
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 16, No.1 (Aug-24)

http://dx.doi.org/10.12785/ijcds/160145

Design of Node Level Load Balancing in Hierarchical Fog
Structure

Jai Geetha1, Jayalakshmi D S1, Chandrika Prasad1, Srinidhi N N2* and Naresh E3*

1Department of Computer Science and Engineering, Ramaiah Institute of Technology, Bangalore, Karnataka, India
2Department of Computer Science and Engineering, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher

Education, Manipal, India
3Department of Information Technology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal,

India

Received 30 Oct. 2023, Revised 19 Apr. 2024, Accepted 26 Apr. 2024, Published 1 Aug. 2024

Abstract: Fog computing refers to the operations performed in a distributed network of nodes on the edge of the network to provide
faster output generation for emergent requests. The fog layer brings computation closer to the devices, thereby reducing latency in the
network. However, in recent years, fog computing has been subjected to several problems, including load balancing. Load balancing
ensures appropriate allocation and distribution of resources and workload in a fog network. That being said, it’s important to note that
the nature of nodes in a fog network can be heterogeneous. In such a situation, it’s crucial to have a load balancing mechanism that
routes requests to the appropriate node based on the type of the requests, the load on the nodes, and the total load on the system. One
way to solve the issue would be applying the conventional load balancing algorithms, but traditional load balancing schemes don’t
apply here since they tend to work amongst homogeneous sets of nodes with similar resources. In the proposed research, three load
balancing schemes, namely- Highest Capacity Mode, Earliest Predicted Response Time, Equal Capacity Mode have been proposed.
Finally, an optimal approach, a hybrid algorithm, and taps on the benefits of the 3 types of load balancing schemes have been proposed
with the best performance among all the schemes.

Keywords: Fog Computing, Load Balancing, Node-RED, Hierarchical Fog Architecture

1. INTRODUCTION
IoT networks are made up of loosely connected net-

works that are linked together by a heterogeneous network
of nodes. In general, the goal of creating such environments
is to collect and analyse data from IoT devices to mine
and find trends, perform predictive analysis or optimization,
and then make a better decision promptly. Data collected
and aggregated from IoT devices are sent to the centralized
cloud for storage and processing. But the processing of data
in a centralized cloud does not scale to the requirements,
especially in the case of applications such as health mon-
itoring and emergency response that require less latency.
And that is where fog computing comes into action [1].
Fog networking or fogging is a decentralized computing
structure for edge devices to carry out complex calculations,
storage, and communication locally and/or over the internet
[2]. Here, resources like data and applications get placed in
logical locations between the data source and the cloud.
However, in the case of fog computing, the network nodes
tend to be heterogeneous which raises the issue of balancing
the load amongst the nodes in the network. To cater to
this issue, load balancing schemes are applied that ensure a

uniform and appropriate distribution of load in the network.
Given the heterogeneous nature of the nodes in a fog net-
work, it is crucial to have effective load balancing to decide
the best fog node for handling a request. Traditional load
balancing schemes don’t apply here since they tend to work
amongst homogeneous sets of nodes with similar resources.
Another important aspect of the nodes in the fog system
is the appropriate architectural organization of the nodes
within a fog layer [3]. An effectively designed architecture
can bring about better results and better resource allocation.
This paper aims to introduce a hierarchical structure to the
nodes in a fog environment. And secondly, provide a load
balancer scheme where the decision is taken at the node
level, rather than using a dedicated load balancer.

2. THEORITICAL BASIS
Aazam et al. [4], presented a six-layered Fog archi-

tecture. Physical and virtualization layers maintained and
managed physical nodes and sensors. Network and under-
lying node activities were monitored by the next, Moni-
toring layer. After that, the temporary storage layer stores
temporary data in the Fog resources. For private data, pri-

E-mail address: geetha@msrit.edu, jayalakshmids@msrit.edu, chandrika@msrit.edu,

srinidhi.nn@manipal.edu, naresh.e@manipal.edu

https:// journal.uob.edu.bh/

http://dx.doi.org/10.12785/ijcds/160145
https://journal.uob.edu.bh/


598 Jai Geetha et al.: Design of Node Level Load Balancing in Hierarchical Fog Structure

vacy, encryption, and integrity-related services are provided
by the security layer. Secured and pre-processed data is
uploaded to the cloud by the topmost layer. Advantages
seen were that most of the processing was done in the Fog
environment and that allowed the cloud to deal with more
complex services. However, the proposed architecture has
the following shortcomings:

1) Achieves low latency but not to the required level.
2) No direct communication between consumers and

the layers is allowed.

Arkian et al. [5], proposed a four-layer Fog architecture
consisting of data generation, cloud computing, data con-
sumer and fog computing layers. The requests are submitted
to the three layers and responses are sent for the required
services. IoT devices are present in data generation layer
and communication to cloud layer is through the fog layer.
Decision making at the dynamic level is supported by cloud
computing layer where complex and log-term analysis of
behavior takes place. Dynamic decision making includes
pattern recognition, large scale event detection and rela-
tionship modeling. The advantages of this model include
having vast monitoring abilities and services and common
cloud content. The model also allows direct communication
among the three-layered architecture of the model and its
consumers. Lack of proper validation due to the open nature
of architecture was a grave disadvantage. Shaik et. al [6],
proposed an organization technique to group fog nodes
into hierarchical, layered structures where each layer in the
hierarchy is grouped according to the similarity in resources
and behavior. The paper focuses on grouping nodes based
on geographic locations, resource availability, and various
other characteristics. It is noted that the fog nodes in the
lower levels tend to have lower resources and computing
strength, while also having a much lower latency. This
includes mostly the gateway nodes as well. The following
advantages are noted-

1) It is noted that in the cases of hierarchical structure,
it paves the way for better resource allocation, load
balancing, resource utilization, autonomy, and allows
for a logical grouping of nodes by similar charac-
teristics, thus allowing some form of homogeneity
within each layer.

2) As one goes higher in the levels of the hierarchy, the
available resources, availability, and reliability of the
fog nodes tend to be better than at lower levels.

The disadvantages are

1) The main downside of this approach is the lack of
knowledge of the complete system state.

2) Due to inter-node communication between nodes in
the hierarchy, there tends to be a latency trade-off
for inter-level communication.

Chandak et. Al. [7], explore the various load balancing

methods used in Fog computing environments such as
Software Defined Network (SDN) approach, Graph Parti-
tioning, Hill Climbing, Secure and Sustainable Approach,
Distributed Approach, Adaptive Load Balancing, Central-
ized Load Balancing, Dynamic Resource Allocation, and
Tabu Search. The inferred result was that various load bal-
ancing schemes are surveyed with appropriate parameters
identified, with issues and improvements discussed as well.
The SDN approach lacks in terms of software complex-
ity to dynamically allocate resources. It can be observed
that graph Partitioning does a better job at the dynamic
allocation of resources and uniform graph partitioning or a
balanced graph partition problem can be shown to be NP-
complete. In hill-climbing, if the threshold is left too high
or low, it may take several iterations to acquire desired
values for estimation. In DaeWon et. Al [8], the authors
proposed a load balancing technique with graph coloring
based on a genetic algorithm. The algorithm takes the input
of G=(V+E) where V is the number of fog nodes and E
the available edges. The algorithm’s output is the number
of colors used and the goal is to minimize this number,
the decrement or increment of the numcolor variable and
satisfaction of the condition that no two adjacent nodes
bear the same color, determines whether the edge node will
offload the incoming task into the cloud server or perform
the action itself. Observing this method, the advantages
are 1. The use of graph coloring helps to minimize the
resources used as the colors represent nodes. 2. Genetic
algorithms facilitate ease of implementing solutions both in
parallel and distributed settings. However, 1. The algorithm
employs graph coloring as well as a genetic algorithm that
includes the calculation of a fitness function and evaluation
of condition variables at each iteration, thus making the
process costly. 2. The graph coloring starts with a random
number, to begin with, and the algorithm is repeatedly
executed until an accurate value for the number of colors
used is obtained. This is a very computationally heavy
procedure., are some noticeable disadvantages Alex X. Liu,
et. Al. [9], introduce DRAM, which stands for Dynamic
Resource Allocation Method, for load balancing in fog
environments. It combines static resource allocation with
dynamic service migration to achieve load balancing among
fog nodes in the system. The load balancing mechanism
is handled in four consecutive steps, namely, Fog service
partition, spare space detection (for computing nodes), static
resource allocation (for fog service subset), and then the
global resource allocation strategy with the purpose of load
balancing. It is found that the load-balance variance is
drastically reduced, since each node has a certain degree
of resource utilization, and the average resource utilization
is balanced. DRAM enables the usage of fewer computing
nodes, compared with other schemes, and can even get
higher efficiency on a given number of computing nodes
than Bidirectional Forwarding Detection. The authors sug-
gest that further analysis of the negative effects of service
migration on the fog nodes may be required, including
traffic on the nodes, the cost-of-service migration and data
transmission, and performance degradation. Furthermore,

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/


Int. J. Com. Dig. Sys. 16, No.1, 597-607 (Aug-24) 599

it may be required to develop a method to balance the
mentioned negative effects, such that the positive effects
of service migration outweigh the negatives. Verma et. Al
[10], offers the RTES algorithm, which balances the load by
utilizing available bandwidth, completing real work ahead
of schedule, and responding to clients less time than a
standard cloud strategy. The technique is implemented on a
simulator called CloudSim, and the results are compared
to existing task scheduling algorithms like FCFS based
on the turnaround time parameter. The proposed algorithm
outperforms the current ones. It has a short execution time,
responds quickly to client requests, and completes real
jobs ahead of schedule while maintaining data consistency
and proper resource and bandwidth use. The suggested
algorithm is 90% efficient, however it might be even better
if other QoS criteria like security were included. Rahman
et al. [11], proposes minimization of bandwidth cost and
efficient resource management in a cooperative three-layer
fog-cloud computing environment as well as a novel MILP
optimization formulation in the three-layered structure. The
data collected by sensors from IoT devices is thought to
require bandwidth and server resources in order to be
processed. Each request is represented as a tuple (h, r), with
h denoting bandwidth and r denoting resource demand. The
requests made by the sensor nodes within a certain region
are pooled to build the MILP model, and these requests also
include two demands, named H and R denoting aggregated
bandwidth demand and aggregated rescue demand respec-
tively. The requests are then prioritized, and various situa-
tions are investigated to see how SDN may assure optimal
network and server resource utilization in a given setting
(Software-defined network approach). Following that, both
homogeneous and heterogeneous server resource demands
are considered, and performance variations are examined
in terms of bandwidth cost, server and connection usage,
and the number of servers deployed. The priority level can
be changed by adjusting the weight parameters, such as
bandwidth cost, link-level utilization, and server resource
consumption. This allows the service provider to prioritize
tasks based on network conditions. Due to temporal and
spatial volatility in requirements, the suggested model al-
lows for changing priority levels from time to time. As
a result, this approach can assist fog service providers in
appropriately allocating limited resources. This research
could be improved further by combining server and network
consolidation using virtualization approaches in a dynamic
traffic environment to optimize resource allocation even
more. Saleh et al. [12], presents a Load Balancing and Op-
timization Strategy (LBOS) based on Reinforcement Learn-
ing and a Genetic Algorithm. LBOS continuously monitors
network traffic, gathers information about each server’s
load, processes incoming requests, and distributes them
evenly among available servers using dynamic resource
allocation algorithms. As a result, in real-time systems in
fog computing, such as healthcare systems, LBOS is simple
and efficient. The system’s primary purpose, however, is to
achieve low latency. The fog layer here is made up of two
primary components: (1) a load balancer agent (LBA) and

(2) a resource allocator (RA). The LBA is the software that
determines which fog server (FS) can handle the incoming
request. To attain a high LB for fog conditions, the RA
module uses the RL algorithm. The importance of choosing
a given FS is determined by the adaptive weight value
(AW). To get the optimal AW value, a genetic algorithm
(GA) is applied. The authors use MATLAB to conduct
a comparison experiment between the Adaptive Weighted
Round Robin (AWRR) algorithm and several alternative LB
schemes in order to verify the performance of the LBOS
algorithm. Experiments were conducted, and the findings
revealed that the proposed method improved quality-of-
service in the cloud/fog computing environment by low-
ering allocation costs and decreasing reaction time after
using state-of-the-art algorithms to compare the suggested
approach. The results of the experiments also showed that
it can cut power usage and the number of migrations, the
quantity of data saved within the load balancer may be
limited due to the increasing amount of memory for the
model during the reinforcement stage, and changes can be
made to make the model more lightweight. Nanda et. Al
[13], discusses new techniques for load balancing to dis-
cover lightly loaded data centers in the edge for allocating
tasks and for the secure edge data center authentication.
The approach discussed brings forward an authentication
technique that is adaptive assisted with a central cloud
data center. The process of device authentication originates
from the cloud data center and is then approved by all
other edge data centers approve authentication by pass-
ing on the key pairs and valid credentials. Moreover, the
solution provides dynamic load allocation by considering
the load of destination nodes of which the information is
shared among nodes during the authentication phase. The
authentication and load balancing schemes are combined
to come up with secure load balancing. Authentication is
performed through public and private keys with Trusted
Machines and is propagated in a distributed manner from
the authenticated nodes to the other nodes. The dynamic
load balancing is done by Bread First Search (BFS), where
if one EDC is overloaded, a control package is broadcasted
by forwarding requests to all edge data centers with respect
to their Ids. This model offers secure authentication and
improved load balancing performance at the edge data
center devices. This is done by accessing the target EDC
load during the authentication procedure. Due to the added
overhead of the authentication scheme, the load balancing
scheme tends to sometimes suffer and slow down when
under severe stress to propagate changes. Harshit et. Al
[14], talks of growing dependency of industry on IoT, thus
overwhelming the storage infrastructure in place and also
the data analytical techniques applied by the large amounts
of data generated. Scaling the rapidly increasing processing
and storage requirements at the architectural levels is offered
by services provided by the cloud layer. The issues arising
with this security offered by the cloud can be seen in
the health care and emergency response application that
require a significantly low latency and relay of data to and
from the cloud will prove to be catastrophic. In response

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/


600 Jai Geetha et al.: Design of Node Level Load Balancing in Hierarchical Fog Structure

to overcoming these very persistent limitations, the Fog
computing layer was introduced wherein the edge of the
network has an extended cloud on top of it to reduce the
congestion in the network and process latency. To evaluate
performance and promote innovation in the currently em-
ployed resource management algorithms comprehensively,
a simulator is employed. In the future, this technique can be
used to facilitate time and priority sensitive applications in a
multi tenanted environments. Parvedy et. Al [15], proposes
iFogStor for an innovative data organization technique to
be employed by the fog architectures. The goal of the
proposed system is to gain advantage from the position and
diverse behavior of fog devices and to observe significantly
lower latency in the push and pull operations at the devices.
All the fog nodes at the storage and operational sites are
widely heterogenous when their capability of data storage
and performance efficiency are taken into account. These
fog nodes can be from a vast range of possibilities, such
as base stations and set-up boxes that are equipment with
limited resources. iFogStor exploits the complex nature of
the fog architecture to adopt the data arrangement strategy
taking into consideration the node properties. Specifically,
the strategy takes into account the characteristics such as
the nature of data stored in the node, its location and
performance. The future scope of the proposed model
explores the idea of introducing more sensitive nodes. These
nodes can also have added advantage of archiving services
in association with the improved data allocation design
thus introducing a rather optimal solution. In conclusion,
the literature survey brought to light the various aspects
that need to be taken into consideration for the effective
performance of a Fog Network. The architecture of the
layers in view, appropriate techniques for load balancing,
and efficient and optimal algorithms for resource allocation
are vital to the cause. Taking into consideration this infor-
mation, the project proposes a hierarchical structure to the
nodes in a fog environment and a load balancer scheme
where the decision is taken at the node level, rather than
using a dedicated load balancer. The hierarchical structure
safely ensures that the nodes are clustered together based on
similarities in their bandwidth and latency characteristics.
This ensures proper communication between all fog nodes
and the optimal algorithm to effectively choose the correct
level of fog layer to assign the task to. The increase in
latency is in many cases negligible due to the low latency
between interconnected fog nodes. The potential advantages
of a hierarchical structure were emphasized, along with
the potential downfall of the lack of global system state
knowledge. This project utilizes the hierarchical structure
with the advantages, along with a shard of the system state
knowledge, to make routing decisions at the node layer.

3. METHOD
A. Design

Figure I, Shows a sample two-level hierarchical struc-
ture, with the lowest level (called the gateway level) consist-
ing of gateway nodes to which the IoT devices connect, and
the connection between each layer is routed through a router

Figure 1. VHDL Synthesis Process

which forwards requests as per previous level decisions.
Theoretically, this can be an N-level architecture with M
number of fog nodes in them. After the final level of fog
nodes is the cloud server. Requests are screened by these
nodes to assess them based on the available capacity and
bandwidth in the nodes. If the nodes fail to be able to
process the incoming request, the request is passed on to
the higher level of nodes in the hierarchy and so on until
the cloud layer is reached.

B. Design Graphical User Interface
Figure 2, shows the GUI of the form for a fog node,

where one can enter the fields for the various thresholds
and allocations of a fog node. This can be done within the
same GUI of the flow simulation to quickly change metrics
before rerunning the simulation. There are set of nodes
arranged according to the proposed fog layer architecture
and the arrangement is used for simulating the processing
of requests in real time. Based on the results of the
simulation, graphs are generated to show the load balancing
and resource allocation among nodes in the various layers.
The arrangement has start and end nodes which are meant to
pass signal to the IoT devices at the edge layer. Followed by
that, the Fog layer is divided into hierarchical layers, layer 1
and layer 2. Based on the requirement of the request raised
by the IoT devices, the load is balanced between these
layers based on parameters like capacity and turnaround
time. After the request is processed by one of the nodes,
its performance is recorded in terms of the time taken to
complete the request and the number of nodes jumped to
assign the request. The data is then populated in a graph to
analyze the efficiency of the model.

C. Proposed System
Figure 3, explains the following about the proposed

system configuration:

1) The proposed system is a collection of custom fog
nodes that can be used on node-red for fog simu-
lation purposes. A flow-on node-red can be created

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/


Int. J. Com. Dig. Sys. 16, No.1, 597-607 (Aug-24) 601

Figure 2. GUI of Fog Nodes in Simulation Environment

Figure 3. System Modeling for Hierarchical Fog Structure

to simulate a fog environment using the custom fog
nodes. There are (currently) 3 types of nodes on the
system available: fog nodes, devices, and the cloud.

2) Fog nodes act as the fog devices in the fog layer,
which handles and redirects responses appropriately.
A device is an IoT device like a mobile phone or an
ECG that periodically sends requests to the gateway
nodes. The cloud has seemingly infinite resources.

3) The fog layer is represented as a hierarchical struc-
ture, where the higher levels have somewhat higher
resources but have a higher latency as well, to
incentivize each node to complete the task itself.

4) A few QoS factors like latency, Instructions Per
Cycle (IPS), and Capacity (represents RAM) are
based on which the performance of load balancing is
evaluated. A demo flow with a hierarchy of 2 levels
for illustration purposes has been created for better
visual understanding.

Requests are scheduled based on these factors and
three load balancing schemes have been proposed based on
them: Highest Capacity (naive), Earliest Predicted Time,
and Equal Average Load. An optimal approach is taken
which combines the capabilities of “Equal Average Load”
mode and “Earliest Predicted Time” to redirect requests
to effectively balance the load, thus improving resource
utilization, as well as improving the overall response times
of each node.

D. Algorithm
Figure 4, shows a flowchart depicting the various actions

taken by the entities in the system when given a request by
an IoT device. The full flow is explained as below in steps.
Step 1: First, the selected node receives the incoming
request, which is the gateway node assigned to a particular
device.
Step 2: The request is served by the current node if the
current node has sufficient resources to handle the load.
Else it redirects the request to the nodes one level higher
than it in the hierarchy.
Step 3: The decision to which node the request is forwarded
to is taken depending on the type of load balancing scheme.
Step 4: Steps 1-3 are repeated until the request is served by
a node and it keeps getting redirected to a higher level till
then.
Step 5: If the nodes at the highest level cannot handle the
request, it is forwarded to the cloud which is assumed to
have infinite resources compared to a fog node.
Step 6: At the end, the metrics and results of the path and
request are logged in a file for further analysis.

Figure. 5, shows the pseudocode for the Optimal mode
algorithm, where the decision is taken based on the product
of the earliest predicted response time and the existing load
percentage on higher level nodes. If no decision is made
within the specified thresholds, the node with the highest
capacity is chosen as a fallback. In the function signature,
higherLevelNodes refer to the array of the fog nodes that
are one level higher than the fog node making the decision,
capacity and instructions refer to the required capacity and
instructions of the incoming request.

E. Implementation of Modules
The proposed system primarily consists of following

modules:

• Fog node module: This module is in charge of receiv-
ing requests and routing them to the relevant node.
Each node in the module evaluates and accordingly
directs incoming requests based on characteristics
such as message payload within the node or the
number of instructions. The nodes also store the state
of a node higher in the hierarchy so that if they
are unable to serve the request, they can determine
which node should get it. In addition, the nodes have
customizable capacities, a maximum load threshold,
and a maximum duration to serve the request.

• IoT device module: Each device in this module can
transmit requests of different capacities over a period
that can be determined by the user.

• Data logging module: This module is primarily con-
cerned with data formatting for analysis as well as
logging response times to create real-time graphs.

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/


602 Jai Geetha et al.: Design of Node Level Load Balancing in Hierarchical Fog Structure

Figure 4. Flowchart Explaining the Execution flow

4. USE CASE
The proposed algorithim is aimed at choosing the best

node with appropriate capacity to perform the task at hand
and that has lowest possible latency. This algorithm would
be at best performance in a hierarchical architecture as the
complexity of switching nodes on the same layer of the
network would be almost negligible. The intension behind
this algorithm-architecture combo is to aceive maximum
efficiency in as little time as possible. This combination will
be best suitable for tasks where the payload requires certain
specific capacity and configuration requirements to be ful-
filled. The nodes on the fog layer would be chosen based
on best suitability with respect to configuration match,
available capacity and availability of nodes. The payload
once processed can be forwarded to the cloud layer for
transmission. An appropriate use case for the proposed algo-
rithm would be in smart homes and smart cities with a wide
range of transaction requests. The appliances in settings

Figure 5. Algorithm for the Proposed Work

like these require different kinds of task performed with
varied computational requirements. These requirements can
be optimally fulfilled by the various nodes available in
the proposed fog architecture. Due to grouping of nodes
based on configuration and computational capacities, the
algorithm is faster in assigning a node to the incoming
pay load. As the required computational power is known
to the system beforehand, the algorithm places the request
at the appropriate fog level based on computational power
offered by the nodes. Among the available nodes at the
said layer, the algorithm choses the best suitable node
with appropriate capcity to complete the task. This way,
the system, a combination of hierarchical architecture and
optimized algorithm, achieves maximum request fulfilment
efficiently and provides the scope of batch processing of
requests based on the varied range of devices being in action
within a smart home setting.

5. COMPARING PROPOSED ALGORITHM TO A
BENCHMARK SCHEDULING ALGORITHM
One of the very famous algorithms used in fog

network node scheduling is based on swarm optimization,
proposed by [16]. This algorithm is based on calculating
the makespan given by the summation over n processors
perforning a task T in time given by the function ET taking
the task and processor as parameters. The constraint of the
algorithm being that the makespan is always lesser than
the deadline. The execution cost (ECU) for each processor
is taken into account along with the transmission cost per
unit distance (TCU).

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/


Int. J. Com. Dig. Sys. 16, No.1, 597-607 (Aug-24) 603

Makespan = maxM
j=1TimeP j = maxM

j=1Σ
n(p j)
i=1 ET (Ti, P j) (1)

Eq 1. gives the equation for the scheduling algorithm
used in [16]. It calculates the max time taken by a processor
j among M processors by finding maximum summation over
n processors for the execution time calculated for a task i
and process j. The proposed algorithm is at power with
the optimization achieved by [16]. The algorithm proposed
in the paper reduces the transmission cost significantly
due to the hierarchical architecture by virtue of which
the transmission cost at the same level reduces to null.
As the nodes are grouped based on the capacities and
configurations, the different hierarchy layers within the fog
layer itself contribute very less to the transmission cost due
to target mapping performed by the algorithm to place the
incoming request on the appropriate level which is then
followed by a choice between the available nodes at that
layer.

6. WORKING OF THE PROPOSED ALGORITHM
WITHIN THE FOG NETWORK
The fog network comprises of the physical and vir-

tualization layer, monitoring layer, pre-processing layer,
temporary storage layer, security layer and the transport
layer going from bottom to top. The physical layer consists
of sensors and are incharge of collecting incoming data that
needs to be processed. The next layer, the monitoring layer
is responsible for monitoring nodes and resources within
the network, as well as response and service monitoring.
The pre-processing layer performs data analysis and fil-
tering, and the temporary storage layer works on data de-
duplication, distribution and replication. The security layer
perfoms encryption and decryption on the data which is
transmitted to the cloud layer via the transmission layer.

Looking at the functions of the various fog layers, it is
evident that the architecture and algorithm proposed by this
paper are well suited for the monitoring layer where the
nodes and resources monitoring is performed and appropri-
ate nodes are chosen for the task at hand. The monitoring
layer will perform more efficiently when facilitated with the
algorithm proposed here and will also have scope for batch
processing and optimal resource allocation at low latency
will be achieved.

This architecture will also be suitable for the pre-
processing layer where in nodes perform computation and
data analysis. At this layer the choice of nodes for the job
is a crucial task and can be completed with better efficiency
when applied in association with the proposed algorithm.

7. RESULTS AND DISCUSSION
A. Performance Analysis

On running tests on the proposed algorithms, their
results and performance parameters were plotted in graphs
and compared. The following is a better insight into the
results obtained.

Figure 6. Average Load on the fog nodes (Highest Capacity Mode)

Figure 7. Response times in Highest Capacity Mode

1) Highest Capacity Mode
Figure 6, shows the average load on fog nodes as time

progresses. The load is shown as percentage of capacity
used up in the fog node. Fog nodes with no load on them
at the time are not counted for calculations. The following
graph shows the Highest Capacity Mode. In Figure 7, the
graph shows the response times of the requests of a sample
1000 requests in milliseconds. The y-axis is the response
time in milliseconds and x-axis is the request number, which
goes from 1 to 1000. This shows the response times for the
Highest Capacity Load Balancing Scheme.

• Load is very unevenly distributed with some nodes
reaching almost 90-100 load percentage.

• Response time reaches up to 8000 milliseconds in
some cases, and many requests have a response time
of 2000 milliseconds.

2) Earliest Predicted Response Time Mode
Figure 8, shows the average load on fog nodes as time

progresses. The load is shown as percentage of capacity
used up in the fog node. Fog nodes with no load on them
at the time are not counted for calculations. The following
graph is for the Earliest Predicted Response Mode.

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/


604 Jai Geetha et al.: Design of Node Level Load Balancing in Hierarchical Fog Structure

Figure 8. Average load on the fog nodes (Earliest Predicted Response
Mode)

Figure 9. Response times in Earliest Predicted Response Mode

In Figure 9, the graph shows the response times of the
requests of a sample 1000 requests in milliseconds. The y-
axis is the response time in milliseconds and x-axis is the
request number, which goes from 1 to 1000. This shows
the response times for the Earliest Predicted Response Load
Balancing Scheme. i. Load is much more evenly distributed
than Highest Capacity Mode although a lot of requests get
served by the cloud. ii. Response time is always less than
1000 milliseconds.

3) Equal Capacity Mode
Figure 10, shows the average load on fog nodes as time

progresses. The load is shown as percentage of capacity
used up in the fog node. Fog nodes with no load on them
at the time are not counted for calculations. The following
graph is for the Equal Capacity Mode.

In Figure 11, the graph shows the response times of the
requests of a sample 1000 requests in milliseconds. The y-
axis is the response time in milliseconds and x-axis is the
request number, which goes from 1 to 1000. This shows
the response times for the Equal Capacity Scheme.

• It may handle resource utilization more but, load
balancing is still unstable.

• Response time is higher than 2000 milliseconds fre-
quently and reaches over 6000 milliseconds some-

Figure 10. Average Load of the fog nodes (Equal Capacity Mode)

Figure 11. Response times in Equal Capacity Mode

times.

4) Optimal Mode
Figure 12, shows the average load on fog nodes as time

progresses. The load is shown as percentage of capacity
used up in the fog node. Fog nodes with no load on them
at the time are not counted for calculations. The following
graph is for the Optimal Mode.

In Figure 13, the graph shows the response times of the
requests of a sample 1000 requests in milliseconds. The y-
axis is the response time in milliseconds and x-axis is the
request number, which goes from 1 to 1000. This shows

Figure 12. Average Load of the fog nodes (Optimal Mode)

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/


Int. J. Com. Dig. Sys. 16, No.1, 597-607 (Aug-24) 605

TABLE I. Comparison between all four algorithms

Algorithm Load Capacity Turn Around Time
High-Capacity Mode Uneven distribution of load, Nodes reach-

ing 100 % capacity
Worst-case time taken is around 2000ms

Equal Capacity
Mode

Resource utilization satisfactory but un-
balanced distribution of load

Several edge cases over 2000ms for high resource
tasks, worst case 6000ms

Earliest Prediction
Mode

Load is evenly distributed but resource
utilization is uneven among nodes

Time taken is always under 1000ms, thus gener-
ally optimal

Optimal Approach Load is evenly distributed and resources
have optimal utilization

Time is very satisfactory and always under 500ms

Figure 13. Response times in Optimal Mode

the response times for the Optimal Mode.

• Able to effectively select nodes more evenly, with
better resource utilization than “Earliest Response”,
but not as good as “Highest Capacity”.

• It also shows a better general response time, where
all requests are served in under 500 milliseconds.

B. Results Comparison
Figure. 14, Shows the average response times in mil-

liseconds for requests coming in the four load balancing
schemes and Figure. 15, shows the average load of a given
fog node at a given time in the four load balancing schemes,
in percentage of capacity used up when serving a request.
A tally of all the results is tabulated in Table 1.

8. Conclusions and FutureWork
A fog simulator was built from scratch in Node-Red

which is extensible and scalable and can have N number of
levels and [M1, M2, ... Mk] number of nodes at each level.
The Hierarchical structure proposed at the Fog Layer adds
an advantage to the computing efficiency of the network. 3
different kinds of load balancing algorithms were built and
compared: Highest Capacity, Earliest Predicted Response
Time, and Equal Average Load and Optimal Approach
algorithm which combines the three. Optimal approach that
taps in on the benefits of the other 3 modes of load balanc-
ing schemes was found to outperform them with average

Figure 14. Average response times for the four modes (milliseconds)

Figure 15. Average load of fog nodes for the four modes

response time less than 40 milliseconds and average load
percentage of only 63 %. There is a need for improvement
in the working of Fog Computing with a focus on various
QoS factors. It is crucial to have effective load balancing
in a Fog Computing environment to decide the appropriate
node for handling a request. The load balancing scheme
introduced in this project primarily aims to cater to the issue
of latency in a typical cloud computing setting. That means

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/


606 Jai Geetha et al.: Design of Node Level Load Balancing in Hierarchical Fog Structure

the project aims to create an architecture that can ensure
the appropriate distribution of load in a network in such
a way that minimizes the time required in receiving and
processing the requests. This idea can further be extended
to incorporate other factors such as QoS to improve the
performance of the fog network. In addition to that, this
idea can be improved further by making it more scalable to
solve real-world problems where the number of nodes in a
network is quite large.

References
[1] A. Mijuskovic, A. Chiumento, R. Bemthuis, A. Aldea, and

P. Havinga, “Resource management techniques for cloud/fog and
edge computing: An evaluation framework and classification,” Sen-
sors, vol. 21, no. 5, p. 1832, 2021.

[2] J. Lim and D. Lee, “A load balancing algorithm for mobile devices
in edge cloud computing environments,” Electronics, vol. 9, no. 4,
p. 686, 2020.

[3] S. K. Mani and I. Meenakshisundaram, “Improving quality-of-
service in fog computing through efficient resource allocation,”
Computational Intelligence, vol. 36, no. 4, pp. 1527–1547, 2020.

[4] M. Aazam and E.-N. Huh, “Fog computing micro datacenter based
dynamic resource estimation and pricing model for iot,” in 2015
IEEE 29th international conference on advanced information net-
working and applications. IEEE, 2015, pp. 687–694.

[5] H. R. Arkian, A. Diyanat, and A. Pourkhalili, “Mist: Fog-based
data analytics scheme with cost-efficient resource provisioning for
iot crowdsensing applications,” Journal of Network and Computer
Applications, vol. 82, pp. 152–165, 2017.

[6] S. Shaik and S. Baskiyar, “Hierarchical and autonomous fog ar-
chitecture,” in Workshop Proceedings of the 47th International
Conference on Parallel Processing, 2018, pp. 1–8.

[7] A. Chandak and N. K. Ray, “A review of load balancing in
fog computing,” in 2019 International Conference on Information
Technology (ICIT). IEEE, 2019, pp. 460–465.

[8] J. Lim and D. Lee, “A load balancing algorithm for mobile devices
in edge cloud computing environments,” Electronics, vol. 9, no. 4,
p. 686, 2020.

[9] X. Xu, S. Fu, Q. Cai, W. Tian, W. Liu, W. Dou, X. Sun, A. X.
Liu et al., “Dynamic resource allocation for load balancing in fog
environment,” Wireless Communications and Mobile Computing,
vol. 2018, 2018.

[10] M. Verma, N. Bhardwaj, and A. K. Yadav, “Real time efficient
scheduling algorithm for load balancing in fog computing environ-
ment,” Int. J. Inf. Technol. Comput. Sci, vol. 8, no. 4, pp. 1–10,
2016.

[11] M. M. S. Maswood, M. R. Rahman, A. G. Alharbi, and D. Medhi,
“A novel strategy to achieve bandwidth cost reduction and load
balancing in a cooperative three-layer fog-cloud computing envi-
ronment,” IEEE Access, vol. 8, pp. 113 737–113 750, 2020.

[12] F. M. Talaat, M. S. Saraya, A. I. Saleh, H. A. Ali, and S. H. Ali,
“A load balancing and optimization strategy (lbos) using reinforce-
ment learning in fog computing environment,” Journal of Ambient
Intelligence and Humanized Computing, vol. 11, pp. 4951–4966,
2020.

[13] D. Puthal, M. S. Obaidat, P. Nanda, M. Prasad, S. P. Mohanty,
and A. Y. Zomaya, “Secure and sustainable load balancing of edge
data centers in fog computing,” IEEE Communications Magazine,
vol. 56, no. 5, pp. 60–65, 2018.

[14] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim:
A toolkit for modeling and simulation of resource management
techniques in the internet of things, edge and fog computing
environments,” Software: Practice and Experience, vol. 47, no. 9,
pp. 1275–1296, 2017.

[15] M. I. Naas, P. R. Parvedy, J. Boukhobza, and L. Lemarchand,
“ifogstor: an iot data placement strategy for fog infrastructure,”
in 2017 IEEE 1st International Conference on Fog and Edge
Computing (ICFEC). IEEE, 2017, pp. 97–104.

[16] W.-C. Yeh, C.-M. Lai, and K.-C. Tseng, “Fog computing task
scheduling optimization based on multi-objective simplified swarm
optimization,” in Journal of Physics: Conference Series, vol. 1411,
no. 1. IOP Publishing, 2019, p. 012007.

Dr. Geetha J is working as an Associate
Professor in Computer Science and Engi-
neering Department of Ramaiah Institute of
Technology, Bangalore. Her areas of interest
include cloud computing, big data, semantic
web, graph theory and web design. She has
17 years of teaching experience and has
21 publications, the most recent one being
“Implementation and Performance Compar-
ison of Partitioning Techniques in Apache

Spark”. Dr. Geetha is also a member of IEEE and ISTE.

Dr. D S Jayalakshmi is working as an Asso-
ciate Professor in the Computer Science and
Engineering Department of Ramaiah Insti-
tute of Technology, Bangalore. Her areas of
interest include cloud computing, big data,
and computer graphics. She has 27 years
of teaching experience and has 30 publica-
tions, the most recent one being “Simulation
of MapReduce Across Geographically Dis-
tributed Data Centers Using CloudSim”. Dr.

Jayalakshmi is also a life member at ISTE.

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/


Int. J. Com. Dig. Sys. 16, No.1, 597-607 (Aug-24) 607

Chandrika Prasad working as an Assistant
Professor in the department of Computer
Science and Engineering. She has 16 years
of experience in teaching and 7 years of
experience in research. Her area of interest is
Cloud Computing, High performance com-
puting, Text processing in Indian regional
languages, Natural language processing. She
has published around 20 articles in interna-
tional conferences and journals.

Dr. Srinidhi N N working as an Assistant
Professor in the Department of Computer
Science Engineering at Manipal Institute of
Technology Bengaluru, MAHE Manipal. He
has published more than 40+ research arti-
cles in International Journals including El-
sevier, Inderscience, Springer, Taylor Fran-
cis and International Conferences. He is in-
volved in research and teaching for 8 years
and has 3 years of Industrial experience. He

served as reviewer for various reputed journals including Springer,
IEEE, Elsevier and delivered expert talk on WSN, IoT and
Robotics in various colleges including IIT, NIT, DIAT and other
premier institutions. His current research lies in the areas of Sensor
Networks, Cloud Computing, Fog Computing, Edge Computing
and IoT. He served as Guest editor, editorial member, session chair,
TPC member, etc for various journals and conferences. He is an
international reviewer for research projects from Sultan Qaboos
University, Oman and reviewed 4 different projects. He has worked
as a Project Fellow for a SERB-DST sponsored research project
in the area of IoT worth 40 lakhs.

Dr. Naresh E holding Ph.D in Computer
Science and Engineering and Master’s de-
gree in software engineering. Currently, he is
working as an Assistant Professor (Selection
Grade) in the Department of Information
Technology at Manipal Institute of Technol-
ogy Bengaluru. He has published more than
60 articles in reputed journals, conferences,
and book chapters. His research interests
include Software cost and effort estimation,

Empirical software quality engineering, Software process im-
provement, Artificial Intelligence, Data Analytics, and Internet
of Things. He served as editorial member, session chair, TPC
member, etc for various journals and conferences. He is a senior
member for ACM, International Association of Engineers, Indian
Society for Technical Education, ICSES and Internet Society
–Global Member.

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

	INTRODUCTION
	THEORITICAL BASIS
	METHOD
	Design 
	Design Graphical User Interface
	Proposed System
	Algorithm
	Implementation of Modules

	USE CASE
	COMPARING PROPOSED ALGORITHM TO A BENCHMARK SCHEDULING ALGORITHM
	WORKING OF THE PROPOSED ALGORITHM WITHIN THE FOG NETWORK
	RESULTS AND DISCUSSION 
	Performance Analysis
	Highest Capacity Mode
	Earliest Predicted Response Time Mode
	Equal Capacity Mode
	Optimal Mode

	Results Comparison

	Conclusions and Future Work
	References
	Biographies
	Dr. Geetha J 
	Dr. D S Jayalakshmi
	Chandrika Prasad
	Dr. Srinidhi N N
	Dr. Naresh E


