-art schemes. Section 3 details the system model and
problem formulation. The proposed scheme is outlined in
Section 4. Section 5 evaluates the performance of the Bl-
Boost framework. Finally, Section 6 concludes the paper.

2. Background and State-of-the-art
The section highlights the background of healthcare

analytics, use of blockchain and IPFS in healthcare, XG
boost mechanism, and related approaches. The details are
presented as follows.

A. Analytics and Blockchain in Healthcare 5.0
Healthcare 5.0 shifts to a personalized, human-centric

approach for proactive care. The healthcare industry faces
challenges like aging populations, high costs, disease out-
breaks, and chronic illnesses [10]. Healthcare analytics
(HA) provides critical insights to address these issues and
extend care reach.

Blockchain is a decentralized ledger where each block
contains transactions linked by previous block hashes, form-
ing a chronological trail of patient EHR histories. Any
alteration invalidates subsequent block hashes, ensuring
immutability, integrity, and reliability. It eliminates the need
for centralized data collection, allowing multiple healthcare
silos to manage data on a distributed network. Blockchain
promotes transparency and access, with records accessible
to authorized members in public, private, or hybrid setups.
[11].

1) Extreme Gradient Boosting
Extreme Gradient Boosting (XGBoost) [12], an ad-

vanced ensemble gradient boosting method, has outper-
formed Friedman’s gradient boosted trees and RF methods
[13][14]. XGBoost’s efficiency and fast training excel in
both classification and regression tasks. Unlike RF, which
uses randomized, diverse trees, gradient boosting combines
weak learners into a strong one, sequentially building
shallow trees where each corrects the previous ones. This
reduces overfitting through a rule-based approach, while
RF creates fewer, deeper trees. XGBoost advances tradi-
tional gradient boosting decision tree (GBDT) techniques
by merging weak classifiers into a potent one using a clas-
sification and regression tree (CART) model. It sequentially

adds trees, splitting features based on residuals. An unspent
equation fits new residuals, aiming to accurately predict
sample scores upon training completion.

Figure 1 depicts attributes pointing to analogous leaf
nodes. This suggests that every tree will harbor its unique
leaf node, with each corresponding to a specific score. To
predict the sample’s precise value, the cumulative scores
from all the trees must be taken into consideration. Such
nuanced execution represents a leap forward in machine
learning, and underscores the agility and precision of XG-
Boost, making it a favored approach for numerous applica-
tions in the realm of artificial intelligence.
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Figure 1. XG-Boost mechanism

B. State-of-the-art
This section furnishes an extensive overview of the perti-

nent methods, accompanied by a comparative assessment of
their efficacy. TABLE I presents the state-of-the-art (SOTA)
approaches. The technical discourse is segregated based on
the method employed, such as ML in healthcare analytics
or blockchain in healthcare analytics.

1) ML in Healthcare Analytics
Recent progress in HIoT (Healthcare Internet of Things)

integration has enabled remote monitoring and real-time
tracking [30]. Managing the vast data from HIoT devices
is challenging. AI integration helps diagnose, analyze, and
detect diseases accurately, with algorithms predicting dis-
eases swiftly in early stages [31].

AI has significantly contributed to disease diagnosis,
analysis, and detection, resulting in more accurate disease
classification. Kumar et.al. [15] proposed a scalable ar-
chitecture for processing sensor data in a three-tier IoT-
based framework that prioritizes critical clinical parame-
ters for heart disease detection. ROC analysis is used to
identify the most important clinical markers that suggest
an imminent cardiac condition. Khan et.al. [16] presents
the integration of Raman spectroscopy with ML, which can
be highly beneficial in diagnosing and exploring infectious
diseases. Amin et.al. [17] proposed automated technique for
segmenting and discriminating brain tumours. Authors in
[18] proposed ML models for breast cancer detection based
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TABLE I. Relative comparison of proposed scheme with state-of-the art approaches

Author(s) Year 1 2 3 4 5 Advantages Limitations
Kumaret.al.
[15]

2018 N Y Y N - This study presents a scalable three-tier IoT architecture for
processing sensor data to identify crucial clinical parameters
for heart disease detection. ROC (Receiver Operating Char-
acteristic) analysis is used to pinpoint key clinical markers
indicating impending cardiac conditions.

The architecture is bulky and not so much energy efficient
if deployed for IoT systems.

Khanet.al.
[16]

2018 N Y Y N 92 The study reveals that Raman spectroscopy combined with
ML can significantly aid in diagnosing and investigating
infectious diseases.

The clinical practice to verify accuracy is still needed.

Amin
et.al. [17]

2018 N Y Y N 93 An automated technique for segmenting and discriminating
brain tumors.

Adding more features can enhance the accuracy of the
algorithm.

Zeng
et.al. [18]

2019 N Y Y N - The model in this paper combines features from unstruc-
tured and structured patient data for detecting breast cancer
occurrences.

Clinicians often record ruled-out diagnoses or disputed
symptoms, but this clinical narrative is not considered in
the results.

Shao
et.al. [19]

2019 N Y Y N 90 CD codes alone are insufficient to detect dementia. The
authors combined EHRs with patients’ structured and un-
structured records to determine the dementia risk score.

The study’s patient population has more older males than
females, potentially causing skewness and negatively im-
pacting the results.

Bernardini
et.al. [20]

2019 N Y Y N - The model outperforms other SOTA competitors in terms
of predicting performance and computation time, according
to the results. Furthermore, the induced sparsity improves
model inter-pretability by automatically managing high-
dimensional data and the common imbalanced class distri-
bution.

Nonlinear models with Gaussian functions are not consid-
ered here.

Allen
et.al. [21]

2020 N Y Y Y 89.09 This paper uses ensembled XG-Boost techniques, which
outperformed other algorithms.

The sample size is small, and results may change with a
larger population.

Le et.al.
[22]

2020 N Y Y Y 90.5 The algorithm created in this work could help with ARDS
clinical trial recruitment as well as better ARDS prediction
and early detection.

All results pertain to a single-center ICU setting. This study
does not consider data from multiple centers or settings.

Budholiya
et.al. [23]

2020 N Y Y Y 91.8 The diagnostic approach in this paper improves decision-
making quality during cardiac disease diagnosis.

The performance of the model tested for only one disease.

Chen
et.al. [24]

2021 Y Y Y N - The study introduced ML techniques for diabetes detection
and secure data sharing with healthcare providers.

The patient data and doctors’ data are stored in blockchain
which make it bulky and processing delay occurs.

Shynu
et.al. [25]

2021 Y Y Y N 81 The article presents cost-effective, blockchain-based secure
healthcare services, utilizing a feature selection-based adap-
tive neuro-fuzzy inference system to predict diabetes and
cardiovascular diseases.

This paper does not consider the security and privacy of
accessing patient medical data.

Kallimani
et.al. [26]

2022 N Y Y N 97.77 This article introduces an attention-based convolutional neu-
ral network (ACNN) combined with a long short-term
memory (LSTM) model for heart disease detection, using
novel feature selection techniques in a hybrid deep learning
framework.

The ACNN and LSTM can give more accuracy if hyper-
parameters are used effectively.

Neelakandan
et.al. [27]

2022 Y Y Y N 95.29 The article presents a model called Blockchain with DL-
Enabled Secure Medical Data Transmission and Diagnosis
(BDL-SMDTD) for disease diagnosis using medical images,
ensuring secure data transmission via blockchain technology.

This is proposed methodology but clinical practice is missing
is not yet done to check the accuracy.

Malibari
et.al. [28]

2023 N Y Y N 93.5
and
94

This article introduces the EO-LWAMCNet model, an op-
timized Lightweight Automatic Modulation Classification
Network, for precise prediction of kidney and heart diseases
in patients.

The execution time of EO-LWAMCNet model high com-
pared to the existing models.

Alshraideh
et.al. [29]

2024 N Y Y N 94.3 This article employs a support vector machine (SVM) clas-
sifier integrated with particle swarm optimization (PSO) to
conduct feature selection.

The study prioritizes the accuracy of the prediction model.
However, additional metrics such as sensitivity, specificity,
and the AUC-ROC could offer highly favored understanding
of the model’s performance.

Proposed 2024 Y Y Y Y 96.4 A secured and scalable healthcare analytics by integrating
XG-Boost and LSTM (X-LSTM) on labelled datasets.

Security validation is not considered as part of this study.

Parameters- 1. Blockchain 2. Health-care Analytics 3. Learning Models 4. Boosting Technique 5. Accuracy(%) Y- shows that the parameter is present, N- shows that the
parameter is absent

on unstructured and structured patient data. Authors in
[19] used the International classification of diseases (ICD)
codes on EHRs for dementia detection, and computed the
risk scores for the patients. In [21], authors proposed XG-
boost based technique to improve the accuracy for disease
detection and it perform better than conventional models.

2) Blockchain in Healthcare Analytics
Blockchain enables patient-centered healthcare through

collaborative, transparent medical data management, ensur-
ing patient privacy while allowing access for stakehold-
ers. Burniske et.al. highlighted its expanded use beyond

cryptocurrencies [32]. Shynu et.al. proposed a blockchain-
based healthcare service for predicting diabetes and car-
diovascular diseases within a fog computing framework
[25]. It collects health data from fog nodes, securely stores
it on the blockchain, clusters records using a rule-based
algorithm, and forecasts diseases with a feature selection-
based adaptive neuro-fuzzy inference system (FS-ANFIS).
Neelakandan et.al. presented a model using blockchain for
secure medical data transmission and deep learning for
diagnosis [27]. This model encrypts and stores images on
the blockchain, employing histogram-based segmentation,
feature extraction with Inception ResNet-v2, and disease
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classification through a support vector machine (SVM),
validated with benchmark medical images.

3. SystemModel and Problem Formulation
This section outlines the system model and formulates

the problem.

A. System Model
This section presents the system model of the proposed

Bl-Boost scheme, integrating a blockchain-assisted solution
for predictive analysis. Figure 2 shows the layered model
with three layers: L1 (data collection), L2 (XG-Boost en-
abled LSTM), and L3 (blockchain and SC). The details are
as follows.

1) L1: Data Collection Layer
- At this layer, we consider Healthcare Users (HU),

including entities E = Ep, Ed, Eia, Elb, Eahp, Ea: patients
(Ep), doctors (Ed), insurance agents (Eia), lab workers
(Elb), allied healthcare staff (Eahp), and administrators (Ea).
Patients’ (Ep) EHRs (lab reports, prescriptions, insurance
bills, claims) are secondary data (Ds). Primary data (Dp)
comes from sensors like blood glucose, electrochemical,
and amperometric biosensors. Data is processed using sen-
sor fusion algorithms for uniform readings [33]. Sensor data
at L1, combining Dp and Ds, is accessed via APIs in JSON
format. Collected data is Dc = D1,D2 . . . ,Dn, mapped as
M : Dc −→ Db. Dc is sent to L2 for preprocessing, cleaning,
and reduction.

2) L2: XG-Boost LSTM ensemble
- At L2, the primary objective is to form predictions

on the collected data. For the same, and ensemble of XG-
Boost and LSTM (X-LSTM) is proposed. Initially, the data
Dc undergoes the preprocessing stage, where it undergoes
several transformations. At the first step of preprocessing,
any outliers or unwanted noise from Dc are eliminated,
which leads to a clean dataset Dclean. Dclean is then subjected
to binning, where the continuous values are converted into
discrete bins resulting in Dbinned. To ensure uniformity in
feature scales, this binned data is normalized, giving Dnorm.
Further, to enhance computational efficiency and possibly
counteract overfitting, dimensionality reduction is applied
to Dnorm, producing the reduced data setDred.

Post preprocessing, the processed data (Dred) is split into
training (Dred train) and test data (Dred test). Dred train is
further split into training and validation data for the LSTM
model, parameterized by hyperparameters θ (learning rate
η, batch size B, and number of epochs N). After LSTM
training, the extracted features (F ) serve as input for
the XG-Boost algorithm. This ensemble leverages LSTM’s
sequence processing and XG-Boost’s predictive power, im-
proving generalization and accuracy. Final predictions (P)
are derived from the LSTM and XG-Boost ensemble.

3) L3: Blockchain and SC Engine
At L3, the goal is to securely store prediction results

(P) using blockchain technology. Predictions are added to
a decentralized blockchain database (B) for tamper-resistant
storage and traceability. Access and interactions with this
blockchain are governed by smart contracts (SCs).

For efficient retrieval and verification, prediction results
are hashed, creating a unique identifier (H), and stored
in IPFS offline storage. Users access IPFS with a 32-byte
content key (Ckey). Through SCs, users retrieve prediction
data from IPFS using Ckey and its private identifier (Pri(K)).
The Ckey information is mapped to the IPFS record, with
the key reference stored on the blockchain. Transactions
are temporarily held in the Mempool (M) before being
confirmed and added to a block.

B. Problem Formulation
This subsection formalizes the objectives for the pro-

posed Bl-Boost scheme, addressing challenges and con-
straints. Goals include enhanced accuracy, expedited predic-
tive analysis, and minimized blockchain transaction sizes.
The details can be presented as follows.

• Accuracy Enhancement in Ensemble Predictions:
Given the ensemble of LSTM and XG-Boost, our
first goal is to optimize the predictive accuracy. Let
the prediction accuracy be denoted by A, which is a
function of the features extracted by LSTM, F , and
the XG-Boost model parameters, θ. The objective can
be expressed as follows.

P1 : max
θ

A(F , θ) (1)
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subject to constraint C1 pertaining to the underlying
data distribution, the capabilities of the LSTM, and
the optimization landscape of the XG-Boost.

• Expedited Predictive Analysis: The computational
efficiency is of paramount importance for real-time
healthcare applications. Let T (F , θ) represent the
time taken by the X-LSTM ensemble to generate pre-
dictions. Our goal is to minimize T while maintaining
a certain level of accuracy, Amin. Mathematically, it
can be presented as follows.

P2 : min
θ

T (F , θ) (2)

subject to constraint C2 which specifies

A(F , θ) ≥ Amin (3)

• Minimization of Transaction Size in Blockchain:
With the intent to create an efficient and scalable
blockchain-assisted solution, we seek to minimize the
transaction size. Denote the transaction size as S tx,
and the prediction result size as S P. By hashing the
results and utilizing the IPFS storage, the goal is to
minimize the effective transaction size added to the
blockchain. It can be presented as follows.

P3 : min S tx(H ,Ckey,P) (4)

subject to constraint C3, specified as follows.

S tx ∝ S P (5)

This relation indicates that as the prediction result size
grows, the transaction size should grow proportion-
ally, but with mechanisms in place to keep it minimal.

Thus, the overall problem P f can be treated as a min-
imization problem min(−P1, P2, P3) subject to the given
constraints {C1,C2,C3}.

C. The Multi Objective Optimization

Given our multi-objective function P f , the Pareto Opti-
mal solution set, denoted as P∗ is defined as follows.

P∗ = {x ∈ X | ∄x′ ∈ X (6)

such that fi(x′) ≤ fi(x)∀i and f j(x′) < f j(x)∃ j, where fi(x)
is the ith objective of P f , and X is the feasible solution
space defined by the constraints C = {C1,C2,C3}. The
above definition establishes that any solution x∗ ∈ P∗ is
Pareto Optimal if no other feasible solution x′ exists that
can improve at least one objective without deteriorating any
other objectives.

Now, to address the multi-objective optimization prob-
lem in the context of the X-LSTM model, we propose
an optimization technique denoted as OXL. This technique
guides the model’s parameters θ to achieve a balance among
our objectives. Specifically, we incorporate the Pareto Op-
timal principle into the learning algorithm of the X-LSTM.
Mathematically, the optimization problem can be expressed

as follows.

OXL(θ) : min
θ

(−P1(F , θ), P2(F , θ), P3(F , θ)) (7)

Proof : To demonstrate that our proposed solution OXL
effectively addresses the multi-objective optimization, three
conditions are to be satisfied.

• Completeness: Given constraints C1,C2,C3, our con-
vex and bounded solution space X ensures a finite
Pareto front from P∗.

• Optimality: Each solution x from the Pareto front
optimizes at least one objective without compromis-
ing others. By using OXL in the X-LSTM model, the
learning process converges to Pareto front solutions,
ensuring multi-objective optimality.

• Efficiency: OXL, tailored for the X-LSTM model,
considers the structure of both LSTM and XG-Boost
components, efficiently exploring X without unneces-
sary computations.

• Decomposition: OXL breaks down the multi-objective
problem into simpler subproblems, each targeting one
objective while maintaining the others. This iterative
approach generates Pareto-optimal solutions without
exhaustively evaluating the entire solution space.

• Scalability: The decomposition approach allows OXL
to scale with data size and complexity, adapting
dynamically to changing data distributions and con-
ditions. If an objective becomes more critical due
to external factors, optimization can refocus on that
objective without restarting.

4. Bl-Boost: The proposed scheme
In this section, we delve into the proposed scheme.

As indicated in previous section, we outline the ensemble
of LSTM and XG-Boost, which present the optimal OXL
solution to the optimization problem. Before venturing into
the details of the X-LSTM approach, the data preprocessing
steps are presented.

A. Data Preprocessing
The collected data Dc first undergoes for outlier removal

and noise reduction. We adopt the Interquartile Range (IQR)
approach. Let Q1, and Q3 be the first and third quartiles of
Dc. The IQR is then calculated as follows.

IQR = Q3 − Q1 (8)

Any data point d from Dcthat falls outside the range
[Q1 − 1.5 × IQR,Q3 + 1.5 × IQR] is considered an outlier
and is thus removed. The resultant dataset post this filtration
is Dclean.

After cleaning, data may still have fine-grained contin-
uous attributes. Binning discretizes these values. Let the
number of bins be B. The data range for each attribute in
Dclean is divided into B equal-width intervals. The width is
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given as follows.

w =
max(Dclean) −min(Dclean)

B
(9)

Each interval represents a bin, and continuous values within
an interval are replaced by a representative value, often the
bin’s mean or median. This results in Dbinned.

To ensure uniform feature scales, Min-Max normaliza-
tion is applied. For each feature F ∈ Dbinned, normalization
is performed as follows.

Fnorm =
F −min(F)

max(F) −min(F)
(10)

Here, min(F), and max(F) are the minimum and maximum
values of the feature F ∈ Dbinned. The resulting dataset post-
normalization is Dnorm.

High-dimensional data can cause the curse of dimen-
sionality and overfitting. Thus, we apply Principal Compo-
nent Analysis (PCA), which finds orthogonal axes (principal
components) that maximize data variance. The first few
components capture most of the variance, allowing data
projection onto this subspace. If Dnorm has m features, and
we wish to reduce it to k dimensions, PCA finds k principal
components such that k < m. The transformed data is then
given as follows.

Dred = Dnorm × P (11)

where P is the matrix with columns corresponding to the
first k principal components of Dnorm. The components in P
are ordered by the amount of variance they capture from the
original data. Typically, k is chosen such that a significant
proportion (often 95% or more) of the total variance in
the original data is retained. Mathematically, this can be
represented as follows.

k∑
i=1

λi ≥ 0.95 ×
m∑

i=1

λi (12)

Here, λi represents the eigenvalues of the covariance matrix
of Dnorm, sorted in descending order. The first k eigenvalues
correspond to the variance explained by the first k principal
components. The reduced dataset, Dred is of lower dimen-
sionality, and preserves the majority of crucial information
from the original dataset. This makes it more computa-
tionally efficient for the subsequent LSTM processing, as
it reduces potential overfitting, and ensures that the most
significant patterns in the data are retained for predictive
modeling.

Algorithm 1 details preprocessing with four functions:
RemoveOutliers using the IQR method, Binning partitions
Dclean into n equal-width intervals, transforming each into
a discrete bin for easier computation, Normalize scales data
to zero mean and unit variance, aiding scale-sensitive algo-
rithms, and ReduceDimensionality employs PCA. Outlier
removal, binning, and normalization operate at O(n) per
feature, while PCA’s eigen decomposition of the covariance

matrix is typically O(d3). Overall complexity is O(d×n+d3),
with n as the number of data points.

Algorithm 1 Preprocessing for Dc
Input: Dc: Collected data set, k: Number of principal components to retain, such
that k 95% variance is retained.
Output: - Dred : Reduced data set after preprocessing.

1: Procedure Preprocess(Dc, k)
2: Dclean ← RemoveOutliers(Dc)
3: Dbinned ← Binning(Dclean)
4: Dnorm ← Normalize(Dbinned)
5: Dred ← ReduceDimensionality(Dnorm, k)
6: return Dred

7: Function RemoveOutliers(Dc)
8: for (each feature f ∈ D) do
9: Compute Q1 and Q3

10: IQR← Q3 − Q1
11: Remove data points where f < Q1 − 1.5 × IQR or f > Q3 + 1.5 × IQR
12: end for
13: return Dclean

14: Function Binning(Dclean)
15: for (each feature f ∈ Dclean) do
16: Partition f into n equal-width intervals
17: Convert each interval into a discrete value representing the bin
18: end for
19: return Dbinned

20: Function Normalize(Dbinned)
21: for (each feature f ∈ Dbinned) do
22: µ f ← mean of f
23: σ f ← standard deviation of f

24: fnorm ←
f−µ f
σ f

25: end for
26: return Dnorm

27: Function ReduceDimensionality(Dnorm, k)
28: Compute the covariance matrix Σ of D
29: Compute the eigenvalues λ and eigenvectors v of Σ
30: Sort λ in descending order and select the top k eigenvectors to form matrix P
31: Dred ← D × P
32: return Dred

B. The stacked LSTM Network
In this subsection, we discuss the schematics of the

stacked LSTM network. We consider that preprocessed data
Dred is splitted into training and testing data, where the
training data is fed to the stacked LSTM network. Figure
3 presents the details of the stacked LSTM network. For a
single LSTM cell, the forget gate ft in a LSTM cell decides
the amount of the previous cell state to retain. The cell
state Ct acts as the memory of the LSTM unit. It has the
capability to store and retrieve information across extended
sequences. Finally, the output gate ot controls how much of
the current cell state makes it to the hidden state.

it = σ(Wi · [ht−1, xt] + bi) (13)
ft = σ(W f · [ht−1, xt] + b f ) (14)

C̃t = tanh(WC · [ht−1, xt] + bC) (15)
Ct = ft ×Ct−1 + it × C̃t (16)

ot = σ(Wo · [ht−1, xt] + bo) (17)
ht = ot × tanh(Ct) (18)

where C̃t denotes the new memory creation of the LSTM
cell, Ct is the update cell state, ht denotes the current hidden
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Figure 3. The stacked LSTM model

state, [ht−1, xt] represents the concatenation of the previous
hidden state and the current input, ot is the output gate,
σ denotes the sigmoid activation function, which squashes
the output between 0 and 1. tanh is the hyperbolic tangent
activation function, which outputs values between -1 and
1. {W f ,Wi,WC ,Wo} are weight matrices for the forget gate,
input gate, new memory, and output gate respectively, and
{b f , bi, bC , bo} are bias terms for the forget gate, input gate,
new memory, and output gate respectively.

The input sequence S 1, S 2, . . . , S n is divided into n input
gates, where each gate it determines the stored information.
LSTM units are stacked, with the output ht from one unit
becoming the input for the next. Assuming there are L
LSTM layers, the operations for layer l are as follows.

h(l)
t = LSTM(h(l−1)

t , xt) (19)

where h(0)
t is the initial input to the LSTM network, xt. After

passing through all L LSTM layers, the final hidden state
h(L)

t is fed into a dense layer to produce the final output y.
The dense layer can be represented as follows.

y = softmax(Wd · h
(L)
t + bd) (20)

where Wd is the weight matrix for the dense layer, bd is
the bias for the dense layer. The softmax function ensures

that the output is a probability distribution over the target
classes.

The complexity of an LSTM operation mainly depends
on the size of the weight matrices. Given an input dimension
d, and hidden state dimension h, the complexity of LSTM
operations for each time step and each layer is O(h×d+h2).
Given T time steps and L layers, the total complexity be-
comes O(T×L×(h×d+h2)). The dense layer’s complexity is
O(h×c), where c is the number of output classes. Thus, the
total complexity for the entire stacked LSTM network for
all time steps is O(T ×L×(h×d+h2)+h×c).The complexity
analysis of the stacked LSTM network reveals its inherent
computational demands, especially as the number of layers
L and time steps T increase.

C. The X-LSTM network

In this subsection, we present the integration of the
LSTM output y to be fed to the XG-Boost module. Given a
sequence of data S = {s1, s2, . . . , sn}, the LSTM processes
this sequence to produce a higher-level representation or
embedding, represented as follows.

E = LS T M(S ) (21)

where S is the input sequence, and Eis the embedding or
output representation from the LSTM. The embedding E
obtained from the LSTM serves as the input feature vector
for the XG-Boost model, denoted as follows.

FXGB = XGBoost(E) (22)

where FXGB is the prediction or output from the XG-Boost
model. For the XG-Boost model, we set an initial prediction
value for every observation, denoted as follows.

ŷ(0)
i =

1
2

log
( ∑n

i=1 wiyi∑n
i=1 wi(1 − yi)

)
(23)

where ŷ(0)
i is the initial prediction for the ith observation,

wi is the weight for the ith observation, and yi is the actual
value for the ith observation. In XG-Boost, we consider M
trees, and we run iteratively m = 1toM and compute the
Gradient and Hessian for the loss function. Thus, for each
observation i, we have

gi =
∂L(yi, ŷ

(m−1)
i )

∂ŷ(m−1)
i

(24)

hi =
∂2L(yi, ŷ

(m−1)
i )

∂ŷ(m−1)
i

2
(25)

where L is the loss function, giis the gradient of the loss
with respect to the prediction. hi is the Hessian of the loss
with respect to the prediction.

Using the gradients gi, and Hessians hi, construct a
decision tree that predicts the output based on the input
embedding E. We next update the prediction as follows.

ŷ(m)
i = ŷ(m−1)

i + η · fm(Ei) (26)
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where η is the learning rate, and fm is the mth tree. The
final prediction ŷ(M) which is the result after adding the
contributions from all trees. After constructing M trees and
updating our predictions at each step, the final prediction
for the ith observation is given as follows.

ŷ(M)
i = ŷ(0)

i + η

M∑
m=1

fm(Ei) (27)

where ŷ(0)
i is the initial prediction for the ith observation,

Algorithm 2 The iterative X-LSTM optimization algorithm
Input: LSTM output y, XG-Boost model parameters θ, learning rate η, pareto front
P∗, minimum desired accuracy Amin.
Output: - Optimal prediction and minimized transaction size.

1: Initialize XG-Boost model with parameters θ
2: Initialize objective trackers A← 0, T ← ∞, S tx ← ∞

3: Extract features from y to get mathcalF
4: for (each epoch e) do
5: Update θ using gradient descent
6: Train XG-Boost with F to get prediction P
7: Compute current A = A(F , θ)
8: Compute current T = T (F , θ)
9: Hash P to get H

10: Update S tx based on H and associated blockchain costs
11: Check if (A,T, S tx) improves Pareto Front P∗
12: if (A < Amin) then
13: Revert θ to last best state
14: Reduce η by a factor η − δ
15: end if
16: Check for convergence criteria
17: if (convergence is obtained) then
18: Signal STOP and compute accuracy A
19: end if
20: end for
21: return Model parameters θ optimized for X-LSTM

η is the learning rate, and Ei is the embedding for the ith
observation obtained from the LSTM.

After obtaining the predictions using the XG-Boost
model, the results are validated. This is done on the val-
idation dataset not seen during the training process. The
process is presented as follows.

Vresults = Validate(ŷ(M)
i ,Ytrue) (28)

where Vresults represents the validation metrics, ŷ(M)
i is the

set of predictions, and Ytrue is the true values corresponding
to the validation set. The results, which include both the
predictions from the LSTM and the validation metrics from
the X-LSTM network, are then stored in IPFS storage.

The developed X-LSTM model is essentially an integra-
tion of sequence prediction and ensemble methods, lever-
aging the strengths of LSTM and XG-Boost algorithms.
Algorithm 2 uses the LSTM output y to serve as the input
to the XG-Boost algorithm. By updating the XG-Boost
model parameters θ using the multi-objective optimization
solution OXL iteratively, the algorithm ensures a balance
among accuracy, prediction time, and transaction size. The
checks and updates in the loop, especially the check against
Amin, and the subsequent learning rate reduction, ensure
that while optimizing, the model does not compromise on
the minimum accuracy. The use of the Pareto Front P∗

helps in guiding the optimization towards solutions that
satisfy all objectives as mentioned in section 3-B. The time
complexity of the algorithm proposed primarily depends
on the operations carried out within the main loop (i.e.,
the epoch loop). Updating θ using gradient descent on OXL
in one epoch primarily depends on the complexity of the
XG-Boost algorithm. If n is the number of samples and f
is the number of features extracted by LSTM, XG-Boost
typically has a complexity of O(k · n · log n · f ) , where
k is the number of boosting rounds. The computations of
A, T can be approximated O(n), where n is size of data.
Hashing operations are also typically O(n). Update S tx is
a simple update and can be considered as O(1). The check
whether (A,T, S tx) improves Pareto Front P∗ depends on
the number of solutions currently in the front, but in most
cases, this check can be approximated to O(p), where p
is the number of solutions in the Pareto front. Given that
there are E epochs, the total complexity inside the epoch
loop is O(E · (k · n · log n · f + p)). In practice, k, f , and
p are typically much smaller than n, and often constant
with respect to n, and considering the log n factor from the
sorting operations in the tree construction of XG-Boost, the
overall complexity can be approximated as O(E ·k ·n · log n).
In real-world scenarios, the actual running time can be
influenced by several factors including hardware specifics,
software optimizations, and the exact nature and distribution
of the data.

D. Connection of X-LSTM to Multi-Objective Optimization
The developed X-LSTM model is essentially an integra-

tion of sequence prediction and ensemble methods, leverag-
ing the strengths of LSTM and XG-Boost algorithms. This
intricate balance aligns well with the objectives outlined in
the Bl-Boost scheme.

1) Addressing Accuracy Enhancement: LSTM extracts
features (F ) from sequences, capturing temporal
dependencies. XG-Boost then fine-tunes predictions,
correcting LSTM biases and errors using its opti-
mization landscape. This process iteratively reduces
residuals, potentially increasing A(F , θ). Aligning
with objective P1, X-LSTM aims for high prediction
accuracy by maximizing the relationship between
LSTM features and XG-Boost parameters.

2) Achieving Expedited Predictive Analysis: While
LSTM networks can be computationally intensive,
XG-Boost speeds up predictions once trained. In the
X-LSTM model, LSTM handles training, while XG-
Boost processes data rapidly for real-time prediction,
keeping T (F , θ) minimal. Under constraint C2, X-
LSTM balances speed and accuracy, ensuring pre-
dictions exceed threshold Amin.

3) Ensuring Minimal Transaction Sizes: The blockchain
component in the scheme emphasizes the need for
efficient storage. The LSTM network, by converting
raw sequences to compact feature representations,
F , inherently reduces the data size. Furthermore, by
hashing prediction results and leveraging the IPFS
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Figure 4. Comparative analysis of LSTM and X-LSTM model

storage, X-LSTM ensures that the transaction size
S tx is minimal, fulfilling the objective P3.

E. Blockchain integration
The prediction results obtained from the LSTM and X-

LSTM network is stored in IPFS, which offers a decen-
tralized and fault-resilient solution in comparison to cloud-
based storage schemes. The primary advantage of IPFS
lies in its content-addressable nature. Instead of relying
on physical locations, files in IPFS are accessed based on
their content hash. Mathematically, a file Fin IPFS can be
represented as follows.

CIPFS (F) = hash(F) (29)

where CIPFS denotes the 32-byte content key for file F. This
ensures redundancy, high availability, and fault tolerance.
Given the healthcare context, data integrity and availability
are paramount, and IPFS serves as a beneficial tool. For
users, data storage and retrieval in the proposed architecture
is both secure and efficient. As mentioned, data is stored
in IPFS and presented to local SCs to cater to healthcare

stakeholders’ requirements. Stakeholders authorized to ac-
cess this data require two keys: CIPFS and private key of
healthcare user Pri(Keyu). The former provides a reference
to the actual data, while the latter ensures the authorized
user’s identity. The retrieval process can be mathematically
illustrated as.

R = Retrieve(CIPFS , Pri(Key)) (30)

where R denotes the retrieved data, and Retrieve represents
the retrieval function.

5. Performance Evaluation
This section assesses the performance of the proposed

system in comparison to the baseline LSTM-based ap-
proach. The proposed scheme uses LSTM boosting algo-
rithm to enhance the performance of the system and provide
trust and security to the EHR, IPFS is used.

A. Experimental Setup
The X-LSTM model is compared with the baseline

scheme, where the performance is evaluated based on
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cognitive heart failure dataset (CHF-RR) [34], and BIDMC-
CHF [35]. CHF-RR contains annotations files for 29 long
Electrocardiogram of subjects aged 34-79. Each Electrocar-
diogram signal is digitized at the rate of 128 samples per
second. BIDMC-CHF 15 long Electrocardiogram signals
from subjects aged between 22 and 71, each signal is 20
hours long in duration, and is sampled at 12-bit resolution
with a frequency of 350 samples per second. The different
parameter considered for implementation is mentioned in
the TABLE II.

TABLE II. Simulation Parameters

S.N. Parameter Value
1 Convolutional layer size 1
2 Filter 32
3 Activation function Rectified linear unit
4 Pool size 1
5 Activation function in pooling Rectified linear unit
6 Hidden Layer 64

B. Simulation Results
In this section, we examine the simulation results of

the X-LSTM model, and then present the benefits of using
blockchain to store the prediction accuracy. The details are
presented as follows.

C. Performance of X-LSTM network
Training accuracy evaluates the performance of a ma-

chine learning (ML) model on the training dataset. It is
computed by comparing the model’s predicted outcomes
with the actual outcomes present in the training data.
This metric serves as an indicator of the model’s ability
to grasp the patterns and associations within the training
data. A high training accuracy suggests that the model
has effectively learned the patterns inherent in the training
dataset.Validation accuracy measures how well a model
generalizes to unseen data. It is computed by evaluating the
model’s performance on a separate dataset called the vali-
dation dataset, which consists of examples that the model
hasn’t seen during training. The training and validation
accuracy are typically monitored during the model training
process to track the model’s performance and make deci-
sions about when to stop training or adjust hyperparameters.

Figure 4a presents the training and validation accu-
racy over 35 epochs. To assess the model behavior, it
is important to identify the relationship between training
loss and validation loss. Figure 4b demonstrates that the
training loss diminishes over time, showing that the model
is learning and enhancing its performance on the training
data. However, the validation loss may not always decrease
monotonically. Initially, training loss and validation loss
tend to decrease together, suggesting that the model is
generalizing well.

Figure 4c represents training and validation accuracy,
while Figure4d represents the training and validation loss in
X-LSTM model. If we compare the results of LSTM and X-
LSTM, we observed a better accuracy. With LSTM model,
we observed accuracy upto 95% where as in X-LSTM we

observed above ≈ 96.4% with 35 epochs. Similarly training
loss in X-LSTM is less in the initial epochs and decreases
significantly further up to 18% as compared to traditional
LSTM with a training loss of 25%.

D. Blockchain Performance
Figure 5a presents the processed number of EHR block

that contains the patient’s personal information. We have
simulated the environment on Hadoop [36] and HBase
[37]. It performs the checks at a random time to check
data corruption. Hadoop ecosystem integrity check reveals
that out of every 10,000 disk retrieval, there are only 70
incorrect or corrupted block. In Hbase approximately, only
20 incorrect or corrupted blocks are present every 10,000
block requests. This is possible as actual data is stored
over IPFS offline ledgers which allows fault-tolerance in
the system, and hence there are fewer corrupted indexes.

In Figure 5b we present the comparative analysis of
private and public blockchain with trust probability which is
measured on the basis of head miner, which is responsible
for fair block addition. In private blockchain a mining pool
can take over the the complete verification of block and
can incorrectly discard the correct block and malicious one.
In any mining network if we have more than 50% of the
miner from the same pool they can grow side chain and
discard the original one. Thus, public blockchain networks
are more trusted. Public blockchains tend to have larger
communities and user bases, which foster network effects.
These network effects include greater liquidity, wider adop-
tion, and more diverse applications and services built on
top of the blockchain. Public blockchains also have the
potential for interoperability, enabling different blockchains
to communicate and share data. These aspects contribute to
the overall growth and development of the ecosystem.

Figure 5c presents the benefits of storing data in IPFS.
Let rip f s(n) represent the response time of IPFS for a
given number n of files, and rblockchain(n) be the response
time for direct blockchain storage. For n = 5,000 files,
our plot showcases that rip f s(5, 000) is ≈ 8.5 ms. How-
ever, rblockchain(5, 000) is ≈ 60 ms. Thus, an improvement
ratio, I(n) for n = 5000 comes out to be I(5, 000) =
rblockchain(5,000)−rip f s(5,000)

rblockchain(5,000) which is ≈ 0.86, which indicates 86%
enhancement in response time when deploying IPFS over
direct blockchain storage. As n extends to 10,000 files,
rip f s(10, 000) is ≈ 10 ms, whereas rblockchain(10, 000) might
escalate to an unwieldy 120 ms, rendering I( f ) to be
0.92, or 92% improvement. Traditional blockchain storage
has an increased latency as since every fresh transaction
requires validation and addition to a continually extending
chain. However, IPFS, with its content-addressable opera-
tion (where content retrieval is contingent on its content
rather than location), evades traditional data storage’s pit-
falls. Coupled with the system’s decentralized architecture,
rapid data retrieval is achieved, irrespective of the increased
volume.

Figure 5d represents the mining latency of storing trans-
actions (which are external IPFS content addresses pointing
to actual storage in IPFS). Let L(t) represent the mining
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latency for t transactions. For t = 2,500 transactions, the
latency is ≈ 50.23 ms. When, t = 10000 transactions, the
latency surges to 100.31 ms. Thus, when the transaction
volume quadruples, the latency merely doubles, indicating
a sub-linear growth in latency. Also, the bulk of latency
for lower transaction counts, mainly aggregate close to
the range [20, 40] ms. Thus, the sum

∑40
l=20 of of number

of occurrences in given range dominates, which indicate
mining operations frequently lie in this latency range, even
when the transactions increase. The reason is trivial, as
we obtain optimization in the X-LSTM network. Hence,
transaction sizes tx are small, and thus the computational
requirements of mining decrease effectively.

E. Discussion and Potential Challenges
The experimental section unveils a range of salient

findings pertinent to the functionality and performance of
the X-LSTM model and the subsequent application of
blockchain for performance metrics. Practically, the evident
improvement of the X-LSTM model over the traditional

LSTM—specifically a jump in accuracy to approximately
96.4% implies that the modifications incorporated are effec-
tively capturing the intricacies of the Electrocardiogram sig-
nals in the datasets. Moreover, the utilization of blockchain
technology to safeguard and validate data, especially in
medical domain as critical as Electrocardiogram readings,
underscores the potential of decentralized ledger technology
in medical informatics. The added advantage of IPFS in
enhancing data retrieval speeds is demonstrative of how
modern distributed systems can revolutionize the storage
and retrieval of patient data, making it quicker and more
secure.

However, the simulation results raises some potential
challenges to be addressed. As indicated by the Hadoop
ecosystem integrity check results, out of every 10,000 disk
retrievals, 70 blocks were corrupted. While this is relatively
low, in a medical setting, even a minor data corruption
can lead to significant misinterpretations and consequential
errors in patient care. Further, the analysis differentiating
public and private blockchains suggests trustworthiness
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issues with private networks. This is due to the possibility of
a mining pool taking over the complete verification process,
potentially leading to the acceptance of malicious blocks.
Direct storage in blockchain, especially with increased
transaction volumes, exhibited amplified latency. This delay
can be problematic in real-time medical applications where
instant data retrieval might be crucial.

As future scope, some potential solutions to address
these challenges lie towards the need to integrate advanced
error-detection and error-correction algorithms within the
Hadoop ecosystem to reduce data corruption further. Ex-
ploring parity-check and Reed-Solomon codes might help
in better error detection and rectification. To address the
trust issues in private blockchains, hybrid blockchain ar-
chitectures can be explored. Future research should delve
deeper into optimizing the storage mechanisms in traditional
blockchains. Utilizing sharding techniques or state channels
might help reduce latency by partitioning the data and pro-
cessing transactions off the main chain, respectively. Thus,
while the results presented exhibit promise in the domain
of medical data processing and storage using advanced
algorithms and blockchain, there is significant room for
improvements. The future lies in synergistically combining
technological advancements with medical requirements.

6. Conclusion and Future Scope
The paper presents a novel scheme, Bl-Boost, which

integrated LSTM output with the XG-Boost mechanism,
through a proposed stacked X-LSTM network. This novel
approach was instrumental in addressing multi-objective
optimization challenges, exhibiting an impeccable balance
between performance efficiency and computational resource
utilization. The X-LSTM network’s unique stacking mech-
anism enabled it to harness the temporal sequence capa-
bilities of LSTM and the gradient-boosted decision-making
prowess of XG-Boost, offering a harmonized solution for
intricate data-driven challenges. We strategically used IPFS
for storing prediction results, which allowed significant
reductions in the actual transaction size stored within the
blockchain. This not only streamlined the data storage and
retrieval processes but also optimized the efficiency of the
blockchain network.

As part of future scope of the work, the authors would
integrate attention mechanisms to the stacked X-LSTM
network to further improve the model ability to focus on
pivotal sequence events.
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