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Abstract: Efficient and accurate classification of road features, such as crosswalks, intersections, overpasses, and roundabouts, is crucial
for enhancing road safety and optimizing traffic management. In this study, we propose a classification approach that utilizes the
power of transfer learning and convolutional neural networks (CNNs) to address the road feature classification problem. By leveraging
advancements in deep learning and employing state-of-the-art CNN architectures, the proposed system aims to achieve robust and real-
time classification of road features. The dataset contained 7616 images of roundabouts, crosswalks, overpasses, and intersections from
the MLRSNet dataset and manually extracted satellite images from Malaysia using Google Earth Pro. After that, we merged this dataset.
We designed a CNN architecture that consists of 24 convolution layers and eight fully connected layers. Transfer learning models such
as ResNet50, MobileNetV2, VGG19 and InceptionV3 were also explored for road feature classification. The best-performing model
during the validation phase is InceptionV3, with an accuracy of 98.9777%, whereas the best-performing model during the test phase
is ResNet50 and VGG-19 models, with an accuracy of 98.7132%. The proposed CNN model got 95.1208% and 94.4852% accuracy
during the validation and test stage. From the evaluation, the best-performing models for road feature classification are ResNet50 and

VGG-19, with an accuracy of 98.7132%.
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1. INTRODUCTION

The speedy growth of computer vision and deep learning
has been a crucial factor in the automated extraction and
classification of road parameters. Road feature classification
is key to many applications like GIS, autonomous driving,
and urban planning. Merging of Transfer Learning and
Convolutional Neural Networks (CNNs) is a sound method
to boost the speed and accuracy of road feature classifi-
cation. Effective classification of road features is essential
for applications in transportation systems, such as au-
tonomous driving, traffic management, and road infrastruc-
ture maintenance[1]; for safe and effective navigation, it is
crucial to correctly identify and classify road elements such
as roundabouts, crosswalks, overpasses, and crossroads[2],
road feature classification traditionally depends on labour-
intensive, subjective, and error-prone manual examination
and interpretation by human experts[3].Automated catego-
rization systems, however, have emerged as a potential ap-
proach to handle this work effectively and precisely thanks
to improvements in computer vision, machine learning, and
deep learning approaches[4]; various strategies have been
investigated in recent years to automate the classification
of road features[5], These methods utilize computer vi-

sion techniques and machine learning models, particularly
convolutional neural networks (CNNs), to analyze and
categorize photographs of road features. With the ability to
extract pertinent information from input photos and produce
precise predictions, CNNs have shown to be exceptionally
effective at image recognition tasks. In this paper, we
address the classification issue of these unique road features
by developing a convolutional neural network (CNN) archi-
tecture and using a transfer learning technique to search for
the best-performing model[6]. CNNs prove to be able to
independently and continuously acquire feature hierarchies
from input images. As a result, they are components of deep
neural networks that have exceptional performance in image
processing applications. Besides, computer vision applica-
tions like image segmentation and picture classification have
also proved to be very efficient and successful in operating
using Convolutional Neural Networks (CNNs). CNNs can
recognize various road types, road markings, signs, and
others by analyzing high-resolution remote sensing images
or ground-level photographs. This ability is of great use in
the classification of road attributes.Transfer Learning is a
machine learning method that involves the use of a pre-
trained model to create a new model for a different task.
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Through this approach, you can improve your performance
on the current task by taking the knowledge and skills
from the previous one and applying them. Transfer learning
allows the employment of complex models that have already
been trained on big datasets like ImageNet to identify the
basic characteristics from the road images, thus simplifying
the process of classifying the road features. In specific
fields like road feature recognition, the availability of large
labelled datasets is usually limited. Thus, the importance
of computer vision algorithms is diminished. Through the
combination of CNNs with transfer learning, the most
beneficial features of the two methods may be captured.
On the other hand, with a minimal quantity of road-specific
data, the pre-trained CNN models can be easily fine-tuned
to recognize and classify the elements of the road with
great accuracy. In this way, we will be able to speed up the
training, and the model’s generalizability will be improved.
Hence, it will be more effective when used for new data
that have not been known before.A lot of the research has
proved that this approach is successful in providing the best
solutions. For instance, scientists have accomplished a lot in
the segmentation of road types (like highways, urban streets
and country roads) and road conditions (like wet, dry and
ice) from aerial and ground-level images by using transfer
learning. Besides, to enhance the classification system’s
robustness and accuracy, CNNs can be trained to use multi-
modal input, for instance, to combine visual pictures and
LiDAR data. In a nutshell, the best way to categorize road
features that make progress in data scarcity and demand
high accuracy is the combination of transfer learning and
convolutional neural networks (CNNs). Intelligent transport
systems and smart city applications alike benefit from
this holistic strategy, in which the road features are de-
tected and classified more efficiently and effectively. The
advancements in the road feature categorization accuracy
and sophistication, which are going to be achieved through
research and development in this field, will be in line with
the ongoing technological transformation, meaning that the
new technologies will bring huge benefits to the field. The
successful implementation of this research will have signif-
icant practical implications. It can assist traffic management
authorities in automating the monitoring and controlling of
transportation facilities, enhancing road safety, and optimiz-
ing traffic flow. Additionally, the proposed system can serve
as a foundation for developing intelligent transportation
systems and smart city initiatives, contributing to the overall
improvement of urban mobility.

2. REeLATED WORKS

In recent years, there has been much interest in the
classification of road characteristics, including roundabouts,
crosswalks, overpasses, and intersections, utilizing transfer
learning and convolutional neural networks (CNNs). Re-
searchers have investigated several methods to improve the
reliability and accuracy of classifying road features in the
context of intelligent transportation systems.

Timen et al. proposed deep learning and image-

processing techniques to detect intersections and cross-
walks. They designed a multi-scale CNN architecture called
the RoIC-CNN that incorporated both convolutional and
pooling layers to capture spatial information at different
scales. RoIC-CNN consists of ten convolution layers and
eight fully connected layers. In this study, other CNN mod-
els, such as VggNet-5, LeNet, and AlexNet, are also tested
to compare their performance. From the evaluation, the
best-performing model in detecting crosswalks and inter-
sections is the RoIC-CNN[7]; In order to create the flyover
labelling geodatabase (OLGDB) using the OpenStreetMap
(OSM) road network data of six representative Chinese
cities, Li et al. build upon the target detection model
(Faster-RCNN). This method uses raster data to train con-
volutional neural networks (CNNs) to learn task-adaptive
features, and then uses a region proposal network (RPN)
to choose the best spot for a flypast. More specifically,
Faster-RCNN incorporates three separate CNNs: ZF-net,
VGG-16, and Inception-ResNet V2. The contribution of five
geometric metrics—area, perimeter, squareness, circularity,
and W/L—to the flyover identification task is assessed
after synthesising them into picture bands to improve the
training data. In this stage, the optimal combination of
learning rate and batch size is determined by fine-tuning.
The suggested method achieves respectable accuracy (about
90%) according to the experimental findings[8]. Another
active area of research aimed at leveraging artificial intel-
ligence techniques to improve transportation infrastructure
and operations is the analysis of the deep learning-based
classification of transportation facilities for enhanced road
safety and traffic management. In the study conducted by
Jilani et al. (2022), When it comes to traffic congestion
categorization, a five-layer CNN deep learning model is
suggested. Augmentation with GANs improves the traffic
congestion dataset. The study used pre-trained RsNet50
and DenseNet-121 as the benchmark to compare with the
5-layer CNN. The study found that the proposed CNN
emerged as the best model with an accuracy of 98.63% com-
pared to ResNet50 (90.59%) and DenseNet-121 (93.15%),
respectively[9]; This study presents a hybrid model that en-
hances road feature identification by merging Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs). The main objective is to enhance road safety
and optimize the overall driving experience. The model
employs Convolutional Neural Networks (CNNs) based
on the MobileNetV2 architecture and Recurrent Neural
Networks (RNNs) to handle GRU. A benefit of using it
in automobiles is its ability to process real-time data and
effortlessly transfer models due to its lightweight form. The
CNN-MobileNetV2-GRU model has improved its ability
to accurately identify road components, including speed
bumps and variations in road conditions. The model pro-
vides a comprehensive solution for classifying road features,
including spatial, efficiency, and speed requirements, by
processing data from the edge to the cloud. The CNN-
MobileNetV2-GRU model is well-suited for practical ap-
plications such as enhanced driver assistance systems and
autonomous vehicles because of its exceptional precision




and efficient utilization of processing resources. [10]; The
authors propose a technique that classifies roads into four
categories: highway, city road, undeveloped area, and hous-
ing estate. A sophisticated pyramidal residual network has
been created to classify these sorts of roads effectively.
Conducted experiments using a benchmark dataset that is
accessible to the public and sensor data obtained via intel-
ligent eyewear. The 1D-PyramidNet model had the highest
level of accuracy (92.23%) in interpreting the data and sur-
passed all other deep learning models in performance[11].
As detecting road damage is important to maintain optimal
road conditions and enhance transportation safety, sev-
eral studies have been using object detection/classification
models and incorporating a deep learning technique. Road
damage algorithms can be divided into two large groups;
the first group includes algorithms with two stages, and the
second consists of one-stage ones. A two-state solution, like
support vector machines and convolutional neural networks,
includes a detector and a classifier, which first defines
regions in an image where an object may be present and
then classifies each area. Another type, a one-stage solution,
for instance, YOLO and SSD, tries to make predictions for
the best possible region at one time, negating the need for
additional steps. This work describes the development of
such algorithms and demonstrates their use in examples
of explaining road damage detentions[12]. Deep learning
algorithms are now being used in vision-based applications,
such as autonomous driving and traffic monitoring. Traffic
sign recognition and semantic road detection are the primary
areas of study in intelligent transport systems, with a
strong emphasis on safety. These issues play a crucial role
in the advancement of intelligent transport systems. This
work introduces a driving assistance system that incor-
porates components based on deep learning. The system
is constructed using hybrid 2D-3D CNN models that use
transfer learning techniques. The models use a pre-trained
deep 2D Convolutional Neural Network (CNN) and a less
complicated 3D CNN to reduce complexity and expedite
the training method. The first model, Hybrid-TSR, is an
established method for handling the problem of recognizing
traffic signs. The second model, Hybrid-SRD, is a technique
for detecting road space by using up-sampling and decon-
volutional operations to analyze the semantic information.
The projected results indicate that the offered approaches
are very significant in terms of efficiency and accuracy[13].
Autonomous cars are significantly important for traffic
moving monitoring, and the capability of instantly detecting
potholes is important for the safety and convenience of the
vehicles. Many methods, such as reporting to authorities,
vibration-based sensors, and 3D laser imaging, are limited
by the high costs that are incurred in their installation and
the possible dangers that are associated with their use.
This article presents the new method, Adaptive Mutation
and Dipper Throated Optimisation (AMDTO), which is
designed to select and optimize the features of the Random
Forest (RF) classifier. The AMDTO+RF technique that was
employed had a pothole classification accuracy of 99. The
effectiveness of the method in experiment A was 795%,

which was beyond the previous methods, such as WOA+REF,
GWO+RF, PSO+REF, and transfer learning approaches. The
method’s importance and consistency are even more proven
by the in-depth statistical analysis of the outcomes that are
recorded. This method aims to electronify the process of
spot identification that is precise and quick[14]. Automated
data collecting for roadside barriers has been developed
by the Wyoming Department of Transportation (WYDOT)
as part of their asset management system. The system
collects the geometric attributes and material conditions
of barriers, which in turn assists in the decision-making
of asset management and, thus, optimization. There are
over one million linear feet of state barriers, whose total
value is more than $100 million. The price for the state to
acquire these features is more than half a million dollars
at one time. A unique method was suggested to identify
different kinds of roadside barriers by using pre-trained
models like inception v3, denseness 121, and VGG 19.
VGG 19 network was used, which resulted in a great
accuracy of 97% through transfer learning. An architectural
non-transfer model, which is basically a model that is just
built and is very simple, was made and the accuracy of
the model was 85%. On the other hand, the non-transfer
learning model was better than the inception and denseness
models but still not as good as the VGG network.[15];
The study introduces a technique for classifying road signs
using pre-trained Convolutional Neural Network (CNN)
models, which is based on transfer learning. The authors
assess the efficacy of their models using the German Traffic
Sign Recognition Benchmark test dataset. The researchers
use transfer learning and augmentation approaches to as-
sess different designs. The findings demonstrate that the
suggested strategy attains an average accuracy of 99.2%,
surpassing the performance of current approaches. These
findings indicate that the use of transfer learning and pre-
trained models may greatly improve the accuracy of road
sign categorization, even when working with a limited
dataset[16]. This research assesses the efficacy of deep
learning-based pre-trained networks in assessing gravel road
photographs using traditional methodologies. The collection
comprises photos obtained from self-recorded films and
Google Street View. These images have been manually
tagged based on standard images established by the Road
Maintenance Agency in Sweden. The dataset was divided
into a 60:40 ratio for training and testing. Multiple pre-
trained models were used, all of which exhibited strong
performance with an accuracy of over 92%. The VGG-16
model, which was pre-trained and used transfer learning,
had superior performance in terms of accuracy and F1 score
when compared to other models that were suggested. The
research seeks to enhance the evaluation of loose gravel
by road maintenance authorities[17]. There is an increasing
need to identify wet road surfaces in order to address acci-
dents and traffic problems during rainy weather conditions.
Acoustic signals have garnered interest because of their
cost-effectiveness in deployment.A large quantity of training
data is required by current deep learning methods, which
rely on supervised audio measurements. The evolution of
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convolutional neural networks (CNNs) has made it easier
to train CNNs on one dataset and then apply them to
another. The reliability of convolutional neural network
(CNN) models that have been pre-trained to detect wet road
surfaces is tested in this study. The results show that transfer
learning is able to distinguish between surfaces that are dry
and those that are moist, with an accuracy rate of more than
80%.[18].

3. METHODOLOGY

The methodology consists of a set of phases: dataset col-
lection, preprocessing, Classification Models, Performance
Metric and Hyperparameter Tuning, as shown in Figure 1.

Phase 1: Dataset Collection Phase 2: Preprocessing

Resize ‘ Oversampling Augumentation

3 2
Google
+ | EarhPro -
| Stratification Split |, Fncoding

l Phase 3: Classification Model

Phase 4: Evalution

Performance Metric l

ll’llase 5: Select Best Parameter

Hyperparamerter Tuning

Deep Learning Model

| Convolutional Neural Network (CNN) |

Transfer Learning Models

| InceptionV3 | | VGG19 ‘ | MobileNetV2 | ‘ ResNet50 |

Figure 1. Methodology of the study.

A. Phase 1:Dataset Description
We will explain the dataset used in our study.

1- MLRSNet Dataset (First Dataset): The dataset
used in this study is primarily sourced from the MLRSNet
dataset, which is available from Mendeley Data [19]. The
dataset contains 109,621 high spatial resolution optical
images of 46 different categories captured from satellites. In
this study, images of roundabouts, intersectionsIntersection
and overpasses were obtained from the MLRSNet dataset.
2,040, 2,498 and 2500 images of roundabouts, Intersections
and overpasses were collected from the MLRSNet dataset,
respectively. The images from the MLRSNet dataset have
a fixed size of 256x256 pixels, as show in Figure 2.

2- Dataset from Google Earth Pro (Second Dataset):
is provides users with access to a wealth of geographical
data, including satellite photos, maps, topography, and 3D
buildings, all from the comfort of their virtual globe [20].
Additional satellite images of roundabouts, intersections,
crosswalks, and overpasses in Malaysia were obtained by
taking screenshots of those features using Google Earth Pro
software that contain 100, 101, 242 and 135 Roundabout,
Intersections, Crosswalk and Overpass as show in Figure 3.

3- Merge Dataset: We merged two datasets, the
MLRSNet dataset and the dataset from Google Earth Pro, to
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Figure 2. MLRSNet Dataset
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Figure 3. Dataset from Google Earth Pro

get 2140, 2599, 242 and 2635 to Roundabout, Intersection,
Crosswalk and Overpass as Figure 4. and Table I, As can
be observed from Table I and Figure 4., the data could be
more balanced, where the number of images of crosswalks
is significantly less than the images of other categories since
the images of crosswalks are not explicitly available to be
downloaded from the MLRSNet Dataset. Figure 5 shows the
sample images for the roundabout, Intersection, crosswalk,
and overpass.

B. Phase 2: Preprocessing

We apply a set of processes before entering the classi-
fication model

1- Resizing Image: It is essential preprocessing to
change the size of the Image and its dimensions while
maintaining its aspect ratio or stretching it to fit a new
size. To ensure uniformity and compatibility, all photos in
our dataset were uniformly downsized to a resolution of
224x224 pixels. The raw images collected from Google
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TABLE I. Number of Image to each Class

Images MLRSNet
Roundabout 2040
Intersection 2498

Crosswalk 0
Overpass 2500

Google Earth Pro Total
100 2140
101 2599
242 242
135 2635
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1000
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Figure 4. Merge Dataset

Figure 5. Sample of Images

Earth Pro were of a different size and aspect ratio than the
MLRSNet dataset. Thus, the images obtained from Google
Earth Pro were cropped into perfect squares. This was
realized through checking the aspect ratio of the images.
If the image width and height are equal, no cropping action
will be performed. If the width is greater than the height,

the left and right sides of the Image will be cropped, and
a perfect square image is returned. If the width is less than
the height, the top and bottom parts of the Image will be
cropped, and a square image will be returned. The cropped
images will then be resized to a resolution of 224x224.
Similarly, images obtained from the MLRSNet dataset were
resized to 224x224 pixels as well.

2- Oversampling: is a method for dealing with datasets
that have an imbalance between classes, where one class
has a much smaller number of instances than the other
classes. Biassed models that fail to represent minority
groups adequately may result from this imbalance; class
imbalance is detrimental towards training on classifiers,
and it affects the convergence of the deep learning model
during the training phase and generalization of the model
during the test phase [21], [22]. Good model results can
be attained if all the classes in the classifier are properly
represented [23]. The oversampling method was found to
be among the best methods in alleviating class imbalance
problems for CNN-related model training [21]. In order
to alleviate the class imbalance issue in this study, image
augmentation, which is a form of the oversampling method,
was performed so that class balance was achieved. The
argumentation library from Python was used to perform
image augmentation. In this data augmentation process,
for each image class, a random image was selected, and
random augmentation operations were performed. The
following augmentation techniques, with a 0.5 probability
chance of execution, were performed in Figure 6
e Random rotate- 90°
e Vertical flip
e Horizontal flip
e Random brightness contrast
e Random gamma

3- Image Augmentation: in order to increase the size
of the dataset, we used methods for augmenting images.
Incorporating data variances via image augmentation is
a common way to improve the general-isolation Model’s
performance[24]. Through data augmentation, the number
of images for each category is increased to 2700 images,
respectively, as Figure 7.

4- Encoding: is a method to change the way values
are represented. When dealing with categorical variables,
label encoding—also called ordinal Encoding gives each
category in the dataset a distinct integer value [25]. The
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Figure 7. Number of Image after Image Augumentation

input and filter weights are determined by doing the dot
product using this technique, which enables the conversion
of convolutional filters. The network is able to analyse
the input image and extract relevant features and spatial
information by means of these procedures [26].

5- Split Data: The images are then split to train,
validate, and test set with a ratio of 7:2:1. Here we have the
train set, which is used to train the model; the validation
set, which is used to validate the model after each epoch;
and the test set, which is used to assess the model after
training.

6- Stratification: is a method for making sure that
various data subsets keep the same distribution of classes
in the dataset. Because biassed models might result from
an uneven class distribution, this is especially crucial for
classification tasks, which were performed during the split
to ensure that the number of images for every class was the
same for each batch of dataset.

C. Phase 3: Classification Models

1- Convolutional Neural Network (CNN): Among
artificial neural networks, Convolutional Neural Networks
(CNNs) stand out due to their deep feed-forward design
[27]. Image processing and analysis are two areas where
Convolutional Neural Networks (CNNs) really shine. In
order to assess the input picture, a Convolutional Neural
Network (CNN) usually uses convolutional layers that use
sets of adaptive filters. CNN is well-known in image-based
classification tasks. CNNs process the input data using a
number of interconnected layers. Typically, a convolutional
layer is the first hidden layer of a convolutional neural
network (CNN). It uses a series of filters to identify
patterns in the input data [28]. These networks are built to
automatically extract significant features at various degrees
of abstraction from raw pixel input and learn hierarchical
representations. Convolutional layers in CNNs allow for the
extraction of regional patterns and structures. In contrast,
pooling layers make it easier to downsample spatial data,
which improves the model’s ability to identify essential
features. Based on the retrieved features, fully connected
layers provide the final categorization.

A custom CNN model is created in this study to perform
the classification of roundabouts, crosswalks, intersections,
and overpasses. The CNN model is created using Tensor-
Flow. The CNN architecture consists of 24 convolution
layers and eight fully connected layers, as listed in Table II.

3- Transfer Lerning: In addition to the proposed CNN,
transfer learning models such as ResNet50, MobileNetV2,
VGG19 and InceptionV3 are used to compare the accu-
racy with our CNN model developed. It is a powerful
technique in computer vision tasks which enables models
to leverage knowledge learned from pre-trained models
trained on large-scale datasets [29]. By transferring this
knowledge to a new task, transfer learning can signifi-
cantly enhance classification performance. In our approach,
we harness the benefits of transfer learning by utilizing
pre-trained models from the literature, such as ResNet50,
MobileNetV2, VGG19 and InceptionV3. In this study, the
classification layers of the transfer learning models were
dropped and replaced with a new classification layer similar
to the proposed CNN model. The weights are initialized
based on the models’ weights trained on ImageNet. All the
transfer learning layers were allowed to be trained in this
study. Table III. summarizes the common hyperparameters
configured for the transfer learning models.

e ResNet50: is a 50-layer deep convolutional neural
network design that uses residual connections to support the




TABLE II. The CNN architecture

Layer Layer Name Output Shape Param #
1 Conv2D 224 x 224 x 32 896
2 MaxPooling2D 112 x 112 x 32 0
3 Conv2D 112 x 112 x 32 9248
4 BatchNormalization 112 x 112 x 32 128
5 MaxPooling2D 56 x 56 x 32 0
6 Dropout 56 x 56 x 32 0
7 Conv2D 56 x 56 x 64 18496
8 BatchNormalization 56 x 56 x 64 256
9 Conv2D 56 x 56 x 64 36928
10 BatchNormalization 56 x 56 x 64 256
11 MaxPooling2D 28 x 28 x 64 0
12 Dropout 28 x 28 x 64 0
13 Conv2D 28 x 28 x 128 73856
14 BatchNormalization 28 x 28 x 128 512
15 Conv2D 28 x 28 x 128 147584
16 BatchNormalization 28 x 28 x 128 512
17 MaxPooling2D 14 x 14 x 128 0
18 Dropout 14 x 14 x 128 0
19 Conv2D 14 x 14 x 256 295168
20 BatchNormalization 14 x 14 x 256 1024
21 Conv2D 14 x 14 x 256 590080
22 BatchNormalization 14 x 14 x 256 1024
23 MaxPooling2D 7x7x 256 0
24 Dropout 7x7x 256 0
25 Flatten 12544 0
26 Dense 256 3211520
27 BatchNormalization 256 1024
28 Dropout 256 0
29 Dense 32 8224
30 BatchNormalization 32 128
31 Dropout 32 0
32 Dense 4 132

TABLE III. The common hyperparameters configured for the transfer learning

Parameter InceptionV3 ResNet50 VGG-19 MobileNetV2
Input image (224,224,3) (224,224,3) (224,224,3) (224,224,3)
Weight Initialized to ImageNet Initialized to ImageNet Initialized to ImageNet Initialized to ImageNet
Optimizer Adam Adam Adam Adam
Loss function  Sparse categorical cross entropy  Sparse categorical cross entropy  Sparse categorical cross entropy  Sparse categorical cross entropy
Classifier Softmax Softmax Softmax Softmax
Epochs 50 50 50 20
Dropout rate 0.2 0.2 0.2 0.2

training of intense networks. It has demonstrated impressive
performance in image classification challenges, overcoming
the vanishing gradient issue and facilitating more straight-
forward deep model optimization.

e MobileNetV2: A compact convolutional neural net-
work architecture called MobileNetV2 was created for
effective mobile and embedded vision applications. It is ap-
propriate for devices with limited resources because it uses
depth-wise separable convolutions and inverted residual
blocks to simplify computations while retaining competitive
accuracy.

e VGG19: Convolutional neural network architecture
VGG19 is renowned for its efficiency and simplicity. There
are 19 layers total, including several 3x3 convolutional
layers followed by max-pooling layers. Although VGG19
has more parameters than other architectures, it performs
image classification tasks with a high degree of accuracy.

e InceptionV3: The deep convolutional neural network
architecture known as InceptionV3 makes use of the idea
of inception modules. These modules use parallel convolu-
tional layers with various kernel sizes to capture features at
various scales. InceptionV3 reduces the number of param-




eters using dimensionality reduction techniques to obtain
high accuracy in image recognition tasks while retaining
computing efficiency.

D. Phase 4: Performance Metric

In this stage, we test the CNN models to see how
well they do. To gauge how well a Convolutional Neural
Network (CNN) is doing, accuracy is a common metric
to utilise. Relative to the total number of photos, accuracy
measures how many predictions were right. Equation 1 is
the accuracy formula:

TP+TN
Acc(%) = i

= x 100% 1)

TP+FP+TN+FN

True positives (TPs) occur when the model accurately
predicts that a sample belongs to a given class, while true
negatives (TNs) occur when the model accurately predicts
that a sample does not belong to a specific class. A False
Positive (FP) occurs when the model wrongly assigns a
sample to the wrong class, whereas a False Negative (FN)
occurs when the model assigns the wrong class to a sample,
even if the sample truly belongs to the proper class.

E. Phase 5: Hyperparameter Tuning

The optimal model’s performance was achieved by hy-
perparameter adjustment. Two hyperparameters—learning
rate and batch size—were examined in this research. Ac-
cording to [30], the learning rate is a hyperparameter
that controls how much a deep learning model changes
whenever the model’s weights are changed in response to
the estimated error. Batch size, on the other hand, is the
quantity of samples that are processed prior to updating the
model [31]. Learning rate and batch size significantly affect
the performance of a neural network, according to several
research [32][33].

Learning rates of 0.01, 0.001 and 0.0001 were tested
during hyperparameter tuning. As for batch size, batch sizes
of 32 and 64 were tested. A full grid search was performed
during the hyperparameter tuning process, and thus, six
experiments were performed for each of the image classi-
fication models during the hyperparameter tuning process.

The hyperparameter tuning process is realized using the
Keras Tuner library in Python, and the models were allowed
to be trained for 50 epochs. After hyperparameter tuning
was performed for each image classification model, the
model with the best validation accuracy was rebuilt, and
the model was then tested with the test dataset to obtain
the test accuracy.

Subsequently, the performance of the best-performing
model for each image classification model, whether it is the
custom CNN model proposed here or the transfer learning
model, will be evaluated, compared and discussed in a
subsequent section.

4. REsuLts AND DiscussioN

We will Split this chapter to two section Result and
Discussion

A. Results
We will show all results that we achieved in our study

1- Training and Validation Loss: Figure 8 shows
the training and validation loss of the model during the
hyperparameter tuning process. In general, the training and
validation loss reduces as the epoch increases. However,
some of the trials failed to converge and remain stationary
across epochs, which is especially true for trial 1 and trial
2 of transfer learning models, where the learning rate for
both was 0.01. While trial 5 and trial 6, which use a learning
rate of 0.0001, show the lowest training and validation loss
during the model training of transfer learning models, both
trials had the highest loss during the training of the proposed
CNN networks.
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Figure 8. Training and validation loss of models plotted on log scale
during the hyperparameter tuning process.

2- Validation Accuracy: Table IV summarizes the
proposed CNN and transfer learning models’ best validation
accuracy for different learning rates and batch sizes used
during the hyperparameter tuning process. In general, in
this study, a larger batch size of 64 would result in better
validation accuracy than a smaller batch size of 32; as for
the effects of learning rate, smaller learning rates result
in better validation accuracy for transfer learning models.
However, this trend is not observed in the proposed CNN




model, where the highest validation accuracy is observed
when the learning rate is 0.001 instead.

It is worth noting that for all the transfer learning
models trained with a learning rate of 0.01, except for the
MobileNetV2 model trained with a batch size of 64, the
accuracies of the models were very low at less than 40%.
This was due to the models failing to converge during model
training, as evident in the training and validation loss curves
of those models shown in Figure 8, which do not decrease
as the training epochs increase.

3- Optimal Hyperparameters: The highest validation
accuracies for each model in the hyperparameter tuning
process were bolded in Table V, and accuracy values,
together with their corresponding hyperparameters, were
summarized in Table 5. From the hyperparameter tuning
process, the best-performing proposed CNN model, which
had a learning rate of 0.001 and batch size of 32, had
a validation accuracy of 95.1208%. As for other transfer
learning models, the highest validation accuracies were
attained with a learning rate of 0.0001 and batch size of
64. The validation accuracies were 98.9777%, 98.6524%,
97.9082% and 98.3271% for InceptionV3, ResNet50, VGG-
19 and MobileNetV2 respectively. Based on this validation
accuracy score, InceptionV3 was found to provide the best
validation accuracy, followed by ResNet50, MobileNetV2,
VGG-19 and the proposed CNN network.

In addition, the best-performing models were tested with
the test dataset to obtain the test accuracy. In general, the
test accuracy was comparable to the validation accuracy.
However, the sequence in terms of the test accuracy per-
formance is different. Both ResNet50 and VGG-19 had a
test accuracy of 98.7132%, followed by MobileNetV2 with
98.0698% test accuracy and InceptionV3 with 97.7022%
test accuracy. The proposed CNN model had the lowest
test accuracy compared to the other models at 94.4852%.

B. Discussion

The reason why the proposed CNN model could be
performing better than other transfer learning models could
be attributed to insufficient model training. As could be
seen from the loss curves of the CNN model, stationarity
had yet to be obtained by the end of the 50 epochs.
This is different from the transfer learning models, where
stationarity is observed towards the end of the 50 epochs.
Thus, the proposed CNN model had yet to attain conver-
gence, resulting in lower accuracy. In addition, the transfer
learning models used here were created by industry experts
in CNN and initialized with pre-trained weights, which have
been optimized with the training of the ImageNet dataset.
Thus, convergence can be attained earlier with the transfer
learning models trained with the new satellite images. The
proposed CNN model can be trained with more epochs until
convergence is attained, and hyperparameter tuning with
more hyperparameters can be performed as part of future
work to attain better performance with the model.

5. ConcrusioN AND FuTure WoORK

This research introduces a novel approach to road
feature classification using convolutional neural networks
(CNNs) and transfer learning. For this task, we contrast
the accuracy of the suggested CNN model with that of
other transfer learning algorithms, including ResNet50,
MobileNetV2, VGGI19, and InceptionV3. Various hyper-
parameters, including learning rate and batch size, are
investigated in this study. The results demonstrated that both
the suggested CNN model and the TL models, which had
undergone hyperparameter tuning, can classify roundabouts,
crosswalks, intersections, and overpasses with relatively
high accuracy. The best-performing model during the vali-
dation phase is InceptionV3, with an accuracy of 98.9777%,
whereas the best-performing model during the test phase
is ResNet50 and VGG-19 models, with an accuracy of
98.7132%. The proposed CNN model got 95.1208% and
94.4852% accuracy during the validation and test stage.

The CNN architecture proved to be well-suited for road
feature classification tasks, capturing spatial dependencies
and extracting discriminative features from road images.
Our model achieved high accuracy, robustness, and effi-
ciency. However, more work needs to be done to improve
its classification performance further further.

Our study demonstrates the effectiveness of transfer
learning and CNNs in the classification of road features.
The proposed approach offers a practical and efficient
solution for accurate identification and categorization of
road features, contributing to the advancement of intelligent
transportation systems and enhancing overall road safety
and efficiency.

The implications of our research extend to various
domains within intelligent transportation systems, including
autonomous driving, traffic management, and road infras-
tructure maintenance. Accurate classification of road fea-
tures enables safer navigation, improved traffic flow, and
adequate decision-making in transportation planning and
management.

Future research can explore additional road feature
categories and expand the classification system to handle
real-time scenarios. Further investigations can also focus on
optimizing the model architecture, refining transfer learn-
ing strategies, and incorporating contextual information for
more comprehensive road analysis.
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