
1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

14	

15	

16	

17	

18	

19	

20	

21	

22	

23	

24	

25	

26	

27	

28	

29	

30	

31	

32	

33	

34	

35	

36	

37	

38	

39	

40	

41	

42	

43	

44	

45	

46	

47	

48	

49	

50	

51	

52	

53	

54	

55	

56	

57	

60	

61	

62	

63	

64	

65	

Extracting Features from App Store Reviews to Improve

Requirements Analysis: Natural Language Processing and
Machine Learning Approach

Ishaya Gambo1*, Christopher Agbonkhese2, Theresa Omodunbi3, and Rhodes Massenon4

1,3,4 Department of Computer Science & Engineering, Obafemi Awolowo University, Ile-Ife, Nigeria

2 Department of Digital and Computational Studies, Bates College, Lewiston, ME 04240, USA …
NDepartment,Name of the Organization, City, Country

5Department of Computer Science, Joseph Sarwuan Tarka University, Makurdi, Nigeria

E-mail address: ipgambo@oauife.edu.ng, cagbonkhese@bates.edu, tessydunbi@oauife.edu.ng, ramassenon@pg-
student.oauife.edu.ng

Abstract: User reviews of mobile apps on platforms like Google Play and Apple App Stores are a rich and valuable source of
information for requirements engineering and software evolution. They reveal the users' needs, preferences, and opinions about the
apps and their features. However, extracting and classifying the non-functional requirements (NFRs) from these reviews is a
challenging task that requires sophisticated methods and techniques. In this research, we propose a novel approach that uses data
mining, natural language processing, and machine learning to automatically identify and prioritize the NFRs from user reviews of 99
top-rated games across four categories: Sport, Racing, Puzzle, Action and Casual. We collected 271,656 reviews from both platforms
and used feature extraction techniques to select and extract the most important NFRs from the reviews. We then used four machine
learning algorithms: Naïve Bayes, Support Vector Model (SVM), Decision Tree J48, and Logistic Regression (LR) to perform
sentiment analysis and rank the NFRs based on their importance and relevance. We focused on three types of NFRs: security,
flexibility, and maintainability. Our findings show that user reviews can help improve the outcomes of these NFRs and that our
approach can help developers understand their users and meet their needs from an NFR perspective, thus increasing user satisfaction
and retention.

Keywords: User reviews, requirement engineering, software features, non-functional requirements, functional requirements,
machine learning

1. INTRODUCTION
Software requirements have evolved from a need in

software development to a field of research called
Requirement Engineering (RE). RE is an activity in
software engineering that establishes the necessary
foundations for a successful system [1] [2] [3]. From the
communication stage to the modelling stage, RE is
necessary for the design of failure-free systems, and
requirements in this context are software features [4]
expressed as functional requirements (FR) or non-
functional requirements (NFR) by stakeholders.

In this research, stakeholders are users, and mobile
applications are the software in focus. Users provide
feedback on their interactions with mobile apps by leaving
ratings and/or comments expressing their views about the
application. These reviews are a quality source of
feedback for software teams on the features to alter, add,
improve, or fix [5]. Crowd-sourcing requirements have

become necessary in an age where an app can be available
to millions of users worldwide. App marketplaces provide
all these reviews in one place, making the process of
crowdsourcing requirements streamlined and easier to
accomplish. As observed in Iqbal et al. [5] the app stores
provide rich and valuable source of information for RE
and software evolution.

Though user reviews have useful information, it is
difficult for developers to process that information
manually and get relevant data for requirement
improvement [6] [7] [8]. User reviews contain diverse
information from different backgrounds with different
complaints or reviews comprising text abbreviations,
spelling errors, and unlabeled data [6] [9]. This
unstructured nature makes user reviews complex as a
primary data source for identifying user requirements,
particularly NFRs.

On the one hand, FR focuses on what the system
should do and how to meet the end user's needs. On the

IJCDS 1571023806

1

other hand, the NFR constrains the type of solutions that
will meet the FR, such as security, reliability,
accessibility, maintainability, reusability, flexibility,
performance, usability, and efficiency [10]. FR and NFR
must complement a software project, especially for
mobile applications. The absence of either FR or NFR
means the software system might not meet a hundred
percent of the stakeholders' expectations [11].

This research seeks to know how to get the right
features included in a software system to meet its
expectations from users' reviews of mobile applications.
Secondly, the research seeks to know how to handle
various user preferences in a software system based on the
user's feedback in the review extracted. Thirdly, the
research seeks to know how to extract, classify and
prioritize these extracted features to improve the RE
process and the entire system during software
maintenance.

This paper aims to fill a gap in the field of RE by
proposing a novel model that can extract and classify
software features from user reviews of mobile apps. The
model can also prioritize the features based on their
importance and relevance for the RE process. The features
can be either FR or NFR, which are often overlooked or
neglected by existing models. By using user reviews as a
source of information, the model can help practitioners
(such as software developers) to identify the key features
that users want and need in new applications.

In this paper, we address the following research
questions (RQs) that guide our investigation and analysis:

• RQ1: How to identify and prioritize Non-
Functional Requirements in user reviews for
effective consideration?

• RQ2: How can we effectively prioritize Non-
Functional Requirements based on their
significance and impact?

• RQ3: What tools, techniques, and methodologies
are appropriate for addressing RQ1 and RQ2
effectively?

• RQ4: How can the effectiveness and validity of
the methods and tools applied in addressing RQ3
be reliably validated?

We conducted both analytical and empirical
investigations to address the RQs that guide our study.
You can find the details of our methods and results in
Sections III and IV.

2. RELATED WORK
The need for requirement engineering to characterize

systems and manage their entire development lifecycle is
highlighted by Wieringa et al. [12]. The requirements,
which can be functional or non-functional, define the
functions and constraints in the software, and are defined
before software development and improved upon after
deployment.

Harman et al. [13] developed an Appstore repository
mining strategy, extracting, and grouping app feature from
app descriptions. Their strategy was to use apply
collocations and a greedy algorithm to apps in the
Blackberry app store, showing the correlation between
app rating and download rank. Their work is limited the
non-consideration of other app stores, mining algorithms
and requirements.

Villarroel et al. [14] presented a review clustering and
prioritization technique to provide app release planning
using user reviews. Their approach has been called CLAP
(Crowd Listener for releAse Planning). They categorized
1,763 user comments into three categories: bug reports,
new feature suggestions, and other categories using the
Random Forest machine learning algorithm. They used
the Stanford parser to identify negation terms in
comments and remove them to process negation terms.
DBSCAN was used as a clustering algorithm based on
their similarity to identify groups of related notices. The
reviews grouped have been prioritized to recommend
which group to focus on the next time the app is released.
The results showed high accuracy with 86%
categorization of user reviews and outperformed AR-
Miner. However, it is impossible to take all the reviews in
a group to prioritize them because not all reviews have the
same importance or the same issue. In addition, assigning
an average rating to clusters is not justified because the
clusters with the highest rated reviews will have higher
priority than the lowest rated. This is why the proposed
method considers the calculation of the weight of each
review using the rating associated with it.

Khalid et al. [15] assessed 6,390 reviews from iOS
apps with low ratings: 1- and 2-star ratings, selecting the
20 most popular apps among them. They identified the
most frequent compliments in reviews, discovering that
the functional errors have a high number of conformers,
seconded by the demand for functionality. Their work is
limited by the use of a single mobile platform and the
number of apps considered.

Stanik et al. [16] applied traditional ML and deep
learning to classify user feedback. The tried to understand
the possibility of using deep learning to deliver better
outcomes in classifying user feedback. Using inquires,
problem reports and irrelevant to group the feedbacks,
they gathered 5 million English tweets and 1.3 million
Italian tweets directed as support accounts of
telecommunication companies. They applied both ML
techniques and deep learning to determine which
technique delivers the best result and used only 10,000
English tweets and 15,000 Italian tweets. From their
study, there was no significant difference in the results
given by ML and deep learning.

Grano et al. [17] [18] combined NLP, sentiment
analysis, and text analysis to classify android apps and
user feedback. An F-droid repository was used to conduct
the study. About 280,000 user reviews from about 288
different mobile apps were extracted from the repository

2

through a web crawler developed. The results showed
useful information found in the extracted and analysed
data that help understand the possible correlations
between the data metrics collected in an individual app
and terms of integration of a set of multiple apps.

Additionally, Guzman et al. [19] developed a solution
called ALERTme, which uses the ML approach to
classify, group, and rank tweets related to the requirement.
The data set consists of 68,108 tweets from three popular
software: Shopify, Slack and Dropbox. Their results
highlighted the potential of Twitter data in gathering
feedback from users as well as the applicability of
techniques used for app store data in mining feedback
from Twitter.

Zhao et al. [20] used intelligent mining techniques to
extract software development information from reviews in
mobile app marketplaces. The aim was to assess the
quality in the development of techniques for mining user
reviews. From their findings, quality control measure
being applied to topics in user reviews is not sufficient in
ensuring feedback serves as a source for RE process
improvement.

Zhao et al. [20] performed a comparative analysis of
publications and discovered that recent papers focus on
extraction techniques and earlier papers focused on
finding discussed topics. While the central aim of the
study was achieved, it also provides rich insights on areas
that could be explored in future research, including
automating the transformation of extracted user feedback
into RE specifications and the use of modelling alongside
existing extraction tools.

Malgaonkar et al. [21] used extraction approaches to
mine user feedback to identify and prioritize feature
improvement from app reviews. The study extracted data
from Google Play Store using Google API. The data
mined were prioritized in considering the following
parameters: bug report and frequency of a reported
enhancement request.

To detect potentially malicious applications, Gorla et
al. [22] used K-Means clustering to group app
descriptions. The applications’ API details contained in
their manifesto was used in the development of a one-
class SVM. Every group had an was used to train SVM at
one class, allowing for the detection of apps with
abnormal API usage—¬an indicator of possible malware.

Chen et al. [23] designed a DiffCom, a malware
detection system that requires no prior knowledge of
malware. Retrieving over 1 million apps from Google
Play store and third-party Android stores, only a sample
of 50,000 was used. DiffCom had a false positive rate of
0.04 and when the entire data was applied, it could detect
127,429 cases of malware.

Batyuk et al. [24] developed an APK analyzer and
tested it using 1,856 apps from the Play Store. This static
analyzer was able to detect apps accessing private

credentials (167) and those that could contain spyware
(114). This work has evolved into the Androlyzer, a static
analysis tool.

Chia et al. [25] in their study of privacy risks assessed
app ratings from three app marketplaces: Chrome,
Facebook, and Google Play. While they discovered a
strong correlation between review count and popularity,
there was none when permissions requested and risk to
privacy were considered. Their work shows the non-
effectiveness of ratings as a privacy indicator. Since new
apps usually have fewer ratings, suspicious apps fly under
the radar as ratings are not sufficient to alert users.

Zhu et al. [26] extracted data from Apple store and
used hypothesis testing to find apps that could be
dangerous by formulating an algorithm for Automatic
Detection of Security Levels. They used app ratings and
user reviews of 15,045 apps.

Tao et al. [27] developed a methodology for
summarizing issues relating to security from sentiments in
user reviews. This approach called the SRR-Miner
considered only neutral and negative sentiments in user
reviews extracted using Vader, an NLTK model. POS
tags of words were used to identify verbs and nouns
related to security grouped in 19 keywords based on
security. The results showed a good accuracy performance
as the F1 scores were between 0.83 and 0.85. The SRR-
Miner was only applied to Google Play store reviews of
17 apps and how long the app has existed is not
considered.

Mukherjee et al. [28] analysed compatibility issues of
the NFRs by analysing app commits and app reviews.
They used four classification algorithms used in Machine
Learning (Naive Bayes, SVM, LR, and Random Forest) to
see how each performs in analysing compatibility. They
collected 258,056 commits and 205,847 reviews from
GitHub and Google Play Store. Applying a keyword
search and building a list of words, they identified 48,262
messages having at least one word from the list of words.
The results showed that 3.16% of app features are
dedicated to compatibility issues, and 4.30% are
compatibility related. They just focused only on the
Google Play store as an experiment area.

While existing research have performed extraction and
classification of characteristics from user reviews, there
are uncovered areas. These include handling large number
of mobile apps reviews, classifying FRs and NFRs in
reviews, leveraging ML and prioritizing NFRs in user
reviews, particularly at the elicitation stage. This research
addresses these and other areas of concern. The next
section would outline the methodology used in
approaching the research problem, from data collection to
design a model for the system.

A. Maintaining the Integrity of the Specifications
The template is used to format your paper and style

the text. All margins, column widths, line spaces, and text

3

fonts are prescribed; please do not alter them. You may
note peculiarities. For example, the head margin in this
template measures proportionately more than is
customary. This measurement and others are deliberate,
using specifications that anticipate your paper as one part
of the entire proceedings, and not as an independent
document. Please do not revise any of the current
designations.

3. METHODOLOGY
We employed both qualitative and quantitative

methods in our paper, following the case study research
approach [29] [30]. In this section we explain how we
designed and implemented a novel model that integrates
two methods that have shown promising results in
previous studies. We also describe the data analysis
techniques and algorithms we used to ensure the validity
and reliability of our findings.

Fig. 1 illustrates our novel method for analyzing user
reviews of mobile apps. We collected user reviews from
Google Play and iTunes, the leading platforms for
Android and Apple apps. We then cleaned and
transformed the reviews into a suitable format for feature
extraction. We used three techniques to extract the
features and preferences of the users: Augmented User
Reviews – Bag of Words (AUR-BoW) proposed by Lu et
al. [31], TF-IDF, and chi-square (Chi2). We split the
dataset into two subsets: 70% for training and 30% for
testing. We applied the feature extraction techniques to
both subsets to select and extract the most important
features from the user reviews. Fig. 2. reflects the flow
chart of the conceptual method.

Fig.1. Conceptual view of the Novel Method

Fig. 2. Flow chart of the Proposed Model

Additionally, we used a classification model to assign the
extracted features and their associated sentiment scores to
five types of NFR: Flexibility, Security, and
Maintainability. We used four machine learning
algorithms to perform the classification: SVM, Naive
Bayes, J48, and LR. We used Python and the scikit-learn
package to implement the text mining and machine
learning methods. The following sub-sections detailed the
different stages:

A. Data Collection and Analysis
In this study, we collected and analyzed the reviews

of the top 99 free apps on Google Play and iTunes, the
leading platforms for Android and Apple apps. We used
natural language processing and machine learning
techniques to extract and classify the features and
preferences of the users. Fig. 3 shows the overview of our
analysis method.

4

Fig. 3. Overview of the data collection process

For data collection, we built a web crawler that used
selenium and Appcomments, two web automation and
testing tools, to gather user reviews from Google Play and
iTunes. The web crawler visited every page that had an
iOS or Android review for one of the 99 top-rated game
apps. It extracted metadata from each app, such as its
name, title, description, category, device, and star rating.
The web crawler also opened a new browser window for
each app and clicked on its review pages. Table I reflects
the categories and number of Game Apps selected.

TABLE I. CATEGORIES AND NUMBER OF GAME APPS SELECTED

Categories Number of Apps users
from Google Play store

Number of Apps
users from the Apple
store

Sport games 12150 reviews 6292 reviews
Racing games 7821 reviews 6041 reviews
Puzzle games 12854 reviews 26978 reviews
Action games 20300 reviews 1580 reviews
Casual games 9632 reviews 17852 reviews

In addition, we obtained 200,733 user reviews from
both platforms. Each review had a timestamp, a rating,
and a comment. The comments revealed the users' issues
and opinions about the apps and their feelings towards
them. Table II lists the variables in our dataset. We
focused on two variables: text reviews and ratings. We
filtered the dataset to include only the most recent
reviews from 2020 to 2021 and the highest ratings from 3
to 5. This reduced the dataset to 121,500 user reviews.
Table III shows the sample of reviews we analyzed.

TABLE II. DESCRIPTION OF DATASET VARIABLES

Variables Description
app_url App URL
AppName App name
url URL of the web page where the review

was taken from
author Name of the author
review Text review
rating The number of stars that the author

assigned to the app

helpful_count Number of times the review was
considered as helpful

time Date when the review was written

TABLE III. SAMPLE REVIEWS COLLECTED

App Category Platform Reviews Rating
Join clash 3D Action Google Play 152 4.0
Garena Free
Fire

Action Google Play 260 4.2

Subway Surfers Action Apple store 3589 4.4
High Heels Action Apple store 781 4.0
Among Us! Action Apple store 924 3.6
Water sort
Puzzle

Puzzle Apple store 528 3.9

Candy Crush
saga

Puzzle Google Play 3979 4.6

Call for Duty Action Apple store 630 4.4
Temple Run 2 Action Apple store 1021 4.2
Fruit Ninja Action Google Play 612 4.3
Hill Clumb
Racing

Racing Apple store 796 4.2

Sonic Dash Action Google Play 252 4.6
Fun Race 3D Racing Apple store 160 4.2
My Talking
Tom

Causal Google Play 98 4.0

Basketball stars Sport Google Play 369 4.5

B. Data Preprocessiong
We collected user reviews from Google Play and

iTunes, the leading platforms for Android and Apple apps.
However, these reviews were not ready for machine
learning analysis. They had missing, inconsistent, or
irrelevant information that could affect the accuracy and
reliability of our results. Therefore, we used natural
language processing techniques to clean and transform the
reviews into a suitable format for machine learning. These
techniques included: - Splitting the reviews into sentences
- Converting all words to lowercase - Removing
punctuation and non-standard words - Removing stop
words and short sentences - Lemmatizing the words -
Measuring the similarity of sentences. Fig. 4 reflects the
order of our preprocessing activities and are all executed
in Python, as there are NILTK modules that can perform
these tasks. By removing the noise and restoring the
meaning of the user reviews, we created a solid
foundation for the next step: extracting and classifying the
features and preferences of the users.

5

Fig. 4. Preprocessing Phase of user reviews collected.

Punctuations, non-standard characters, abbreviations,
acronyms, characterize user reviews and do not contribute
to the study. They can distort the outcomes from the
model and make the dataset larger than it should.

Noise removal and word restoration are the two broad
categories of all data preprocessing operations on user
reviews before modelling. Sentence tokenization reduces
sentences to tokens (words), lowercasing ensures that the
model does not interpret capital letters as small letters of
the same letter as different, duplicate words removal
eliminates redundancy in the dataset.

C. Feature Extraction
The inability of ML algorithms to process user

reviews directly, user reviews need to be extracted and
transformed into features that can be handled by ML
classifiers. This process involves conversion of textual
into numerical representations that ML algorithms can
interpret. Three techniques, TF-IDF (Term Frequency -
Inverse Document Frequency), CHI2 (Chi Squared), and
AUR-BoW (Augmented User Reviews - Bag-of-Words)
are used in feature extraction.

D. Sentiment Analysis
 Extracted words can be related to both FRs and
NFRs having positive, neutral, and negative feeling,
sentiment analysis is applied to combine data mining and
NLP to assign polarity. Subjectivity is not of concern here
as emotions are obvious when playing games [32]. The
SentiWordNet lexicon contains labeled English words that
can be used to determine the opinion polarity in reviews.
Eq. (1), (2) and (3) describe how the search in
SentiWordNet is performed:

 (1)

 (2)

 (3)

E. Data Classification
Four supervised classifiers are used in this study:

Support Vector Machine (SVM), Logistic Regression
(LR), Decision Tree (DT-J48), and Naïve Bayes (NB).

The NB algorithm is anchored on the Bayes
conditional probability rule with assumptions of
independence between characteristics. To form an R
reviews group, the classifier computes the probability that
a review belongs to a category Ci. This relationship is
defined as below, making use of the conditional
probability distribution as shown in Eq. (4) and (5):

 (4)

With , an

d (5)

where R is the review instance, n is the review length,
and P(dj|ci) is the probability/chance of a term dj in a
review instance. Naïve Bayes will use the frequency of
occurrence of words to define their category.

LR is an algorithm wat assigns observations in a
sample to discrete classes. In this research, the LR
algorithm used for the multiple classification tasks is
called multinomial LR. Pandas, Numpy, scikit learn that
Python libraries are used to build multinomial LR. The
formation of the multinomial logistic regression model
requires the corresponding characteristics and targets
obtained using the softmax function Thus, the linear
regression equation and the softmax function can be given
in Eq. (6) and (7):

y	=	β0	+	β1X1+β2X2+……+	βnXn	 	 	 (6)
	 	

	 	 	 	 (7)

F. Data Prioritization
 To classify and prioritize reviews, regression-
based ranking is applied. This way, software features
having significant relationships with app ratings and user
feedback are identified. Keywords are ranked to aid
selection of most important keywords. The entries here

6

are the sentences describing the characteristic NFRs and
their corresponding comments from the user.

G. Evaluation
 While Python programming language and its
relevant libraries are used in developing the model, the
evaluation techniques to review the system’s performance
of the system are accuracy, precision, recall and f
measure. These metrics are standard measures used in
evaluating machine learning models. The classification
matrix is also used to evaluate performance of algorithms
via a visualization. The next section describes the results
of the model, an assessment of the outcomes and the
limitations of the model.

4. RESULTS AND DISCUSSION
The study was limited to five categories of gaming

applications (sports games, racing games, puzzle games,
action games, casual games) and only the 99 top-rated
gaming applications from Google Play and Apple Store
were selected. Each crawled exam contains a title, a long
description of the exam content, the number of exams, the
creation time, the reviewer ID, and the associated rating.
Finally, 271,656 user reviews for all 99 gaming
applications were accumulated, with an average of 2,744
reviews per application.

Fig. 5 shows that 88% of the feedback came from
Google Play store and 12% from iOS apps reviews users.
Fig. 6 shows that action games and casual games were the
most popular categories on both platforms, with 62,302
and 27,677 feedback respectively. We also examined the
ratings of the feedback, ranging from 2 to 4.9 stars. Table
IV shows the distribution of ratings for each category.

Fig. 5. Number of Apps users

Fig. 6. Reviews per category

TABLE IV. NUMBER OF USER’S REVIEWS CORRESPONDING TO
EACH RATING SCORE

Rating score Total number of user’s reviews
[2, 2.9] 20
[3.0, 3.9] 45,697
[4.0, 4.9] 225,939

The four research questions contribute to the results
presented. This way, we can assess the model for its
ability to answer the research questions presented. As seen
in Fig. 5, there is an overwhelming majority of Google
play store apps over the Apple App store. This is
unsurprising as there are more mobile apps in Play Store
than the App store. While this should mean a higher
number of apps from Play store across all app categories,
Fig. 6 points to casual games from App Store significantly
exceeding those from the Play Store.

A. RQ.1: How to identify and prioritize Non-Functional
Requirements in user reviews for effective
consideration?
Three feature extraction techniques; TF-IDF (Term

Frequency - Inverse Document Frequency), CHI2 (Chi
Squared), and AUR-BoW (Augmented User Reviews -
Bag-of-Words) were used to extract high-level features
from the cleaned user reviews. The extraction provided
unigram words that refer to NFR vocabularies and their
frequency.

The user reviews underwent clustering to categorize
them by sentiments by using SentiWordnet to assign a
polarity score to the reviews before eight classification
techniques, which were a combination of extraction and
machine learning techniques, were done to give relevant
classified features in the three NFRs considered: security,
flexibility, and maintainability.

B. RQ.2: How can we effectively prioritize Non-
Functional Requirements based on their significance
and impact?
Frequency, rating, positive and negative reviews were

the prioritized input attributes used to rank the selected
features based on NFR. Prioritization was done in order of
ranking score, where a high score from negative reviews
should be met with a low number of positive reviews.

7

C. RQ.3: What tools, techniques, and methodologies
are appropriate for addressing RQ1 and RQ2
effectively?
RQ1 was achieved by using TF-IDF, CHI2, and AUR-

BoW for feature extraction and four machine learning
algorithms; NB, Naive Bayes, DT-J48, and LR performed
the classification before evaluation metrics were applied.

RQ2 was achieved by using regression-based ranking
to get prioritized list. The performance of the rank
prediction was measured using the ROC curve and the
mean square error (MSE) measured regressor
performance.

D. RQ4: How can the effectiveness and validity of the
methods and tools applied in addressing RQ3 be reliably
validated?

The use of the confusion matrix to assess the
classification results ensured it could be compared to the
approach taken by other researchers.

E. Feature Extraction & Sentiment Analysis Results
 Table V showed sample user reviews that AUR-
BoW and TF-IDF techniques are applied to. In the sample

in Table V, there are 10 unigrams extracted from the
sample review sentences which refer to the features which
are “Update,” “Good,” “Favourite,” “Download,”
“Uninstall,” “New,” “Account” “Bad,” “Fix,” and
“Error.”. The values of features in Table VI point to the
frequencies of unigrams of each feature for the sample
data used between the sample reviews #1 and #2. It
noticed that TF-IDF of common words (“Update”) was
zero, which shows they are not significant. On the other
hand, the TF-IDF of “bad”, “new”, “error”, are non-zero.
These words have more significance. Table VII displays
the weight of each feature in the sample data. Also, AUR-
BoW refers to two-word pair have been considered.
Bigrams such as “enjoy game,” “new update,” and “is
good” are positive. On the other hand, bigrams like “very
bad,” “no play,”,” “fix bug,” and “wont download” have
negative orientation. Based on the features extracted from
the reviews, a vocabulary bag of words were built by
checking them on the Word2Vec.

TABLE V. SAMPLE OF REVIEWS

Name App Target
Class Sample of reviews before preprocessing Sample of reviews after

preprocessing

Pubg Mobile
(Android app)

Critical #1: Very bad, I tried updating the game, It updated and kept saying error failed. very bad try update game keep say
error fail

Critical #2: The new update is the worst update I’ve seen yet. I just want my game to work
smoothly, and the server lag to be fixed.

new update is worst want game
work smoothly server lag fix

Positive #3: This is my favourite mode to play. The graphics are pretty good, the controls are
good and gameplay is good.

favourite mode to play graphics
pretty controls gameplay good

Subway
Surfers

Critical #4: Please fix this if it is a bug, I really want to play this again but all my boards are
gone fix bug want to play

Critical #5: Worst game I have ever played. There is no legal cause to make you fall suddenly
on the train.

worst game ever play no legal cause
fall suddenly

Critical #6: Why this game still not automatically connected to google account. I lost my data game no connect google account

Critical #7: There’s no online save option, neither I can login to my previous records nor I can
save my current progress. There should be option for google or facebook.

no online save login previous
records save current progress

google facebook
Critical #8: Lost progress. Logged into my accounts and still no items. lost progress log account no item

8 Ball Pool
(iOs app)

Critical #9: STOP ASKING FOR ACCESS TO MY FACEBOOK FRIENDS!!! The many
pop-up ads are irritating enough.

stop ask for access Facebook
friends popup ads irritate

Critical #10: DO NOT DOWNLOAD! This is set up to cheat you out of your in-game funds to
force you to pay. do not download cheat force to pay

Positive #11: It is nice game, easy to log in, very addictive and challenging. Little of
considerable advert

nice game easy login addictive
challenge advert

8

TABLE VI. RESULTS OF TF-IDF TECHNIQUE ON PRE-PROCESSED DATA FOR THE TWO FIRST PREPOSSESSED SAMPLE REVIEWS

Sentences

TF

IDF

TF*IDF

Sample reviews #1
(very bad try update game keep say error fail)

Sample reviews #2
(new update is worst want

game work smoothly server lag
fix)

Sample
reviews #1

Sample reviews
#2

Update 1/9 1/11 Log(2/2) = 0 0 0

New 0 1/11 Log(2/1) =
0.3 0 0.27

Bad 1/9 0 Log(2/1)
=0.3 0.33 0

Fix 0 1/11 Log(2/1)
=0.3 0 0.27

Error 1/9 0 Log(2/1)
=0.3 0.33 0

TABLE VII. RESULTS OF AUR-BOW TECHNIQUE ON PRE-PROCESSED DATA

These words were used to understand specific complaints
about features found in the user’s reviews. NFR types
included security, availability, operational, portability,
maintainability, performance, reliability, scalability, and
usability. This research considered only three types such
as Security, Flexibility, and Maintainability aspects. Table
VIII depicts top 15 topic terms mined from each type of
NFR while Table IX listed for the vocabulary list. Based
on the topics as presented as example in Table VIII
extracted from the reviews, the senti_score was calculated
with the feature types, the associated words and the
frequency where these features appeared. Table IX shows
three examples of sentences scored by SentiWordnet.
These words were used to understand specific praising,
complaints about features found in the apps. Table X
showed samples of topics and the sentiments associated
with them. The feature extraction output and sentiment are
given as input to the classifiers used in this research SVM,
NB, DT, and LR algorithms to mine app reviews. The
classification and prioritization results will be presented in
the next step.

F. Classification and Ranking Results
In this section, the results from the features extraction

done using TF-IDF, Chi2, and AUR-BoW after the

application of ML algorithms SVM, NB, DT, LR, are
presented. Accuracy, Precision, Recall and F-measure
were selected as evaluation metrics for performance of

features retrieval, weighted average, and classification
results of user reviews. A confusion matrix is to describe
the performance of each classifier composed of True
Positive (TP), True Negative (TN), False Positive (FP),
and False Negative (FN) NFRs features.
For each feature extraction, features that are correctly
classified are labelled as TP, positive reviews for a feature
are labelled FP, and bad reviews labelled as referring to
another feature as FN. Confusion matrix is obtained from
training data; and comparison with the machine learning
is presented. Fig. 7(a) presents the confusion matrix of the
classification results from combining TF-IDF with all
machine learning algorithms to classify NFRs features
while Fig. 7(b) presented the confusion matrix of the
classification results from the combination between AUR-
BoW with all machine learning algorithms to classify
NFRs features.

No Update Good Favourite Download Uninstall New Account Bad Fix Error
#1 1 0 0 0 0 0 0 1 0 1
#2 1 0 0 0 0 1 0 0 1 0
#3 1 1 0 0 0 0 0 0 0 0
#4 0 0 0 0 0 0 0 0 1 0
#5 0 0 0 0 0 0 0 0 0 0
#6 0 0 0 0 0 0 0 0 0 0
#7 0 0 0 0 0 0 1 0 0 0
#8 0 0 0 0 0 0 0 0 0 0
#9 0 0 0 0 0 0 0 0 0 0

#10 0 0 0 0 0 0 0 0 0 0
#11 1 0 0 1 1 0 0 0 0 0
#12 2 0 0 1 1 0 0 0 0 0

9

TABLE VIII. SAMPLE INDICATOR TERMS ‘MINED’ FROM THE TRAINING SET
No Security Flexibility Maintainability

#1 online adjust update

#2 access next release

#3 authorize multiplayer new

#4 login match additional

#5 data level season

#6 account graphics change

#7 incorrect time integrate

#8 authenticate soundtrack upgrade

#9 system characters fix

#10 verify unlock restart

#11 lost offline load

#12 sign in credits reset

#13 attack rewards uninstall

#14 sync interface download

#15 secure appear crash

TABLE IX. EXAMPLES OF SENTIWORDNET SCORES IN THE USER REVIEWS

Topic Pos_Score Neg_Score Neu_Score Synset Sentence

update 0.625 0 0.375 #1: Very bad, I tried updating the game, It updated and kept saying error failed.

update 0.575 0 0 #2: The new update is the worst update I’ve seen yet. I just want my game to work
smoothly, and the server lag to be fixed.

update 0.115 0 0.785 #3: This is my favourite mode to play. The graphics are pretty good, the controls are
good and gameplay is good.

TABLE X. MOST COMMON TOPICS EXTRACTED FROM THE USER REVIEWS WITH THEIR SENTIMENTS SCORE

Topic Senti score Topic Senti score Topic Senti score

online (+0.25) adjust (-0.181818) update (+0.874333)

access (+0.25) next (-0.1875) release (+0.5225)

authorize (-0.222222) multiplayer (+0.4) new (+0.25)

login (+0.1) match (+0.1174) additional (0)

data (-0.086) level (+0.6522) season (-0.44)

account (-0.363636) graphics (+0.46363) change (+0.1159)

incorrect (-0.14) time (+0.3754) integrate (-0.1875)

authenticate (-0.30) soundtrack (-0.111111) upgrade (+0.8181)

system (+0.44) characters (+0.2778) fix (+0.56522)

verify (+0.4166) unlock (+0.5714333) restart (+0.76923)

lost (-0.214268) offline (-0.34444) load (+0.6363)

sign in (-0.27777) credits (-0.115) reset (+0.7277)

attack (+0.214285) rewards (-+0.41666) uninstall (+0.37)

sync (0) interface (-0.088888) download (+0.75)

secure (+0.333333) appear (-0.0597777) crash (+0.67)

10

Fig. 7. Confusion matrices of (a) SVM, DT, LR, and NB using the TF-
IDF technique; (b) SVM, DT, LR, and NB are shown using the AUR-
BoW technique.

A comparison of the results from the machine
learning algorithms was performed for each classification
techniques.

Furthermore, three attributes (frequency, rating,
positive and negative reviews) were identified as they
provide base constructs for priority ranking. Regression-
based ranking was used to get prioritized lists. Table XI
showed the top 15 significant features from regression
analysis. The coefficients with higher value have higher
impact on the dependent variable. From the Table XI,
update ranks as the highest feature. Exploring the reviews
containing this feature reveals that the app had become
unstable. The explanation revealed that most reviews that
contained the world update were complaining that the
app had indeed become unusable.

According to the confusion matrix as shown in Fig.
7(a), Logistic Regression combined with TF-IDF had the
best result along with the highest TP and TN rates. LR
gives 2,781 (1490 positive features & 1,291 bad features)
correct NFRs predictions and 717 (366 positive features
& 351 bad features) wrong NFRs predictions. According
to Fig. 7(b), LR gives 2730 (1520 positive features &
1210 bad features) correct NFRs predictions and 750

(320 positive features & 430 bad features) wrong NFRs
predictions against 3498 (2252 positive features & 1569
bad features) NFRs predictions with AUR-BoW, which is
higher than the other classifiers models (SVM, NB, DT).

Fig. 8 and Fig. 9 illustrated performance measure
indices and results for the classification model with TF-
IDF, AUR-BoW, respectively. For TF-IDF, the results
for classified models in Table XII showed that across the
evaluation metrics, LR had the highest values
respectively. Evidently, LR is better suited in classifying
NFRs in user reviews than the other classification
algorithms.

TABLE XI. NUMBER OF USER’S REVIEWS CORRESPONDING TO
EACH RATING SCORE

Rank Feature Coefficient

1 update 9.17*

2 release 8.89*

4 new 6.12*

5 additional 6.07*

6 change 5.95*

7 integrate 5.70*

8 upgrade 5.23*

9 fix 4.89*

10 restart 4.55*

11 load 3.48*

12 reset 3.91*

13 uninstall 3.58*

14 download 3.02*

15 crash 2.87*

TABLE XII. CLASSIFICATION RESULTS COMBINING MACHINE
LEARNING WITH TF-IDF

Classifiers
Models

Feature Extraction Technique: TF-IDF

Accuracy Precision Recall F-
measure

SVM 0.70 0.78 0.70 0.74

NB 0.74 0.78 0.74 0.76

LR 0.79 0.80 0.81 0.80

DT 0.74 0.79 0.74 0.76

11

TABLE XIII. CLASSIFICATION RESULTS COMBINING MACHINE
LEARNING WITH AUR-BOW

Classifiers
Models

Feature Extraction Technique: AUR-BoW

Accuracy Precison Recall F-measure

SVM 0.78 0.82 0.78 0.80

NB 0.80 0.86 0.78 0.82

LR 0.80 0.82 0.80 0.82

DT 0.66 0.72 0.63 0.66

Fig. 8. Classification results combining machine learning (SVM, NB,
LR, DT) with TF-IDF technique.

Fig. 9. Classification results combining machine learning (SVM, NB,
LR, DT) with AUR-BoW technique.

 According to Fig. 10, F-measure, accuracy, precision,
recall compared to the performance of classifiers models
with all feature engineering technique. According to the
comparison, LR performed better that SVM, DT and NB
in the case of using AUR-BoW (80%) for all the
performance metrics. LR model was used as the
predictive model and combining AUR-BoW with Chi2,
which gives more valuable features. In this case, it found
that the LR model achieved the classification accuracy of
about 80 percent using security features and
maintainability other hand 66 percent for flexibility type
form the user reviews. So, Table XIV showed the results

of classification of NFRs types (Security, Flexibility,
Maintainability) obtained through the rank prediction with
LR classifier. One type provided the highest f-measure for
LR with 82% using AUR-Bow, Chi2 and Ranking as
shown in Fig. 11.

Fig. 10. Comparison between Classification results combining machine
learning (SVM, NB, LR, DT) with TF-IDF and AUR-BoW technique.

TABLE XIV. CLASSIFICATION RESULTS OF THREE NFRS TYPES
PREDICTED BY RANK PREDICTION WITH LR CLASSIFIER

Type

Proportio
n

Reviews

AUR-BoW + Chi2 + LR + Ranking
Accura

cy
Precision Recall F-

measur
e

Security 1437 0.80 0.82 0.80 0.81
Flexibility 1350 0.66 0.72 0.63 0.67

Maintainabi
lity

1234 0.80 0.86 0.79 0.82

Fig. 11. Comparison between the F-measure and proportion of each
type.

G. Research Limitations
Owing to the restriction placed by Google Play

store’s API when accessing reviews, only the latest 2021
could be reviewed. As android apps formed the bulk of
the dataset, the possibility of bias in the reviews and an
unfair representation of user sentiment is likely. As this
research considered ratings below 4, any reviews
containing features that could be considered as NFRs in
reviews with rating 4 or 5 would not have been accounted
for.

12

5. CONCLUSION AND FUTURE WORK
This research validates existing research on the need

for feedback in the design of efficient systems. By
extracting and classifying a pool of user reviews,
developers can identify NFRs in apps that are already in
use and make improvements to meet user’s expectations.
Classifying NFRs into maintainability, security and
flexibility provides clarity on which NFRs would require
the most attention by developers.

App stores unlock a new repository of data for
research and as observed in this work, NFRs can be
extracted from this data. There are other insights that
could be derived from user reviews by utilizing machine
learning and natural language processing.

Other researchers can consider expanding the number
of apps used in analysis and enlarge the scope to cover
user response to NFRs in mobile apps. As the Apple store
includes both mobile and non-mobile apps, comparing
results from separate analysis of each would be an area
worth exploring in the future.

There are many domain-specific apps in the
marketplaces. Conducting future evaluation on domains
such as health and social media is intended, as domain-
specific insights can be gleaned to know features that are
to be prioritized to improve user experience and app
functionality.

Further, it will be necessary to consider conflict
management, especially the identification and resolution
of conflicts when classifying the FRs and NFRs. The first
step to achieve this can be to leverage on the framework
for resolving conflicts, as postulated in [33] [34] and
[35].

ACKNOWLEDGMENT
The authors would like to thank the Africa Centre of

Excellence OAK-Park for the support in executing the
research

REFERENCES
[1] H. U. Khan, M. Niazi, M. El-Attar, N. Ikram, S. U. Khan, and A.

Q. Gill, “Empirical investigation of critical requirements
engineering practices for global software development,” IEEE
Access, vol. 9, 2021, pp. 93593-93613.

[2] I. Gambo, R. Ikono, P. Achimugu, and A. Soriyan, “An Integrated
Framework for Prioritizing Software Specifications in
Requirements Engineering”, International Journal of Software
Engineering and its Applications (IJSEIA), vol. 12, no. 1, 2018,
pp. 33-46.

[3] I. P. Gambo, H. O. Odukoy, A. A. Oke, and E. R. Adagunodo,
“Analysis and Classification Of Requirements Specification For
Web Application Development: A Case Study Approach,”
Journal of Computer Science and Its Application, vol. 27, no. 1,
2020, pp. 144-160.

[4] S. Keertipati, B. T. R. Savarimuthu, and S. A. Licorish,
“Approaches for prioritizing feature improvements extracted from
app reviews,” In Proceedings of the 20th international conference
on evaluation and assessment in software engineering, 2016, pp.
1-6.

[5] T. Iqbal, M. Khan, K. Taveter, and N. Seyff, “Mining reddit as a
new source for software requirements,” In 2021 IEEE 29th
international requirements engineering conference (RE), 2021,
pp. 128-138.

[6] S. McIlroy, N. Ali, H. Khalid, and A. E. Hassan, “Analyzing and
automatically labelling the types of user issues that are raised in
mobile app reviews,” Empirical Software Engineering, 21, 2016,
pp. 1067-1106.

[7] N. Al Kilani, R. Tailakh, and A. Hanani, “Automatic classification
of apps reviews for requirement engineering: Exploring the
customers need from healthcare applications,” In 2019 sixth
international conference on social networks analysis, management
and security (SNAMS), 2019, pp. 541-548). IEEE.

[8] T. Ullah, J. A. Khan, N. D. Khan, A. Yasin, and H. Arshad,
“Exploring and mining rationale information for low-rating
software applications,” Soft Computing, 2023, pp. 1-26.

[9] N. Ali, J. E. Hong, and L. Chung, “Social network sites and
requirements engineering: A systematic literature review,”
Journal of Software: Evolution and Process, vol. 33, no. 4, 2021,
e2332.

[10] A. Aurum, and C. Wohlin, “Requirements engineering: setting the
context,” Engineering and managing software requirements,
2005, pp. 1-15.

[11] R. S. Wahono, “Analyzing requirements engineering problems,”
In IECI Japan Workshop, vol. 2003.

[12] R. Wieringa, N. Maiden, N. Mead, and C. Rolland, “Requirements
engineering paper classification and evaluation criteria: a proposal
and a discussion,” Requirements engineering, vol. 11, 2006, pp.
102-107.

[13] M. Harman, Y. Jia, and Y. Zhang, “App store mining and
analysis: MSR for app stores,” In 2012 9th IEEE working
conference on mining software repositories (MSR), 2012, pp. 108-
111.

[14] L. Villarroel, G. Bavota, B. Russo, R. Oliveto, and M. Di Penta,
“Release planning of mobile apps based on user reviews,” In 2016
IEEE/ACM 38th International Conference on Software
Engineering (ICSE), 2016, pp. 14-24.

[15] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan, “What do
mobile app users complain about?,” IEEE software, vol. 32, no. 3,
2014, pp. 70-77.

[16] C. Stanik, M. Haering, and W. Maalej, “Classifying multilingual
user feedback using traditional machine learning and deep
learning,” In 2019 IEEE 27th international requirements
engineering conference workshops (REW), 2019, pp. 220-226.

[17] G. Grano, A. Di Sorbo, F. Mercaldo, C. A. Visaggio, G. Canfora,
and S. Panichella, “Android apps and user feedback: a dataset for
software evolution and quality improvement,” In Proceedings of
the 2nd ACM SIGSOFT international workshop on app market
analytics, 2017, pp. 8-11.

[18] G. Grano, A. Ciurumelea, S. Panichella, F. Palomba, and H. C.
Gall, “Exploring the integration of user feedback in automated
testing of android applications,” In 2018 IEEE 25Th international
conference on software analysis, evolution and reengineering
(SANER), 2018. pp. 72-83.

[19] E. Guzman, M. Ibrahim, and M. Glinz, “A little bird told me:
Mining tweets for requirements and software evolution,” In 2017
IEEE 25th International requirements engineering conference
(RE), 2017, pp. 11-20.

[20] L. Zhao, M. Tavakoli, A. Heydari, and G. Nenadić, “Extracting
useful software development information from mobile application
reviews: A survey of intelligent mining techniques and tools,”
Expert Systems with Applications, vol. 113, 2018, pp. 186-199.

[21] S. Malgaonkar, S. A. Licorish, and B. T. R. Savarimuthu,
“Prioritizing user concerns in app reviews–A study of requests for
new features, enhancements and bug fixes,” Information and
Software Technology, vol. 144, 2022, pp. 106798.

13

[22] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app
behavior against app descriptions,” In Proceedings of the 36th
international conference on software engineering, 2014, pp. 1025-
1035.

[23] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang, and P.
Liu, “Finding unknown malice in 10 seconds: Mass vetting for
new threats at the google-play scale,” In 24th {USENIX} Security
Symposium ({USENIX} Security 15), 2015, pp. 659-674.

[24] L. Batyuk, M. Herpich, S. A. Camtepe, K. Raddatz, A. D.
Schmidt, and S. Albayrak, “Using static analysis for automatic
assessment and mitigation of unwanted and malicious activities
within Android applications,” In 2011 6th International
Conference on Malicious and Unwanted Software, 2011, pp. 66-
72.

[25] P. H. Chia, Y. Yamamoto, and N. Asokan, “Is this app safe? A
large scale study on application permissions and risk signals,” In
Proceedings of the 21st international conference on World Wide
Web, 2012, pp. 311-320.

[26] H. Zhu, H. Xiong, Y. Ge, and E. Chen, “Mobile app
recommendations with security and privacy awareness,” In
Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining, 2014, pp. 951-960.

[27] C. Tao, H. Guo, and Z. Huang, “Identifying security issues for
mobile applications based on user review summarization,”
Information and Software Technology, vol. 122, 2020, pp.
106290.

[28] D. Mukherjee, and G. Ruhe, “Analysis of Compatibility in Open
Source Android Mobile Apps,” In 2020 IEEE Seventh
International Workshop on Artificial Intelligence for
Requirements Engineering (AIRE), 2020, pp. 70-78.

[29] P. Runeson, M. Host, A. Rainer, B. Regnell, “Case study research
in software engineering: Guidelines and examples,” 2012, Wiley.

[30] R. K. Yin, “Case study research and applications,” vol. 6, 2018.
Thousand Oaks, CA: Sage.

[31] M. Lu, and P. Liang, “Automatic classification of non-functional
requirements from augmented app user reviews,” In Proceedings
of the 21st International Conference on Evaluation and
Assessment in Software Engineering, 2017, pp. 344-353.

[32] Z. Gao, Y. Li, Y.Yang, X. Wang, N. Dong, and H. D. Chiang, “A
GPSO-optimized convolutional neural networks for EEG-based
emotion recognition,” Neurocomputing, vol. 380, 2020, pp. 225-
235.

[33] I. Gambo and K. Taveter, “Identifying and resolving conflicts in
requirements by stakeholders: A clustering approach.” in
Proceedings of the 16th International Conference on Evaluation of
Novel Approaches to Software Engineering, ENASE, 2021, pp.
158–169.

[34] I. Gambo, K. Taveter, A pragmatic view on resolving conflicts in
goal-oriented requirements engineering for socio-technical
systems, in: Proceedings of the 16th International Conference on
Software Technologies, ICSOFT 2021, July 6-8, 2021, 2021, pp.
333–341. doi:10.5220/0010605703330341.

[35] I. Gambo and K. Taveter, “Stakeholder-centric clustering methods
for conflict resolution in the requirements engineering process,”
ser. Communications in Computer and Information Science, 2022,
vol. 1556 CCIS, pp. 183–210. [Online]. Available:
www.scopus.com

Ishaya Gambo research is in the area
of software engineering (SE),
particularly in requirements engineering
(RE), software testing and software
architecture. He appreciates applying
his research in the healthcare domain.
The emphasis of his research is on
user’s and developers’ perspectives of

software systems. Ishaya has experience of applied projects and
has a clear history of the full research life cycle, including
academic publishing in journals and extensive presentation at
conferences. He can be contacted at email:
ipgambo@oauife.edu.ng.

 Christopher Agbonkhese is a
Visiting Assistant Professor in the
Department of Digital and
Computational Studies, Bates College,
Lewiston, USA. His research
encompasses software systems, health
informatics and data analytics, where
he employs techniques like machine
learning and data mining to construct
models for addressing critical

challenges. He can be contacted at the email:
cagbonkhese@bates.edu.

 Theresa Omodunbi, has been a
lecturer of Computer Science at
Obafemi Awolowo University, Ile Ife,
Nigeria in the last 12 years. Her
research focus has been on
computational linguistics, information
retrieval, semantics and biomedical
informatics, data mining, and
summarization system in web

applications. She has published different articles in peer-
reviewed international journals and conference proceedings.
She had been a visiting scholar at different times to renown
Universities in the USA and Finland. She is a chartered member
of Nigerian Institute of Management and Nigeria Computer
Society. She has mentored and supervised the research of many
college graduates in the course of her career. She has attended,
facilitated and moderated many sessions at different
international conferences and forum in Africa and USA.

Rhodes Massenon is currently a PhD
Student in the field of Software
Engineering at the Department of
Computer Science and Engineering,
Obafemi Awolowo University, Nigeria.
His research interest is in the area of
medical cyber-physical system, health
informatics and privacy requirements
engineering.

14

http://www.scopus.com/

