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Abstract: In the pursuit of more accurate cancer detection through breast cancer histopathology (BCH) images, Convolutional Neural
Networks (CNNs) have emerged as promising tools. However, CNNs still face limitations, necessitating advancements in classification
performance. This research addresses these challenges by harnessing the power of Generative Adversarial Networks (GANs) as data
augmentation to optimize CNN models for BCH image classification. This paper addresses the proposed two-stage augmentation
strategies based on GAN and the traditional method. The BreakHis dataset was employed to investigate the efficacy of GAN-based data
augmentation. The research adopted a transfer learning approach, namely Inception-V3, and VGG16, and fine-tuned them with a single
GAN and the two stages augmentation methods. The novel integration of GANs and traditional augmentation enhanced the training
dataset, enabling the models to learn from a more diverse and extensive image distribution. Extensive trials demonstrated that the
top-performing architecture, Inception-V3 + TradAug, attained a remarkable 97.12% accuracy with 0.1014 loss value, showcasing the
effectiveness of the composition of GAN and traditional augmentation in optimizing BCH image classification. The two-stage integration
of GANs, such as data augmentation and traditional augmentation, empowers CNN models to identify cancerous conditions accurately.
This research signifies a significant step towards enhancing breast cancer classification through advanced AI-driven methodologies.
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1. INTRODUCTION
Cancer is a significant health problem that has impacted

many lives today. One type of cancer that has affected many
women around the world is breast cancer. Analyzing tissue
samples from Breast Cancer Histopathology (BCH) images
to identify the presence and severity of malignant cells is
a vital aspect of the diagnostic process [1]. Implementing
an automatic system that can classify these images can be
quite a challenging problem due to the high variability and
complexity of tissue images. The diagnosis of breast cancer
is a time-consuming procedure as it requires the assistance
of expert pathologists. In contrast, pathologists base their
decisions on various visible characteristics seen on pathol-
ogy slides, such as the morphological characteristics of
nuclei [2]. Therefore, automating this process will be very
helpful in the long term. Using a computer-aided diagnosis
system is a significant development in trying to curb this
challenge. To make the process of cancer diagnosis faster,

these systems can be that tiny little spark needed to save a
person’s life.

Various machine learning algorithms have been applied
to diagnise breast cancer images, with promising results [3]
[4] [5] [6]. In a similar vein, as highlighted in the study
on diagnosing Diabetes Mellitus using machine learning
techniques [7], the identification of relevant features and
selection of efficient classifiers are pivotal for accurate
diagnosis. However, these approaches have their drawback.
Applying deep learning for medical images often suffers
from limited training data and is very expensive to ac-
quire, which can hinder the training process of the deep
learning models [8]. Generating additional synthetic data
from existing examples is an effective way to overcome
this issue. Deep generative models (DGMs) are multi-layer
neural networks trained to approximate complex, high-
dimensional probability distributions using a large sample
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size [9]. Numerous methodologies exist for constructing
deep generative models; one strategy involves leveraging
GANs. This research explores using GAN for data aug-
mentation in classifying BCH images.

Traditionally, deep convolutional neural networks pri-
marily require significant data to prevent overfitting [10]. To
circumvent this challenge, an advocated technique involves
employing data augmentation to amplify the size of the
limited dataset. These data need to undergo some form of
transformation; otherwise, these networks will not be able to
produce acceptable results. Thus, to better train these deep
neural networks, there is a need to gather more data, which
can be expensive and challenging to do, especially when
patients have privacy concerns. Transforming those limited
data to produce more variation of the same data is an ap-
proach to solve the problem from the root, the training data
itself. A CNN model for classifying these histopathological
images has yielded promising results [11]. In addition,
AlSayyed et al. [12] have also demonstrated the use of pre-
trained CNN models, VGG16, VGG19, and DenseNet121,
in classifying oral photographs. The architectural paradigm
of GANs encompasses a dual-model framework, integrating
a generative component and a discriminative counterpart,
typically realized through the implementation of neural
networks.

These networks can capture the distribution of real
data examples and create new data using those examples
[13]. Leveraging a GAN’s capability to generate synthetic
augmentations of BCH image samples could potentially
enhance a classifier’s performance on this task by escalating
the volume of the training data. It may be adequate to
develop a method that can effectively synthesize high-
quality examples of medical images that capture the subtle
and complex patterns indicative of cancerous cells and
to evaluate the impact of this approach on the accuracy
of the classifier. GANs, in the context of medical image
augmentation, have also undergone many changes. Chen
et al. [14] classify GAN models into three types: GANs
based on random latent vectors, image transformations, and
classical transformations. GAN is very effective for data
augmentation because synthetic examples produced by the
GAN can be more realistic and diverse than those generated
by traditional data augmentation techniques.

The motivation for doing this research stems from
the importance of accurately classifying BCH images to
improve patient outcomes. Despite the significant progress
made in this area using machine learning algorithms, there
is still a need for improved methods that can handle the
high variability and complexity of these images. While
expanding the training data volume represents an efficacious
approach to bolster the performance of machine learning
models, conventional data augmentation techniques like
rotation, cropping, and scaling may prove inadequate for
histopathology image analysis. This inadequacy stems from
the intricate and nuanced patterns of cancerous cells, which

demand a more sophisticated approach. In this study, the
capabilities of GAN as a data augmentation technique will
be analyzed and applied to improve the performance of the
classification of BCH. The main challenges in classifying
BCH images are data scarcity and the limited availability of
high-quality training data. This problem can be explained
by the fact that annotating images with diagnostic labels is
time-consuming and labor-intensive [15].

Consequently, machine learning models whose training
relied on these datasets may exhibit suboptimal generaliza-
tion capabilities when confronted with previously unseen
images, thus culminating in diminished performance assess-
ments on test data. As a result, machine learning models
trained on these datasets may not generalize well to never-
before-seen images, leading to poor performance on test
data. This makes GANs well-suited to improving the clas-
sification of BCH images. The objectives of this research
encompass identifying the constraints of conventional data
augmentation methods in enhancing CNN classifier per-
formance, constructing a GAN architecture endowed with
the capacity to synthesize BCH image samples of elevated
fidelity, and employing both GAN and CNN models for
BCH image classification.

2. MATERIAL AND METHOD
This section outlines the different methods and tech-

niques used in this study to classify the BCH images.
Figure 1 shows the proposed process flow. It details the ac-
quisition and characterization of the dataset, the preprocess-
ing procedures applied, the methods for data augmentation,
the approach to data partitioning, the classifier architecture
utilized, and the evaluation metrics employed.

A. Data Acquisition and Pre-processing
This research focuses on the BreakHis dataset [16],

consisting of 7,909 histopathology images of breast tumors
labelled as benign and malignant; it was taken from 82
different patients and divided into 2,480 benign and 5,429
malignant samples, each with size of 700x460 pixels and
an 8-bit depth in RGB in PNG format. Initially, both class
labels (benign and malignant) were also sorted into different
types and patient IDs. Still, for the purpose of this research,
both factors were ignored, and only the class labels were
considered.

Various adjustments were made to the original dataset
to ensure the data can be adequately trained and tested in
the model developed for this research. These preliminary
steps will include pre-processing the original dataset better
to fulfill the input requirement of the GAN model, balancing
the amount of data in the class label with the much smaller
sample, and dividing the dataset into training, evaluation,
and testing.

Data pre-processing refers to transforming the original
dataset acquired into a more suitable form for analysis and
training. The first step in this process appropriately involved
analyzing the data format. Since the dataset is image-based,
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Figure 1. Proposed Process Flow

the image data is stored in PNG format. Further analysis
also shows that the images needed to be resized from
700x460 pixels to a much more suitable 512x512 pixels size
to accommodate the requirements of the StyleGAN model.

B. Proposed Two Stages Data Augmentation
Since the number of samples between each class label

differs, the malignant sample has almost twice the number
of benign samples. This will cause the model to be much
better at telling apart malignant than benign samples since
there is a bias towards the class with the bigger size.
The proposed solution involves utilizing GAN to generate
synthetic samples of the minority class.

The stage one focuses on GAN for Data Augmentation.
Generative models, such as GANs, can generate new and
diverse samples from the training data distribution [17].
GANs are useful for data augmentation because they can
generate synthetic data examples like the original training
examples. This can be particularly useful when the size
or diversity of the original training dataset is limited, as
it allows for the expansion of the dataset with additional
examples that are like the actual data [14]. This research
will exclusively concentrate on generating 640 synthetic
benign images. The number of samples for this research is
shown in Table I. This deliberate effort aims to enhance the
overall balance of the dataset, thereby leading to improved

outcomes and results.

It is important to note that how well a GAN-based
data augmentation approach works will depend on both the
quality of the actual GAN model and the specific traits of
the training data being used. It may be necessary to carefully
design and tune the GAN model to achieve good results,
and the synthetic examples produced may sometimes be of
different quality than real examples.

There are no GAN models specifically designed for
synthetic image generation of BCH. However, some GAN
models are designed to be generalizable and can be used
in many domains. For example, StyleGAN and its variants
have been used to generate synthetic images that can
be added to the original dataset, increasing its size [18].
Figure 2 shows an overview of StyleGAN’s architecture.

StyleGAN is an architecture designed to generate high-
quality images with realistic details. It was introduced to
improve upon the limitations of traditional GANs. The pri-
mary innovation of StyleGAN lies in its use of a style-based
generator and a mapping network [19]. Unlike traditional
GANs, where the input noise directly influences each layer,
StyleGAN uses a separate latent vector called ‘style vector’.
These style vectors are transformed from a common input
through a mapping network.
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TABLE I. BreakHis data samples

Image Label No. of Samples

Benign 2480
Malignant 5429
Benign (Synthetic) 640
Malignant (Synthetic) 0

Figure 2. The architecture of StyleGAN

StyleGAN offers several unique features and advantages
that set it apart from other GANs making it an attractive
choice for this research. A key reason was that StyleGAN is
built to create highly realistic, high-quality images packed
with fine details. Its hierarchical setup and style-based
generator allow for precise control over different aspects
of the image-generation process, like textures, colors, and
shapes. This results in visually appealing images that
closely resemble real-world images. Moreover, StyleGAN
has consistently demonstrated state-of-the-art image quality
and diversity performance compared to many other GAN
architectures. Its innovative design and attention to local
and global realism have yielded impressive results in var-
ious domains. By training the StyleGAN model with the
BreakHis dataset, its capabilities to produce realistic images
of BCH were measured and recorded.

This research utilized a repository that faithfully imple-
ments StyleGAN in PyTorch [20]. A significant drawback
of the initial version of StyleGAN is its tendency to produce
blob-like artifacts in certain instances. StyleGAN2 was
subsequently developed to address this issue. StyleGAN2-
ADA builds upon StyleGAN2 by introducing adaptive data
augmentation during the training process. In this research
phase, applying transfer learning on a StyleGAN2 model
pre-trained on the BreCaHAD [21] dataset, the model can
be further trained on the BreakHis dataset. Due to hardware
limitations, the resolution was set to produce images of
size 512x512 and only trained using a single GPU. After
various iterations, the quality of the output images was then
recorded.

Stage two is on traditional augmentation (TradAug).
Geometric augmentations, such as reflecting, cropping, and
translating, are common and acceptable approaches for
image data augmentation [22]. Traditional data augmenta-
tion techniques, often dependent on fundamental geometric
transformations, exhibit limitations. Although they can ex-
pand the training dataset, enhancements are necessary to
enhance their capacity for generating diverse and represen-
tative samples reflective of the underlying data distribution.
This research involves labeled data comprising benign and
malignant samples, as outlined in Table I, which will be
evaluated with and without traditional augmentation meth-
ods. Specifically, the images will be applied with a random
transformation of vertical and horizontal flipping, rotation,
and zoom during training. A regularization technique will
also be used by adding a dropout layer to the model
architecture.

C. Data Splitting
The final steps in the data preparation and balancing

are splitting the dataset further into training, evaluation, and
testing subsets. The testing set will act as unseen data to
evaluate the final performance of the model. The training
set is used to learn the model’s parameters; the evaluation
partition is employed to calibrate the model’s parametric
configurations and determine the preeminent architecture.
The testing subset, in turn, facilitates the assessment of the
conclusive model’s performance capabilities on unseen data
samples during the training and evaluation phases. In this
research endeavor, the training set constitutes 80% of the
available data, the evaluation set comprises 10%, and the
remaining 10% is allocated for testing purposes.

D. Classifier
After the GAN model was determined to produce good

enough synthetic BCH images, these images were used in
conjunction with the original training data, which involves
building CNN models capable of classifying BCH images
as benign or malignant. The methodological approach shall
entail leveraging deep transfer learning techniques to fine-
tune a pre-trained convolutional neural network architec-
ture, Inception-V3 and VGG16, on the BreakHis dataset.
Deep transfer learning entails transferring and adjusting
the weights of a standard model, initially trained on large
datasets, to perform similar tasks on a smaller dataset.

These convolutional neural network architectures have
demonstrated proficient performance across many image
classification undertakings, having trained on the extensive
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Figure 3. Architecture of Inception-V3

Figure 4. Architecture of VGG16

ImageNet dataset. Additionally, separate CNN models will
be trained with and without using the generated synthetic
images to conduct a comparative evaluation and quantify
the ramifications exerted by the synthesized image data.
This approach allows for a comprehensive assessment of
the generated data’s effectiveness in enhancing the BCH
classification’s performance. The research will use both
models, and their performances will be recorded. Figure 3
and Figure 4 showcase the architecture of Inception-V3
and VGG16, respectively, alongside additional layers added
for the use case of this research. The implementation of
Inception-V3 is similarly discussed in a study by Ali et
al. [23], but VGG16 is discussed similarly by Lee Ji-
Hee and Lee Jee-Hyong [24]. Incorporating pre-trained
deep neural networks like Inception-V3 and VGG16 into
this research provides a significant advantage in classifying
BCH images. These advantages include the robust feature
extraction system of both models. The Inception-V3 model
is known for its ability to capture multi-scale features
using a combination of convolutional filters with different
kernel sizes. This is particularly useful since this research
involves images captured at different magnification factors
and complex structures. Inception-V3’s inception modules
can efficiently capture intricate details, providing more
comprehensive feature representations. In addition, VGG16
is recognized for its simple yet effective architecture with
multiple convolutional layers of small filter sizes. This
architecture facilitates the extraction of finer details from
images. Since this research requires precise texture and pat-
tern analysis, VGG16’s deep layers can excel in capturing
these features.

E. Performance Evaluation
Once all models have been developed, the next phase

evaluates and tests them to determine their performance.

This research has evaluated GAN and CNN models for their
ability to perform a specific task related to BCH images.
Both models were trained on the same dataset, and their
performances were evaluated using different metrics.

The evaluation of the GAN architecture will prioritize
metrics that quantify the caliber of the synthesized image
data, such as the Fréchet Inception Distance (FID) and
Kernel-Inception Distance (KID) measures. These metrics
facilitate the assessment of similarity between the gener-
ated and authentic image samples, furnishing a quantitative
gauge of the GAN’s proficiency in encapsulating the under-
lying distribution inherent to the training data corpus. The
evaluation of these metrics is of paramount importance for
ascertaining the efficacy of image generative models.

The FID is a metric devised to evaluate image generative
model fidelity. It is derived from feature representations
computed by a pre-trained Inception-V3 network archi-
tecture. It assumes these features adhere to a Gaussian
distribution and employs the Fréchet distance between two
multivariate Gaussian distributions to quantify the discrep-
ancy between authentic and synthesized image samples.
A lower FID score indicates a more proficient generative
model regarding output quality.

To calculate the FID, one must extract the features
of real and generated images on the coding layer of the
Inception-V3 network [25]. The images’ activations are
aggregated into a multivariate Gaussian distribution by
computation of the mean and covariance. The FID between
the two Gaussians is then calculated as in Equation (1).

FID = ∥µr − µg∥
2 + Tr

∑ cr + cg − 2
(√

cr
√

cg

) (1)

where:

• µr is the mean of the real data distribution,

• µg is the mean of the generated data distribution,

• cr and cg are the covariance matrices of the real and
generated data distributions, respectively, and

• Tr denotes the trace operator.

In addition, the KID is an image quality metric proposed
to replace the popular FID. Both measures assess the
disparity between the representation spaces of a pre-trained
Inception-V3 network on ImageNet, comparing the gener-
ated and training distributions. KID is more straightforward
to implement, can be estimated per batch, and is com-
putationally lighter than FID. Using a polynomial kernel,
KID measures the squared Mean Discrepancy (MMD) be-
tween the Inception representations of actual and generated
samples. It also measures the distance between probability
distributions [26].
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In examining the CNN model, the emphasis lies on
assessing its classification efficacy, gauged through metrics
like accuracy, precision, recall, and F1-score. This evalua-
tion is grounded in a confusion matrix and the outcomes
of a loss function. These metrics assess the ability of the
CNN model to accurately classify the images into different
categories, providing a measure of its ability to learn and
generalize from the training data. Equation (2), (3), (4) and
(5) are the performance measures of the classification.

Accuracy =
T N + T P

T N + T P + FP + FN
(2)

Precision =
T P

FP + T P
(3)

Recall =
T P

T P + FN
(4)

F1 Score = 2 ×
Recall × Precision
Recall + Precision

(5)

For binary classification problems, binary cross-entropy
is a standard loss function used to measure the difference
between the predicted probabilities and the actual labels.
It is widely used in training logistic regression and neural
network models for binary classification tasks [27]. Mini-
mizing the binary cross-entropy during training means that
the model is trying to maximize the likelihood of predicting
the true labels correctly for each instance.

Both evaluations are conducted on the data’s validation
set and test set, and the results are compared to determine
which model is better suited for the task at hand. Based on
the results, the research will be able to conclude which one
model is superior to the other or that the performance of
the models is comparable, which is to find the best models
for generating synthetic images of BCH and an improved
CNN model that are trained alongside the synthetic images.

3. Experimental Results
A. Performance of GAN

This preliminary stage aims to train a GAN model to
produce high-fidelity images of BCH. Two key evaluation
metrics, namely the FID and KID scores, were employed
to assess the training process and the model performance.
In Table II, you can find the parameter settings used for
training the StyleGAN model. In this experiment, ‘kimg’
represents the number of images in thousands that have
been cycled during the training run, specifically denoting
the number of benign samples for each configuration. To
enhance the performance of the StyleGAN model, various
parameters, such as the gamma value and batch size, were
adjusted to fit better the dataset used in this research.

Table III presents the FID and KID scores obtained for
various γ values in each configuration. γ of 1.0 resulted in
the lowest FID score of 16.1145 and KID score of 0.0030.
Throughout these computations, the batch size remained
constant at 16. Table IV presents the FID and KID scores

Figure 5. Samples of generated benign BCH images after training

obtained for various batch sizes in each configuration. Batch
size 32 resulted in the lowest FID and KID score of 15.9542
and 0.0039 respectively. Throughout these computations,
the γ value remained constant at 1.0.

The inconsistency in the amount of image processed is
the different amount of time when the model converged
to a certain level of performance. Continuing the training
process might not be cost-effective regarding computational
resources and time, as it is unlikely to yield a considerable
enhancement in the generated image quality beyond the
observed threshold.

As observed in Figure 5, the generated benign BCH
samples exhibit a remarkably high quality and visual fi-
delity. Using such high-quality synthetic data for dataset
expansion can prove particularly beneficial in scenarios,
where obtaining a large, manually labeled dataset is chal-
lenging and costly. The quality and diversity exhibited by
the StyleGAN-generated images make them a worthy idea
for data augmentation, and these images are then used in
fine-tuning a CNN model.

B. Performance of STYLEGAN + CNN
To leverage the pre-trained Inception-V3 and VGG16

model’s knowledge, new layers were added on top of the
pre-trained models, which will be referred to as the base
models. To retain the knowledge captured by the base
models, we froze the weights of the base model layers.
This ensured that the lower-level image features remained
unchanged during training. The training focuses on only
changing the newly added binary classification layers using
the target BreakHis dataset. By fine-tuning these layers, the
model could adjust its parameters to suit the characteristics
of the specific dataset while benefiting from the general
features learned from the base layers. Table V shows the
parameters and values used for the CNN models to classify
BCH images. The experiment involves five epochs, 10, 20,
30, 40, and 50, and uses two pre-trained models called
Inception-V3 and VGG16.

Table VI and Table VII show transfer learning results
with Inception-V3 and VGG16 models obtained at the
specified epochs. These models can be considered the
baseline since no additional data augmentation techniques
were used during the training. Additionally, Table XI shows
the classification results of both models.
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TABLE II. Parameter settings of StyleGAN

Parameter Values

Training Data 2480 (Real) Benign Images
Configuration StyleGAN2
No. of GPU 1
Learning Rate (Generator) 0.0025
Learning Rate (Discriminator) 0.0025
Image Input Size 512x512
Image Output Size 512x512
Gamma 0.5, 1.0, 1.5, 1.55, 2.0, 5.0
Batch 16, 32, 64, 128

TABLE III. Results of StyleGAN training for training gamma values

Image Processed (kimg) Gamma, γ FID Score KID Score

240 0.5 21.1684 0.0049
300 1.0 16.1145 0.0030
300 1.5 17.5853 0.0031
300 1.55 18.4753 0.0041
300 2.0 18.7472 0.0047
120 5.0 17.7404 0.0033
320 6.55 18.0501 0.0039

TABLE IV. Results of StyleGAN training for various batch sizes

Image Processed (kimg) Batch Size, Bsize FID Score KID Score

620 16 17.1803 0.0040
600 32 15.9542 0.0039
644 64 16.4828 0.0037
690 128 18.6250 0.0052

TABLE V. Parameter settings of CNN

Parameter Values

Epoch 10, 20, 30, 40, 50
Batch Size 64
Learning Rate 0.0001
Transfer Learning Models Inception-V3, VGG16

Table VIII and Table IX show transfer learning results
where traditional data augmentation (TradAug), such as
image rotation, vertical and horizontal flipping, and zoom-
ing, were used during the training process, for Inception-
V3 and VGG16 models obtained at the specified epochs.
In addition, a dropout layer was added as a form of
regularization that perturbs the neural network’s architecture
during training by randomly setting some activations to
zero. Additionally, Table XI also shows the classification
results of both models.

To help improve the performance of the CNN models
even further, the generated StyleGAN output was utilized
as a new dataset and will be trained alongside the original
dataset. Table X presents a summary of the outcomes of

the four models prior to their training on the StyleGAN
dataset. During this training, only the first 100 layers of the
Inception-V3 model and the first 16 layers of the VGG16
models remained frozen during the training process. By
freezing these layers, the model effectively prevents itself
from altering the lower-level features that were already
learned from the large-scale dataset on which Inception-V3
and VGG16 were trained on before.

Table XII shows the parameters and values that were
used for the training of the CNN models to classify BCH
images as they are being fine-tuned with dataset generated
by the StyleGAN model. The experiment only runs for 10
epochs and uses the four models trained in the previous
experiment. Table XIII and Table XIV provide an overview
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TABLE VI. Computation results of Inception-V3

Epoch Accuracy Loss

Training Validation Testing Training Validation Testing

10 0.8187 0.8061 0.8164 0.4052 0.4116 0.4142
20 0.8430 0.8331 0.8372 0.3627 0.3777 0.3729
30 0.8551 0.8442 0.8516 0.3389 0.3583 0.3504
40 0.8658 0.8405 0.8594 0.3228 0.3561 0.3342
50 0.8707 0.8282 0.8633 0.3102 0.3578 0.3211

TABLE VII. Computation results of VGG16

Epoch Accuracy Loss

Training Validation Testing Training Validation Testing

10 0.8183 0.8241 0.7904 0.4211 0.4082 0.4618
20 0.8650 0.8672 0.8490 0.3254 0.3393 0.3593
30 0.8856 0.8782 0.8633 0.2896 0.2952 0.3189
40 0.8954 0.8819 0.8854 0.2684 0.2825 0.2940
50 0.9009 0.8868 0.8867 0.2539 0.2642 0.2771

TABLE VIII. Computation results of Inception-V3 + TradAug

Epoch Accuracy Loss

Training Validation Testing Training Validation Testing

10 0.8038 0.8037 0.8268 0.4268 0.4213 0.4094
20 0.8307 0.8282 0.8320 0.3824 0.3883 0.3711
30 0.8381 0.8454 0.8529 0.3587 0.3691 0.3504
40 0.8483 0.8368 0.8529 0.3442 0.3653 0.3361
50 0.8586 0.8380 0.8542 0.3346 0.3662 0.3249

TABLE IX. Computation results of VGG16 + TradAug

Epoch Accuracy Loss

Training Validation Testing Training Validation Testing

10 0.7348 0.7823 0.7760 0.5948 0.4880 0.5052
20 0.7838 0.8155 0.8346 0.4946 0.4073 0.4170
30 0.8089 0.8487 0.8620 0.4296 0.3569 0.3732
40 0.8295 0.8585 0.8568 0.3896 0.3343 0.3473
50 0.8289 0.8672 0.8659 0.3903 0.3197 0.3287

TABLE X. Computation results of CNN for different models (without StyleGAN)

CNN Model Accuracy Loss

Training Validation Testing Training Validation Testing

Inception-V3 0.8707 0.8282 0.8633 0.3102 0.3578 0.3211
Inception-V3 + TradAug 0.8586 0.8380 0.8542 0.3346 0.3662 0.3249
VGG16 0.9009 0.8868 0.8867 0.2539 0.2642 0.2771
VGG16 + TradAug 0.8289 0.8672 0.8659 0.3903 0.3197 0.3287
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TABLE XI. Classification results of CNN for different models (without StyleGAN)

CNN Model Benign Malignant

Precision Recall F1-Score Precision Recall F1-Score

Inception-V3 0.8827 0.6810 0.7688 0.8744 0.9608 0.9156
Inception-V3 + TradAug 0.9023 0.6767 0.7734 0.8737 0.9683 0.9186
VGG16 0.8558 0.7672 0.8091 0.9036 0.9440 0.9234
VGG16 + TradAug 0.8418 0.7112 0.7710 0.8829 0.9422 0.9116

of the experimental result alongside StyleGAN, trained with
parameters of γ = 1.0 and γ = 6.55.

4. Discussion
A. Discussion of CNN + TradAug

As shown in Table XIII, the results obtained have shown
that Inception-V3 and VGG16 achieved an accuracy of
86.33% and 88.67%, respectively, without employing any
supplementary data augmentation techniques. Meanwhile,
using traditional data augmentation, the results show that
accuracy decreased to 85.42% and 86.59%, respectively.
A possible cause for this reduction is adjusting hyper-
parameters as more complex augmentation is introduced
[28]. Due to the nature of the experiment, where data
augmentation is applied to a pre-trained model, it becomes
essential to carefully tune the augmentation parameters to
strike the right balance between introducing diversity and
avoiding overfitting. Adding new hyperparameters related
to augmentation might require extensive tuning to achieve
optimal performance.

Moreover, the complexity of augmentations can poten-
tially introduce unrealistic or noisy variations in the data,
making it more challenging for the model to learn mean-
ingful features [29]. This phenomenon could further con-
tribute to the decline in classification accuracy compared to
the scenario without augmentation. Additionally, the target
dataset for fine-tuning or transfer learning may be limited
in size, and the introduction of complex augmentations
could exacerbate the issue of insufficient data [28]. The
model might struggle to generalize well with the augmented
data, leading to a decrease in accuracy. However, leveraging
GAN is one way to overcome this limitation and potentially
increase accuracy.

B. CNN with StyleGAN + TradAug
This section discusses the results of CNN with Style-

GAN+ TradAug for training and testing. Figure 7 shows
the point during the training process where StyleGAN data
was applied. The performance shown included the training
and validation accuracy and loss from epoch 50 until 60.

Figure 7 showcases that 3 of the 274 benign images
in the test dataset are still falsely labelled as malignant.
Meanwhile, 21 of the 558 malignant images are still incor-
rectly labeled. This highlights that even for the best models,
there still remain instances of misclassification. Despite the

Figure 6. Training and validation accuracy and loss graph, for
Inception-V3 + StyleGAN + TradAug

Figure 7. Confusion matrix of the best CNN Model using Inception-
V3 + TradAug + StyleGAN

overall effectiveness of the models, these findings under-
score the persistent challenge of accurately distinguishing
between benign and malignant images in some cases.

The findings in Table XIII and Table XIV revealed
that the model achieved excellent results on the Inception-
V3 model with TradAug applied and trained alongside

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


198 First Author, et al.: Paper Title.. (short in one line).

TABLE XII. Parameter settings of CNN + StyleGAN

Parameter Values

Epoch 10
Batch Size 64
Learning Rate 0.0001
Transfer Learning Models Inception-V3, VGG16, Inception-V3 + TradAug, VGG16 + TradAug
Dataset Original (2480 Benign, 5429 Malignant) + GAN (640 Benign, 0 Malignant)

TABLE XIII. Computation results of CNN for different models and StyleGAN parameters

CNN Model Data Augmentation StyleGAN Parameters Accuracy Loss

Training Validation Testing Training Validation Testing

Inception-V3

StyleGAN γ = 1.0, Bsize = 32 0.9663 0.9291 0.9363 0.1145 0.1507 0.1707
StyleGAN γ = 6.55, Bsize = 16 0.9688 0.8365 0.8558 0.0954 0.5242 0.5163
StyleGAN + TradAug γ = 1.0, Bsize = 32 0.9682 0.9651 0.9712 0.0913 0.0904 0.1014
StyleGAN + TradAug γ = 6.55, Bsize = 16 0.9650 0.7560 0.8293 0.0982 0.3830 0.3657

VGG16

StyleGAN γ = 1.0, Bsize = 32 0.9846 0.8353 0.8654 0.0494 0.4084 0.3989
StyleGAN γ = 6.55, Bsize = 16 0.9788 0.9471 0.9567 0.0767 0.0965 0.1027
StyleGAN + TradAug γ = 1.0, Bsize = 32 0.9213 0.9399 0.9459 0.1990 0.1722 0.1546
StyleGAN + TradAug γ = 6.55, Bsize = 16 0.9290 0.9279 0.9399 0.1901 0.1705 0.1618

TABLE XIV. Classification results of CNN for different models and StyleGAN parameters

CNN Model Data Augmentation StyleGAN Parameters Benign Malignant

Precision Recall F1-Score Precision Recall F1-Score

Inception-V3

StyleGAN γ = 1.0, Bsize = 32 0.8395 0.9805 0.9045 0.9906 0.9167 0.9522
StyleGAN γ = 6.55, Bsize = 16 0.6838 0.9883 0.8083 0.9935 0.7969 0.8844
StyleGAN + TradAug γ = 1.0, Bsize = 32 0.9234 0.9883 0.9547 0.9946 0.9635 0.9788
StyleGAN + TradAug γ = 6.55, Bsize = 16 0.6454 0.9883 0.7809 0.9932 0.7587 0.8602

VGG16

StyleGAN γ = 1.0, Bsize = 32 0.6967 0.9961 0.8199 0.9979 0.8073 0.8925
StyleGAN γ = 6.55, Bsize = 16 0.8929 0.9766 0.9328 0.9891 0.9479 0.9681
StyleGAN + TradAug γ = 1.0, Bsize = 32 0.9237 0.8984 0.9109 0.9554 0.9670 0.9612
StyleGAN + TradAug γ = 6.55, Bsize = 16 0.8992 0.9062 0.9027 0.9582 0.9549 0.9565

the StyleGAN (γ = 1.0, Batch = 32) dataset with an
accuracy of 97.12% and a loss of 0.1014. Interestingly,
for VGG16, the model without data augmentation performs
better with StyleGAN (γ = 6.55, Batch = 16), with an
accuracy of 95.67% and loss of 0.1027, indicating that
combining StyleGAN with TradAug may not result in a
synergistic enhancement of the model’s performance. It
suggests that while using GAN alone positively impacts the
CNN model’s overall performance, it may plateau after a
certain point. The possible cause might be that the data
is only as good as the underlying data they operate on
[30]. However, when combined with the traditional data
augmentation, as it is being done in our two stages of data
augmentation pipeline, it is confirmed that the possibility
of significantly improving the final performance exists.
The reason might be attributed to the broader array of
potential points offered by traditional augmentation, thereby
diminishing the gap between training, validation, and test
samples and subsequently mitigating the risk of overfitting
[10].

Inception-V3 has resulted in the absence of data aug-
mentation might have contributed to mitigating the risk of
overfitting and preserving the pre-trained models’ transfer-
ability. However, the situation appears to be the opposite for
VGG-16. These findings suggest that the hyperparameter
needs to be adjusted as it becomes more prevalent as more
complex augmentation is introduced, as mentioned in the
previous analysis. This anomaly can also be explained by
the insufficient epochs to train the model, which might allow
the model to adapt better to the new dataset. In addition, this
experiment’s findings also suggest that these models possess
sufficient representation power, enabling effective transfer
learning even with a limited labeled dataset. These insights
can guide practitioners in selecting appropriate strategies
for maximizing the performance of pre-trained models in
specific classification tasks.

5. Conclusions
This research successfully employed two stages, Style-

GAN and traditional augmentation to augment the training
dataset for BCH image classification. It leverages StyleGAN
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architecture to generate high-quality synthetic BCH images
with the conventional augmentation method. The inception-
V3 model with TradAug + StyleGAN (γ = 1.0, Batch =
32) yielded an accuracy of 97.12% and loss of 0.1014. It
outperforms VGG16 with the same parameter, TradAug +
StyleGAN (γ = 1.0, Batch = 32), yielding an accuracy
of 94.59% and a loss of 0.1546. The research highlights
the effectiveness of the two stages of data augmentation,
GAN, and TradAug, in improving the accuracy of CNN
classifiers in discerning BCH images. Nevertheless, it also
emphasizes the importance of having more extensive and
diverse datasets to enhance the model’s generalizability.
Additionally, comprehensive hyperparameter optimization
is crucial to exploit the potential of GAN-based fine-
tuning fully. Addressing these aspects holds promise for
advancing AI-driven breast cancer classification in medical
applications, ensuring more robust and reliable diagnostic
tools for clinical practice. By bridging the gap between
innovative AI techniques and medical image analysis, this
research contributes to advancing breast cancer diagnosis.
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