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Abstract 

 Anticipating lane changes of surrounding vehicles is paramount for the safe and 

efficient operation of autonomous vehicles. Previous works employ the usage of physical 

variables which do not contain contextual information. Recent methodologies relied on action 

recognition models such as 3D CNNs and RNNs, thereby dealing with complex architecture. 

Albeit the advent of transformers into action recognition, there are limited works employing 

transformer architectures. This research addresses the critical challenge of Lane Change 

Prediction (LCP) for autonomous vehicles, employing Video Action Prediction with a focus 

on the integration of ViViT (Video Vision Transformers). Utilizing the PREVENTION 

dataset, which provides detailed annotations of vehicle trajectories and critical events, the 

proposed approach outperforms prior methods, achieving over 85% test accuracy in 

predicting lane changes with a horizon of 1 second. Comparative analyses underscore ViViT's 

superiority in capturing spatio-temporal dependencies in video data while requiring fewer 

parameters, enhancing computational efficiency. This research contributes to advancing 

autonomous driving technology by showcasing ViViT's efficacy in real-world applications 

and advocating for its further exploration in enhancing vehicle safety and efficiency. 

Keywords: Lane Change Prediction, Video Vision Transformers, Computer Vision, Tubelet 

Embeddings, Autonomous Vehicles 

 

1 Introduction 

The evolution of autonomous driving technology has ushered in a new era of 

innovation, where the convergence of artificial intelligence and computer vision is reshaping 

the future of transportation. As autonomy levels beyond SAE Levels 2 and 3 become 
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increasingly critical, the pursuit of Levels 4 and 5 gains significance. These levels signify the 

pinnacle of driving automation, promising a future where vehicles navigate highways and 

urban landscapes with unparalleled precision and efficiency. 

Lane change prediction stands out as a crucial component in the journey towards fully 

autonomous vehicles. In the dynamic realm of traffic, the ability to anticipate lane changes of 

surrounding vehicles is indispensable for ensuring safety and enhancing traffic flow. Lane 

change prediction empowers autonomous systems to adapt their trajectories proactively, 

navigate complex scenarios, and maintain safe distances, thereby ushering in a new era of 

road safety and efficiency. 

Traditional approaches to lane change prediction have predominantly relied on physical 

variables such as speed, acceleration, and distance. While somewhat effective, these do not 

capture the nuanced intentions of surrounding vehicles. In contrast, human drivers rely on 

visual cues to anticipate lane changes, leveraging a complex interplay of spatial and temporal 

information. This human-inspired approach forms the basis for adopting Video Vision 

Transformers (ViViT) as a groundbreaking solution in the realm of autonomous driving. 

ViViT represents a paradigm shift in video analysis, harnessing the power of Transformers to 

extract spatio-temporal features from video data. Unlike traditional methods that necessitate 

manual feature engineering or employ complex architectures, ViViT offers a streamlined and 

efficient means of capturing contextual information and modelling long-range dependencies. 

By leveraging spatio-temporal attention mechanisms, ViViT empowers autonomous systems 

to comprehensively analyse video sequences, enabling accurate lane change prediction with 

unprecedented precision. 

The focal point of this research lies in lane change prediction using ViViT, specifically 

tailored for application in autonomous vehicles. By framing the lane change prediction 

problem as a Video Action Prediction task, this project aims to demonstrate the efficacy of 

ViViT in capturing intricate motion patterns and contextual information from video data. 

Leveraging the detailed annotations provided by the PREVENTION dataset, this research 

seeks to evaluate the performance of ViViT-based models in predicting lane changes of 

surrounding vehicles. 

The contributions of this project extend beyond mere demonstration, aiming to showcase the 

superiority of ViViT over traditional methodologies. Through rigorous experimentation and 

meticulous evaluation, this research seeks to highlight the pivotal role of ViViT in advancing 

the field of autonomous driving technology. By achieving high prediction accuracy with 

significantly fewer parameters, ViViT offers a transformative solution that paves the way for 

safer, more efficient autonomous vehicles. 

The primary contributions of this study can be delineated as follows: 

1. Development of an end-to-end framework for lane change prediction utilizing front-

facing cameras through video action recognition. 

2. Exploration of the ViViT model's applicability and optimization to achieve optimal 

performance. 

3. Comparative analysis of the ViViT model against other state-of-the-art approaches in 

the field. 
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The subsequent sections of this paper are structured as follows: Section 2 provides an 

extensive examination of prior studies. Section 3 offers a synopsis of the problem 

formulation. Section 4 delves into the methodology. Section 5 revolves around the 

experimental results. Finally, Section 6 discusses the conclusions drawn from the study and 

outlines avenues for future research. 

2 Related Work 

The subsequent section entails a thorough examination of related works, categorized 

into two main segments. Initially, a scrutiny of various datasets utilized in the domain is 

presented, elucidating their attributes, merits, and demerits. Following this, a comprehensive 

review of previous studies is conducted, delineating key methodologies, findings, and 

advancements in the field. This review aims to furnish a comprehensive understanding of the 

current landscape in lane change prediction research, setting the stage for the proposed 

methodology. 

A. Datasets 

The review of lane change datasets serves as a crucial foundation in understanding the 

landscape of research within the domain of autonomous driving. This section provides a 

comprehensive analysis of various datasets employed in lane change prediction studies, 

highlighting their respective characteristics, strengths, and limitations. Such an overview is 

essential for selecting appropriate datasets for model training and evaluation, ensuring the 

development of robust and generalizable lane change prediction algorithms. 

TABLE I: Comparison of Traffic Datasets 

Feature [18] 

PREVENTION  

NGSIM 

HW101 

NGSIM 

I80 

[16] 

HighD 

PKU [17] 

ApolloScape 

Sensors Used LiDAR, radar, 

cameras 

Cameras Cameras Aerial 

images 

2D-

LiDARs 

Cameras, Laser 

scanners 

Coverage Long-range (up to 

80m) 

Short-range Short-

range 

Short-

range 

Short-

range 

Short-range 

Lane 

Markings 

Yes No No No No No 

Redundancy Yes No No No No No 

Critical 

Situations 

Yes No No No No No 

 

Table I compares the features of the available traffic datasets. The [18] PREVENTION 

dataset outperforms other datasets in almost all aspects. It utilizes a diverse range of sensors 

including LiDAR, radar, and cameras, providing redundancy and ensuring fault-tolerant 

development. In terms of coverage, it offers long-range coverage up to 80 meters around the 

ego-vehicle, allowing for accurate prediction of trajectories. Additionally, the inclusion of 

lane markings enhances road scene understanding, while annotations of critical situations 

such as cut-in, cut-out, and lane changes provide valuable data for prediction tasks. Thus, the 

study opts to proceed with the PREVENTION dataset. 

B. Lane Change Prediction Systems 
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Lane change prediction in the context of autonomous vehicles is a critical task for 

ensuring safe and efficient navigation in complex traffic scenarios. A variety of input 

variables and methodologies have been explored in the literature to address this challenge. [1] 

introduces a methodology that considers lateral position, heading error, and lateral speed 

extracted from vehicle motion data to predict future vehicle trajectories, utilizing neural 

network models and SVM classifiers. However, the study's reliance on kinematic data alone 

may limit its ability to capture complex driving scenarios and environmental factors. [2] 

presents a sophisticated approach that extracts input variables from sensor fusion of radar and 

camera data, employing CNN-based models to predict lane change intentions of neighboring 

vehicles. Despite promising results, limitations exist due to small-scale datasets and 

simplifications in the driving scene reconstruction process. [3] adapts an LSTM-based 

methodology for trajectory prediction, utilizing historical trajectory data and 

lateral/longitudinal maneuver classifications. While the model predicts multi-modal 

trajectories effectively, challenges remain in accurately predicting lane changes, especially in 

unconventional traffic scenarios. [4] employs track histories of vehicles and convolutional 

social pooling layers to predict future vehicle positions, but its reliance on vehicle track data 

may overlook additional cues from visual and map-based information [5]. Another approach 

utilizes previous states of vehicles and composes them into a composite lane-based SRNN 

model, although it relies on simplified assumptions about vehicle behavior and may struggle 

to generalize to diverse driving environments. [6] explores input variables extracted from 

visual data, aiming to predict lane-change intentions based on motion history and context 

information encoded in images, but faces challenges in accurately differentiating between left 

and right lane changes. Additionally, studies such as [7], [8], [9], and [10] introduce various 

methodologies for lane-change prediction, utilizing input variables ranging from enriched 

RGB images to sequences of images obtained from front-view cameras on vehicles. While 

these studies demonstrate promising results, they also highlight the importance of addressing 

limitations such as computational complexity and reliance on visual cues alone. Specifically, 

[9] and [10] use video action recognition models [11], [12], [13], [14] and [15]. There is a 

need for further research to develop robust and generalized models capable of accurately 

predicting lane changes in diverse real-world driving scenarios. Consequently, Vision 

Transformer based architectures have not been explored in this context. As we embark on this 

journey towards fully autonomous vehicles, it is essential to address the challenges and 

limitations that lie ahead. Traditional approaches to lane change prediction have 

predominantly relied on physical variables such as speed, acceleration, and distance. While 

somewhat effective, these methods often struggle to capture the nuanced intentions of 

surrounding vehicles. In contrast, human drivers rely on visual cues to anticipate lane 

changes, leveraging a complex interplay of spatial and temporal information. This human-

inspired approach forms the basis for adopting Video Vision Transformers (ViViT) as a 

groundbreaking solution in the realm of autonomous driving.  While ViViT offers significant 

advancements in lane change prediction, there are still hurdles to overcome, including real-

world deployment, regulatory considerations, and public acceptance. By acknowledging these 

challenges, we can work towards developing comprehensive solutions that address the needs 

of all stakeholders. 

 

3 Problem Formulation 
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The problem formulation revolves around predicting lane change events as a multi-

classification task, where the objective is to classify whether a surrounding vehicle will 

execute a left lane change, a right lane change, or maintain its current lane (no lane change) 

within a specified time horizon N. Illustrated in Figure 1, a lane change event occurs when 

the midpoint of the rear bumper aligns with the lane markings. The observation horizon, 

represented by a window of N images stacked frame by frame, captures the contextual 

information leading up to the prediction moment. This problem is approached as a prediction 

task, focusing on the Time To Lane Change (TTLC). Setting N to 40 frames (equivalent to 4 

seconds at 10 FPS) and TTLC to 10 frames (1 second) defines the length of each sample as 

50 frames, facilitating evaluation of the model's predictive capacity one second into the 

future. 

Formally, this problem is framed as a video action prediction challenge, where an input video 

clip sample 𝑥 with dimensions ℝ𝐹×𝑊×𝐻×𝐶 denoting frames, width, height, and channels 

respectively, is analyzed to forecast the probability of a lane change event denoted by 𝑦 from 

the set {0, 1, 2}, representing Left Lane Change (LLCE), Right Lane Change (RLCE), or No 

Lane Change Event (NLCE). Preprocessing steps, detailed further, are applied to the input 

video. Following the final fully connected layer, a softmax activation function is employed 

for prediction, resulting in 𝑦̂. The loss function utilized is sparse categorical cross-entropy 

(1). 

𝐿𝑜𝑠𝑠(𝑦, 𝑦̂) =  − ∑ 𝑦𝑖

𝑁

𝑖
 log (𝑦̂𝑖) 

 

(1) 

 

 

Fig 1. Problem Formulation: A "Lane Change Event" occurs when, in frame (F2), the midpoint of the vehicle's 

rear bumper surpasses the lane marking. 

 

4 Methodology 

The methodology section encompasses three key subsections: preprocessing, the 

architecture of the Video Vision Transformer, and the implementation of the Video Vision 
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Transformer. In the preprocessing stage, the raw data undergoes initial cleaning and 

transformation to prepare it for further analysis. Subsequently, the architecture of the Video 

Vision Transformer is delineated, outlining its components and underlying mechanisms. 

Finally, the section delves into the practical implementation of the Video Vision Transformer, 

detailing the steps involved in applying the model to the dataset for analysis and inference. 

A. Preprocessing 

The PREVENTION dataset includes original raw videos along with associated text files 

detailing lane change events and other contextual data. This dataset comprises five records, 

each containing multiple drives, with each drive containing raw video footage and 

corresponding text files. The videos are captured at a resolution of 1920 x 600 pixels, 

recorded at 10 frames per second (FPS), and consist of three colour channels. Lane change 

information is provided within the respective drives, with a total of 381 left lane change 

events and 468 right lane change events identified from the analysis. To balance event 

distribution, 420 instances of no lane change events were randomly sampled from all records, 

resulting in a total of 1269 training samples. 

To aid contextual understanding, bounding boxes are generated for each vehicle in the green 

channel of the frame, referenced from the "detections_filtered.txt" file. Following this, the 

videos undergo preprocessing steps. Initially, the videos are centre cropped to dimensions of 

1600 x 600 pixels to remove irrelevant context. Subsequently, spatial downsampling to 400 x 

400 pixels is applied to reduce computational complexity. Additionally, the frame rate is 

halved from 10 to 5 FPS to further alleviate computational demands. This preprocessing 

results in each sample being represented as a tensor with dimensions of ℝ25×400×400×3. 

Finally, the preprocessed videos are divided into training, testing, and validation sets in an 

80-10-10 ratio, yielding 1015 training, 127 testing, and 127 validation samples, respectively.  

The impact of the preprocessing steps is depicted in Fig 2. 

 

  
(a) (b) 

Fig 2. Preprocessing: (a) Sample Frame of a video before preprocessing (b) Sample Frame of  a video after 

preprocessing. 

B. Video Vision Transformers for Lane Change Prediction 

After completing data preprocessing, an effective deep learning framework becomes 

essential for executing the lane change prediction task. In the current approach, Video Vision 

Transformers [21] are employed for this purpose. 

1) Tubelet Embedding: Tubelet Embedding technique is utilized to convert a given video 

clip sample 𝑥 ∈  ℝ𝐹×𝑊×𝐻×𝐶 into a sequence of tokens 𝒌̃ ∈  ℝ𝑛𝑓×𝑛𝑤×𝑛ℎ×𝑑, akin to [21]. 

Unlike patch embedding methods for images [20], Tubelet Embedding, proposed by [21], 

suggests extracting non-overlapping, spatio-temporal tubes from the input sequences of 
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video frames. These tubes encompass both temporal and frame-specific patches. The 

resulting patches are then linearly projected to generate multiple video-encoded tokens. 

For a tubelet with dimensions 𝑓 × 𝑤 × ℎ, the number of encoded tokens is determined by 

the temporal, width, and height dimensions, denoted by (2). 

 

𝑛𝑓 =  ⌊
𝐹

𝑓
⌋  , 𝑛𝑤 =  ⌊

𝑊

𝑤
⌋ and 𝑛ℎ =  ⌊

𝐻

ℎ
⌋ (2) 

 

Moreover, [21] recommends incorporating an additional CLS token into the set of 

embedded tokens, inspired by [22]. This CLS token is tasked with aggregating global 

video frame information to facilitate final prediction. Additionally, a learned positional 

embedding, as proposed by [19], denoted as 𝑃 ∈  ℝ𝑁×𝑑, is appended to the tokens to 

retain positional information, ensuring that self-attention remains permutation invariant. 

 

 

2) Spatio-Temporal Attention: The research opts for the spatio-temporal attention (Fig 3) 

variant of ViViT, introduced by Arnab et al. In this approach, all video tokens undergo 

tubelet embedding and are subsequently forwarded directly to a standard transformer 

encoder [19]. The sequence of input tokens is 

 

𝒎 =  [𝑚𝑐𝑙𝑠, 𝑬𝑥1, 𝑬𝑥2, … , 𝑬𝑥𝑁] + 𝑃 (3) 

 

where 𝑬 is patch embedding, resulting in equivalent representation such as a 3D 

convolution. 

 

3) Transformer Encoder: The encoder comprises multiple stacks of 𝐿 identical blocks, each 

consisting of two components: Multi-Head Self Attention (𝑀𝐻𝑆𝐴) and Multi-Layer 

Perceptron (𝑀𝐿𝑃). Both components include Layer Normalization (𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚) and a 

residual skip connection. At each layer, the model outputs embeddings of dimension 𝐷. 

The previous 𝑚 vector is passed through the transformer encoder  to generate the output 

vector 𝑜. 

 

𝑀𝑙 = 𝑚𝑙−1 +  𝑀𝐻𝑆𝐴(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑚𝑙−1)) 𝑙 = 1, …  , 𝐿 (4) 

 

𝑂𝑙+1 = 𝑀𝑙 +  𝑀𝐿𝑃(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑀𝑙)) 𝑙 = 1, …  , 𝐿 (5) 

 

The Self Attention (𝑆𝐴𝑇) is a crucial element of 𝑀𝐻𝑆𝐴, responsible for identifying 

significant connections among all input tokens. To achieve this, the input vector 𝑚 

undergoes projection into three distinct matrices for each 𝑆𝐴𝑇 component: 𝑄 (Query), 𝐾 

(Key), and 𝑉 (Value). This projection is accomplished through multiplication with 

trainable weights 𝑊𝑄, 𝑊𝐾, and 𝑊𝑉, respectively. 

 

𝑄 = 𝑚 × 𝑊𝑄 (6) 

 

𝐾 = 𝑚 × 𝑊𝐾 (7) 
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𝑉 = 𝑚 × 𝑊𝑉 (8) 

 

The Queries 𝑄 are subjected to multiplication by the transpose of Keys 𝐾𝑇. The resulting 

vector is then divided by the square root of the embedding dimension 𝐷  to mitigate the 

impact of peaky affinities. Subsequently, a SoftMax activation is applied, and the 

resulting output is multiplied by the Values 𝑉 to generate the final output referred to as 

Head 𝐻. 

 

𝐻 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (
𝑄 × 𝐾𝑇

√𝐷
)  × 𝑉 (9) 

 

𝑆𝐴𝑇 is employed ℎ times to yield ℎ attention heads. The outcomes of each attention head 

are concatenated and then processed through a feedforward layer equipped with learnable 

weights 𝑊0. 

 

 

𝑀𝐻𝑆𝐴 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑆𝐴𝑇1, 𝑆𝐴𝑇2, 𝑆𝐴𝑇3, … , 𝑆𝐴𝑇𝑁)  × 𝑊0 (10) 

 

𝑶 =  [𝒐𝟎, 𝒐𝟏, 𝒐𝟐, 𝒐𝟑, … , 𝒐𝑵] (11) 

 

The 𝑀𝐿𝑃 section consists of fully connected dense layers employing GeLU activation. 

The initial token of the output vector, denoted as 𝑶0, represents the CLS token, essential 

for classification purposes. This token undergoes processing through a dense layer with 

SoftMax activation to generate a probability distribution for the video clip's target label. 

Depending on this distribution, the clip is categorized into RLCE, NLCE, or LLCE. 

 

 

  

 

   
(a) (b) (c) 

 

Fig 3. Overview of (a) ViViT Model Architecture (b) Transformer Encoder (c) Self Attention 

 

5 Experimental Results 
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The Experimental Results section presents a comprehensive evaluation of the ViViT 

model, encompassing the determination of optimal hyperparameter combinations and the 

model's performance during inference. Additionally, a comparative study is conducted to 

assess the efficacy of the ViViT model against existing methodologies. 

A) Evaluation of ViViT Model for Lane Change Prediction 

This section entails the assessment of the ViViT model's efficacy in predicting lane 

changes. The ViViT model, implemented according to the methodology outlined in [21], 

underwent minor adjustments. Notably, a 3D convolutional layer was utilized to execute the 

learnable tubelet embedding, drawing inspiration from [20]. Furthermore, a refinement was 

introduced where, instead of solely considering the CLS token, all final token representations 

underwent layer normalization anew. Subsequently, global average pooling was employed to 

render them into a 1D format, enabling the aggregation of information across the entire 

sequence. This pooling operation effectively reduced the spatial dimensionality of the token 

representations while preserving crucial features, thereby priming them for predictive 

analysis. 

Various combinations of hyperparameters were tested to identify the optimal set yielding the 

highest accuracy. The specific combination of hyperparameters resulting in the greatest 

accuracy following multiple tuning iterations is detailed in Table II.  

Following extensive hyperparameter tuning, the model achieved its peak training and 

validation accuracies of 94.38% and 80.04%, respectively, after 100 epochs. Notably, 

convergence was observed around the 74th epoch, where the model attained training and 

validation accuracies of 86.11% and 82.68%, respectively. The learning curves depicting the 

performance on the training and validation sets are illustrated in Fig 4. These curves 

demonstrate a decent learning algorithm, as both reach a stable point with minimal 

discrepancy. 

 

 

 

  
(a) (b) (c) 

Fig. 4: Learning Curves of Training and Validation (a) Loss and (b) Accuracy and (c) Test Set Confusion Matrix 

TABLE II. Tuned Hyper Parameters 

Hyperparameter Value/ Attribute 

Batch Size 4 

Input Dimension (25, 400, 400, 3) 

Number of Classes 3 

Learning Rate 0.0001 

Weight Decay 0.001 

9



Epochs 100 

Patch Size (4, 32, 32) 

Layer Normalization 0.0001 

Projection Dimension 1024 

Number of Attention Heads 8 

Number of Transformer Layers 8 

Optimizer Adam 

 

TABLE III. Evaluation Metrics  

 Precision Recall F1-Score Support 

LLCE 0.80 0.95 0.87 42 

RLCE 0.97 0.77 0.86 44 

NLCE 0.81 0.83 0.82 41 

Accuracy  0.85 127 

Macro Average 0.86 0.85 0.85 127 

Weighted Average 0.86 0.85 0.85 127 

The evaluation metrics of the test set is detailed in Table III. The model demonstrates good 

performance in predicting lane change events, with high precision, recall, and F1-score 

values across all classes. Specifically, the model achieves precision values of 0.80, 0.97, and 

0.81 for LLCE, RLCE, and NLCE classes respectively, indicating its ability to make accurate 

positive predictions for each class. The recall values of 0.95 for LLCE and 0.83 for NLCE 

suggest that the model effectively captures most of the actual instances of lane changes. The 

F1-score values, which consider both precision and recall, are also high, indicating a balanced 

performance. Additionally, the overall accuracy of 0.85 demonstrates the model's ability to 

correctly classify lane change events. Overall, the results suggest that the model performs 

well in predicting lane change events across different classes. 

B) Comparative Analysis 

The following section provides a comparative analysis of the proposed Video Vision 

Transformer (ViViT) methodology against existing approaches for lane change prediction. 

The superior performance of the Video Vision Transformer (ViViT) over other models in lane 

change prediction can be attributed to several factors. Firstly, ViViT leverages the strengths of 

transformer architectures, which have lower inductive biases compared to traditional CNN or 

RNN models, leading to better generalization and improved performance on unseen data. 

Additionally, transformers excel at capturing global information and long-range dependencies 

in large datasets, which is crucial for tasks such as lane change prediction where contextual 

information over extended periods is vital. 

TABLE IV: Comparison of the proposed methodology with other approaches 

Method Accuracy 

Lane SRNN [5] 48.70% 

CNN LSTM [6] 74.41% 

Vision Transformer [8] 81.10% 

I3D [9][13] 83.28% 

Two Stream [9][12] 84.54% 

X3D [10] 84.79% 

Video Vision Transformer  85.04% 

Spatio-Temporal Multiplier [9][14] 85.69% 

Slow Fast [9][15] 88.64% 
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While ViViT outperforms several models, it falls slightly behind the last two entries in Table 

IV. This may be attributed to transformers' reliance on large amounts of data for optimal 

performance. However, [19][21] Transformers typically require fewer computational 

resources in terms of Floating-Point Operations (FLOPs) and have a smaller number of 

parameters compared to models like Slow Fast [14] and Spatio-Temporal Multiplier [15]. 

This computational efficiency makes ViViT a practical choice for real-world applications 

where efficiency is paramount. 

 

 

 

6 Conclusion 

This study has presented ViViT for lane change prediction in autonomous vehicles, 

demonstrating notable performance improvements over existing methodologies. ViViT excels 

in capturing spatio-temporal dependencies in video data while maintaining computational 

efficiency. However, challenges remain in accurately distinguishing between left and right 

lane changes, particularly in complex traffic scenarios.  Further exploration into ViViT 

variants and the incorporation of techniques such as GANs for data augmentation could 

enhance model robustness and generalization. Investigating the impact of inductive biases 

and the acquisition of larger datasets will be crucial for improving ViViT's performance. 

Research efforts should focus on refining ViViT's ability to handle complex traffic scenarios, 

potentially by incorporating additional contextual information or refining the model 

architecture. By addressing these challenges and continuing to innovate, ViViT holds the 

potential to revolutionize lane change prediction and contribute significantly to the 

advancement of autonomous driving technology. 
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