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Abstract: User reviews of mobile apps on platforms like Google Play and Apple App Stores are a rich and valuable source of 
information for requirements engineering and software evolution. They reveal the users' needs, preferences, and opinions about the 
apps and their features. However, extracting and classifying the non-functional requirements (NFRs) from these reviews is a 
challenging task that requires sophisticated methods and techniques. In this research, we propose a novel approach that uses data 
mining, natural language processing, and machine learning to automatically identify and prioritize the NFRs from user reviews of 99 
top-rated games across four categories: Sport, Racing, Puzzle, Action and Casual. We collected 271,656 reviews from both platforms 
and used feature extraction techniques to select and extract the most important NFRs from the reviews. We then used four machine 
learning algorithms: Naïve Bayes, Support Vector Model (SVM), Decision Tree J48, and Logistic Regression (LR) to perform 
sentiment analysis and rank the NFRs based on their importance and relevance. We focused on three types of NFRs: security, 
flexibility, and maintainability. Our findings show that user reviews can help improve the outcomes of these NFRs and that our 
approach can help developers understand their users and meet their needs from an NFR perspective, thus increasing user satisfaction 
and retention. 
 
Keywords: User reviews, requirement engineering, software features, non-functional requirements, functional requirements, 
machine learning 

 

1. INTRODUCTION 
Software requirements have evolved from a need in 

software development to a field of research called 
Requirement Engineering (RE). RE is an activity in 
software engineering that establishes the necessary 
foundations for a successful system [1] [2] [3]. From the 
communication stage to the modelling stage, RE is 
necessary for the design of failure-free systems, and 
requirements in this context are software features [4] 
expressed as functional requirements (FR) or non-
functional requirements (NFR) by stakeholders. 

In this research, stakeholders are users, and mobile 
applications are the software in focus. Users provide 
feedback on their interactions with mobile apps by leaving 
ratings and/or comments expressing their views about the 
application. These reviews are a quality source of 
feedback for software teams on the features to alter, add, 
improve, or fix [5]. Crowd-sourcing requirements have 

become necessary in an age where an app can be available 
to millions of users worldwide. App marketplaces provide 
all these reviews in one place, making the process of 
crowdsourcing requirements streamlined and easier to 
accomplish. As observed in Iqbal et al. [5] the app stores 
provide rich and valuable source of information for RE 
and software evolution. 

Though user reviews have useful information, it is 
difficult for developers to process that information 
manually and get relevant data for requirement 
improvement [6] [7] [8]. User reviews contain diverse 
information from different backgrounds with different 
complaints or reviews comprising text abbreviations, 
spelling errors, and unlabeled data [6] [9]. This 
unstructured nature makes user reviews complex as a 
primary data source for identifying user requirements, 
particularly NFRs. 

On the one hand, FR focuses on what the system 
should do and how to meet the end user's needs. On the 
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other hand, the NFR constrains the type of solutions that 
will meet the FR, such as security, reliability, 
accessibility, maintainability, reusability, flexibility, 
performance, usability, and efficiency [10]. FR and NFR 
must complement a software project, especially for 
mobile applications. The absence of either FR or NFR 
means the software system might not meet a hundred 
percent of the stakeholders' expectations [11]. 

This research seeks to know how to get the right 
features included in a software system to meet its 
expectations from users' reviews of mobile applications. 
Secondly, the research seeks to know how to handle 
various user preferences in a software system based on the 
user's feedback in the review extracted. Thirdly, the 
research seeks to know how to extract, classify and 
prioritize these extracted features to improve the RE 
process and the entire system during software 
maintenance. 

This paper aims to fill a gap in the field of RE by 
proposing a novel model that can extract and classify 
software features from user reviews of mobile apps. The 
model can also prioritize the features based on their 
importance and relevance for the RE process. The features 
can be either FR or NFR, which are often overlooked or 
neglected by existing models. By using user reviews as a 
source of information, the model can help practitioners 
(such as software developers) to identify the key features 
that users want and need in new applications. 

In this paper, we address the following research 
questions (RQs) that guide our investigation and analysis: 

• RQ1: How to identify and prioritize Non-
Functional Requirements in user reviews for 
effective consideration? 

• RQ2: How can we effectively prioritize Non-
Functional Requirements based on their 
significance and impact? 

• RQ3: What tools, techniques, and methodologies 
are appropriate for addressing RQ1 and RQ2 
effectively? 

• RQ4: How can the effectiveness and validity of 
the methods and tools applied in addressing RQ3 
be reliably validated? 

We conducted both analytical and empirical 
investigations to address the RQs that guide our study. 
You can find the details of our methods and results in 
Sections III and IV. 

 

2. RELATED WORK 
The need for requirement engineering to characterize 

systems and manage their entire development lifecycle is 
highlighted by Wieringa et al. [12]. The requirements, 
which can be functional or non-functional, define the 
functions and constraints in the software, and are defined 
before software development and improved upon after 
deployment. 

Harman et al. [13] developed an Appstore repository 
mining strategy, extracting, and grouping app feature from 
app descriptions.  Their strategy was to use apply 
collocations and a greedy algorithm to apps in the 
Blackberry app store, showing the correlation between 
app rating and download rank. Their work is limited the 
non-consideration of other app stores, mining algorithms 
and requirements. 

Villarroel et al. [14] presented a review clustering and 
prioritization technique to provide app release planning 
using user reviews. Their approach has been called CLAP 
(Crowd Listener for releAse Planning). They categorized 
1,763 user comments into three categories: bug reports, 
new feature suggestions, and other categories using the 
Random Forest machine learning algorithm. They used 
the Stanford parser to identify negation terms in 
comments and remove them to process negation terms. 
DBSCAN was used as a clustering algorithm based on 
their similarity to identify groups of related notices. The 
reviews grouped have been prioritized to recommend 
which group to focus on the next time the app is released. 
The results showed high accuracy with 86% 
categorization of user reviews and outperformed AR-
Miner. However, it is impossible to take all the reviews in 
a group to prioritize them because not all reviews have the 
same importance or the same issue. In addition, assigning 
an average rating to clusters is not justified because the 
clusters with the highest rated reviews will have higher 
priority than the lowest rated. This is why the proposed 
method considers the calculation of the weight of each 
review using the rating associated with it. 

Khalid et al. [15] assessed 6,390 reviews from iOS 
apps with low ratings: 1- and 2-star ratings, selecting the 
20 most popular apps among them. They identified the 
most frequent compliments in reviews, discovering that 
the functional errors have a high number of conformers, 
seconded by the demand for functionality. Their work is 
limited by the use of a single mobile platform and the 
number of apps considered. 

Stanik et al. [16] applied traditional ML and deep 
learning to classify user feedback. The tried to understand 
the possibility of using deep learning to deliver better 
outcomes in classifying user feedback. Using inquires, 
problem reports and irrelevant to group the feedbacks, 
they gathered 5 million English tweets and 1.3 million 
Italian tweets directed as support accounts of 
telecommunication companies. They applied both ML 
techniques and deep learning to determine which 
technique delivers the best result and used only 10,000 
English tweets and 15,000 Italian tweets. From their 
study, there was no significant difference in the results 
given by ML and deep learning. 

Grano et al. [17] [18] combined NLP, sentiment 
analysis, and text analysis to classify android apps and 
user feedback. An F-droid repository was used to conduct 
the study. About 280,000 user reviews from about 288 
different mobile apps were extracted from the repository 
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through a web crawler developed. The results showed 
useful information found in the extracted and analysed 
data that help understand the possible correlations 
between the data metrics collected in an individual app 
and terms of integration of a set of multiple apps. 

Additionally, Guzman et al. [19] developed a solution 
called ALERTme, which uses the ML approach to 
classify, group, and rank tweets related to the requirement. 
The data set consists of 68,108 tweets from three popular 
software: Shopify, Slack and Dropbox. Their results 
highlighted the potential of Twitter data in gathering 
feedback from users as well as the applicability of 
techniques used for app store data in mining feedback 
from Twitter. 

Zhao et al. [20] used intelligent mining techniques to 
extract software development information from reviews in 
mobile app marketplaces. The aim was to assess the 
quality in the development of techniques for mining user 
reviews. From their findings, quality control measure 
being applied to topics in user reviews is not sufficient in 
ensuring feedback serves as a source for RE process 
improvement. 

Zhao et al. [20] performed a comparative analysis of 
publications and discovered that recent papers focus on 
extraction techniques and earlier papers focused on 
finding discussed topics. While the central aim of the 
study was achieved, it also provides rich insights on areas 
that could be explored in future research, including 
automating the transformation of extracted user feedback 
into RE specifications and the use of modelling alongside 
existing extraction tools. 

Malgaonkar et al. [21] used extraction approaches to 
mine user feedback to identify and prioritize feature 
improvement from app reviews. The study extracted data 
from Google Play Store using Google API. The data 
mined were prioritized in considering the following 
parameters: bug report and frequency of a reported 
enhancement request. 

To detect potentially malicious applications, Gorla et 
al. [22] used K-Means clustering to group app 
descriptions. The applications’ API details contained in 
their manifesto was used in the development of a one-
class SVM. Every group had an was used to train SVM at 
one class, allowing for the detection of apps with 
abnormal API usage—¬an indicator of possible malware. 

Chen et al. [23] designed a DiffCom, a malware 
detection system that requires no prior knowledge of 
malware. Retrieving over 1 million apps from Google 
Play store and third-party Android stores, only a sample 
of 50,000 was used. DiffCom had a false positive rate of 
0.04 and when the entire data was applied, it could detect 
127,429 cases of malware. 

Batyuk et al. [24] developed an APK analyzer and 
tested it using 1,856 apps from the Play Store.  This static 
analyzer was able to detect apps accessing private 

credentials (167) and those that could contain spyware 
(114). This work has evolved into the Androlyzer, a static 
analysis tool. 

Chia et al. [25] in their study of privacy risks assessed 
app ratings from three app marketplaces: Chrome, 
Facebook, and Google Play. While they discovered a 
strong correlation between review count and popularity, 
there was none when permissions requested and risk to 
privacy were considered. Their work shows the non-
effectiveness of ratings as a privacy indicator. Since new 
apps usually have fewer ratings, suspicious apps fly under 
the radar as ratings are not sufficient to alert users.  

Zhu et al. [26] extracted data from Apple store and 
used hypothesis testing to find apps that could be 
dangerous by formulating an algorithm for Automatic 
Detection of Security Levels. They used app ratings and 
user reviews of 15,045 apps. 

Tao et al. [27] developed a methodology for 
summarizing issues relating to security from sentiments in 
user reviews. This approach called the SRR-Miner 
considered only neutral and negative sentiments in user 
reviews extracted using Vader, an NLTK model.  POS 
tags of words were used to identify verbs and nouns 
related to security grouped in 19 keywords based on 
security. The results showed a good accuracy performance 
as the F1 scores were between 0.83 and 0.85. The SRR-
Miner was only applied to Google Play store reviews of 
17 apps and how long the app has existed is not 
considered.  

Mukherjee et al. [28] analysed compatibility issues of 
the NFRs by analysing app commits and app reviews. 
They used four classification algorithms used in Machine 
Learning (Naive Bayes, SVM, LR, and Random Forest) to 
see how each performs in analysing compatibility. They 
collected 258,056 commits and 205,847 reviews from 
GitHub and Google Play Store. Applying a keyword 
search and building a list of words, they identified 48,262 
messages having at least one word from the list of words. 
The results showed that 3.16% of app features are 
dedicated to compatibility issues, and 4.30% are 
compatibility related. They just focused only on the 
Google Play store as an experiment area. 

While existing research have performed extraction and 
classification of characteristics from user reviews, there 
are uncovered areas. These include handling large number 
of mobile apps reviews, classifying FRs and NFRs in 
reviews, leveraging ML and prioritizing NFRs in user 
reviews, particularly at the elicitation stage. This research 
addresses these and other areas of concern. The next 
section would outline the methodology used in 
approaching the research problem, from data collection to 
design a model for the system. 

A. Maintaining the Integrity of the Specifications 
The template is used to format your paper and style 

the text. All margins, column widths, line spaces, and text 
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fonts are prescribed; please do not alter them. You may 
note peculiarities. For example, the head margin in this 
template measures proportionately more than is 
customary. This measurement and others are deliberate, 
using specifications that anticipate your paper as one part 
of the entire proceedings, and not as an independent 
document. Please do not revise any of the current 
designations. 

3. METHODOLOGY 
We employed both qualitative and quantitative 

methods in our paper, following the case study research 
approach [29] [30]. In this section we explain how we 
designed and implemented a novel model that integrates 
two methods that have shown promising results in 
previous studies. We also describe the data analysis 
techniques and algorithms we used to ensure the validity 
and reliability of our findings. 

Fig. 1 illustrates our novel method for analyzing user 
reviews of mobile apps. We collected user reviews from 
Google Play and iTunes, the leading platforms for 
Android and Apple apps. We then cleaned and 
transformed the reviews into a suitable format for feature 
extraction. We used three techniques to extract the 
features and preferences of the users: Augmented User 
Reviews – Bag of Words (AUR-BoW) proposed by Lu et 
al. [31], TF-IDF, and chi-square (Chi2). We split the 
dataset into two subsets: 70% for training and 30% for 
testing. We applied the feature extraction techniques to 
both subsets to select and extract the most important 
features from the user reviews. Fig. 2. reflects the flow 
chart of the conceptual method. 

 

 
Fig.1. Conceptual view of the Novel Method 
 

 
 
Fig. 2. Flow chart of the Proposed Model 
 

Additionally, we used a classification model to assign the 
extracted features and their associated sentiment scores to 
five types of NFR: Flexibility, Security, and 
Maintainability. We used four machine learning 
algorithms to perform the classification: SVM, Naive 
Bayes, J48, and LR. We used Python and the scikit-learn 
package to implement the text mining and machine 
learning methods. The following sub-sections detailed the 
different stages: 

A. Data Collection and Analysis 
In this study, we collected and analyzed the reviews 

of the top 99 free apps on Google Play and iTunes, the 
leading platforms for Android and Apple apps. We used 
natural language processing and machine learning 
techniques to extract and classify the features and 
preferences of the users. Fig. 3 shows the overview of our 
analysis method. 
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Fig. 3. Overview of the data collection process 

 
For data collection, we built a web crawler that used 
selenium and Appcomments, two web automation and 
testing tools, to gather user reviews from Google Play and 
iTunes. The web crawler visited every page that had an 
iOS or Android review for one of the 99 top-rated game 
apps. It extracted metadata from each app, such as its 
name, title, description, category, device, and star rating. 
The web crawler also opened a new browser window for 
each app and clicked on its review pages. Table I reflects 
the categories and number of Game Apps selected. 

TABLE I.  CATEGORIES AND NUMBER OF GAME APPS SELECTED 

Categories Number of Apps users 
from Google Play store 

Number of Apps 
users from the Apple 
store 

Sport games 12150 reviews 6292 reviews 
Racing games 7821 reviews 6041 reviews 
Puzzle games 12854 reviews 26978 reviews 
Action games 20300 reviews 1580 reviews 
Casual games 9632 reviews 17852 reviews 
 

In addition, we obtained 200,733 user reviews from 
both platforms. Each review had a timestamp, a rating, 
and a comment. The comments revealed the users' issues 
and opinions about the apps and their feelings towards 
them. Table II lists the variables in our dataset. We 
focused on two variables: text reviews and ratings. We 
filtered the dataset to include only the most recent 
reviews from 2020 to 2021 and the highest ratings from 3 
to 5. This reduced the dataset to 121,500 user reviews. 
Table III shows the sample of reviews we analyzed. 

TABLE II.  DESCRIPTION OF DATASET VARIABLES 

Variables Description 
app_url App URL 
AppName App name 
url URL of the web page where the review 

was taken from 
author Name of the author 
review Text review 
rating The number of stars that the author 

assigned to the app 

helpful_count Number of times the review was 
considered as helpful 

time Date when the review was written 

TABLE III.  SAMPLE REVIEWS COLLECTED 

App Category Platform Reviews Rating 
Join clash 3D Action Google Play 152 4.0 
Garena Free 
Fire 

Action Google Play 260 4.2 

Subway Surfers Action Apple store 3589 4.4 
High Heels Action Apple store 781 4.0 
Among Us! Action Apple store 924 3.6 
Water sort 
Puzzle 

Puzzle Apple store 528 3.9 

Candy Crush 
saga 

Puzzle Google Play 3979 4.6 

Call for Duty Action Apple store 630 4.4 
Temple Run 2 Action Apple store 1021 4.2 
Fruit Ninja Action Google Play 612 4.3 
Hill Clumb 
Racing 

Racing Apple store 796 4.2 

Sonic Dash Action Google Play 252 4.6 
Fun Race 3D Racing Apple store 160 4.2 
My Talking 
Tom 

Causal Google Play 98 4.0 

Basketball stars Sport Google Play 369 4.5 
 

B. Data Preprocessiong 
We collected user reviews from Google Play and 

iTunes, the leading platforms for Android and Apple apps. 
However, these reviews were not ready for machine 
learning analysis. They had missing, inconsistent, or 
irrelevant information that could affect the accuracy and 
reliability of our results. Therefore, we used natural 
language processing techniques to clean and transform the 
reviews into a suitable format for machine learning. These 
techniques included: - Splitting the reviews into sentences 
- Converting all words to lowercase - Removing 
punctuation and non-standard words - Removing stop 
words and short sentences - Lemmatizing the words - 
Measuring the similarity of sentences. Fig. 4 reflects the 
order of our preprocessing activities and are all executed 
in Python, as there are NILTK modules that can perform 
these tasks. By removing the noise and restoring the 
meaning of the user reviews, we created a solid 
foundation for the next step: extracting and classifying the 
features and preferences of the users. 
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Fig. 4. Preprocessing Phase of user reviews collected. 
 

Punctuations, non-standard characters, abbreviations, 
acronyms, characterize user reviews and do not contribute 
to the study. They can distort the outcomes from the 
model and make the dataset larger than it should. 

Noise removal and word restoration are the two broad 
categories of all data preprocessing operations on user 
reviews before modelling. Sentence tokenization reduces 
sentences to tokens (words), lowercasing ensures that the 
model does not interpret capital letters as small letters of 
the same letter as different, duplicate words removal 
eliminates redundancy in the dataset. 

C. Feature Extraction 
The inability of ML algorithms to process user 

reviews directly, user reviews need to be extracted and 
transformed into features that can be handled by ML 
classifiers. This process involves conversion of textual 
into numerical representations that ML algorithms can 
interpret. Three techniques, TF-IDF (Term Frequency - 
Inverse Document Frequency), CHI2 (Chi Squared), and 
AUR-BoW (Augmented User Reviews - Bag-of-Words) 
are used in feature extraction. 

D. Sentiment Analysis 
 Extracted words can be related to both FRs and 
NFRs having positive, neutral, and negative feeling, 
sentiment analysis is applied to combine data mining and 
NLP to assign polarity. Subjectivity is not of concern here 
as emotions are obvious when playing games [32]. The 
SentiWordNet lexicon contains labeled English words that 
can be used to determine the opinion polarity in reviews. 
Eq. (1), (2) and (3) describe how the search in 
SentiWordNet is performed: 

    (1) 

    (2) 

 (3) 

E. Data Classification 
Four supervised classifiers are used in this study: 

Support Vector Machine (SVM), Logistic Regression 
(LR), Decision Tree (DT-J48), and Naïve Bayes (NB). 

The NB algorithm is anchored on the Bayes 
conditional probability rule with assumptions of 
independence between characteristics. To form an R 
reviews group, the classifier computes the probability that 
a review belongs to a category Ci. This relationship is 
defined as below, making use of the conditional 
probability distribution as shown in Eq. (4) and (5): 

    (4) 

With     ,       an

d      (5) 

where R is the review instance, n is the review length, 
and P(dj|ci) is the probability/chance of a term dj in a 
review instance. Naïve Bayes will use the frequency of 
occurrence of words to define their category. 

LR is an algorithm wat assigns observations in a 
sample to discrete classes. In this research, the LR 
algorithm used for the multiple classification tasks is 
called multinomial LR. Pandas, Numpy, scikit learn that 
Python libraries are used to build multinomial LR. The 
formation of the multinomial logistic regression model 
requires the corresponding characteristics and targets 
obtained using the softmax function Thus, the linear 
regression equation and the softmax function can be given 
in Eq. (6) and (7): 

y	=	β0	+	β1X1+β2X2+……+	βnXn	 	 	 (6)
	 	

	 	 	 	 (7) 

F. Data Prioritization 
 To classify and prioritize reviews, regression-
based ranking is applied. This way, software features 
having significant relationships with app ratings and user 
feedback are identified. Keywords are ranked to aid 
selection of most important keywords. The entries here 
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are the sentences describing the characteristic NFRs and 
their corresponding comments from the user. 

G. Evaluation 
 While Python programming language and its 
relevant libraries are used in developing the model, the 
evaluation techniques to review the system’s performance 
of the system are accuracy, precision, recall and f 
measure. These metrics are standard measures used in 
evaluating machine learning models. The classification 
matrix is also used to evaluate performance of algorithms 
via a visualization. The next section describes the results 
of the model, an assessment of the outcomes and the 
limitations of the model. 

 

4. RESULTS AND DISCUSSION 
The study was limited to five categories of gaming 

applications (sports games, racing games, puzzle games, 
action games, casual games) and only the 99 top-rated 
gaming applications from Google Play and Apple Store 
were selected. Each crawled exam contains a title, a long 
description of the exam content, the number of exams, the 
creation time, the reviewer ID, and the associated rating. 
Finally, 271,656 user reviews for all 99 gaming 
applications were accumulated, with an average of 2,744 
reviews per application. 

Fig. 5 shows that 88% of the feedback came from 
Google Play store and 12% from iOS apps reviews users. 
Fig. 6 shows that action games and casual games were the 
most popular categories on both platforms, with 62,302 
and 27,677 feedback respectively. We also examined the 
ratings of the feedback, ranging from 2 to 4.9 stars. Table 
IV shows the distribution of ratings for each category. 

 

 
Fig. 5.  Number of Apps users 

 

 
Fig. 6. Reviews per category 

TABLE IV.  NUMBER OF USER’S REVIEWS CORRESPONDING TO 
EACH RATING SCORE 

Rating score Total number of user’s reviews 
[2, 2.9] 20 
[3.0, 3.9] 45,697 
[4.0, 4.9] 225,939 

 

The four research questions contribute to the results 
presented. This way, we can assess the model for its 
ability to answer the research questions presented. As seen 
in Fig. 5, there is an overwhelming majority of Google 
play store apps over the Apple App store. This is 
unsurprising as there are more mobile apps in Play Store 
than the App store. While this should mean a higher 
number of apps from Play store across all app categories, 
Fig. 6 points to casual games from App Store significantly 
exceeding those from the Play Store. 

A. RQ.1: How to identify and prioritize Non-Functional 
Requirements in user reviews for effective 
consideration? 
Three feature extraction techniques; TF-IDF (Term 

Frequency - Inverse Document Frequency), CHI2 (Chi 
Squared), and AUR-BoW (Augmented User Reviews - 
Bag-of-Words) were used to extract high-level features 
from the cleaned user reviews. The extraction provided 
unigram words that refer to NFR vocabularies and their 
frequency. 

The user reviews underwent clustering to categorize 
them by sentiments by using SentiWordnet to assign a 
polarity score to the reviews before eight classification 
techniques, which were a combination of extraction and 
machine learning techniques, were done to give relevant 
classified features in the three NFRs considered: security, 
flexibility, and maintainability.  

B. RQ.2: How can we effectively prioritize Non-
Functional Requirements based on their significance 
and impact? 
Frequency, rating, positive and negative reviews were 

the prioritized input attributes used to rank the selected 
features based on NFR. Prioritization was done in order of 
ranking score, where a high score from negative reviews 
should be met with a low number of positive reviews. 
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C. RQ.3: What tools, techniques, and methodologies 
are appropriate for addressing RQ1 and RQ2 
effectively? 
RQ1 was achieved by using TF-IDF, CHI2, and AUR-

BoW for feature extraction and four machine learning 
algorithms; NB, Naive Bayes, DT-J48, and LR performed 
the classification before evaluation metrics were applied. 

RQ2 was achieved by using regression-based ranking 
to get prioritized list. The performance of the rank 
prediction was measured using the ROC curve and the 
mean square error (MSE) measured regressor 
performance. 

D. RQ4: How can the effectiveness and validity of the 
methods and tools applied in addressing RQ3 be reliably 
validated?  

The use of the confusion matrix to assess the 
classification results ensured it could be compared to the 
approach taken by other researchers. 

E. Feature Extraction & Sentiment Analysis Results 
 Table V showed sample user reviews that AUR-
BoW and TF-IDF techniques are applied to. In the sample 

in Table V, there are 10 unigrams extracted from the 
sample review sentences which refer to the features which 
are “Update,” “Good,” “Favourite,” “Download,” 
“Uninstall,” “New,” “Account” “Bad,” “Fix,” and 
“Error.”. The values of features in Table VI point to the 
frequencies of unigrams of each feature for the sample 
data used between the sample reviews #1 and #2. It 
noticed that TF-IDF of common words (“Update”) was 
zero, which shows they are not significant. On the other 
hand, the TF-IDF of “bad”, “new”, “error”, are non-zero. 
These words have more significance. Table VII displays 
the weight of each feature in the sample data. Also, AUR-
BoW refers to two-word pair have been considered. 
Bigrams such as “enjoy game,” “new update,” and “is 
good” are positive. On the other hand, bigrams like “very 
bad,” “no play,”,” “fix bug,” and “wont download” have 
negative orientation. Based on the features extracted from 
the reviews, a vocabulary bag of words were built by 
checking them on the Word2Vec. 

 

TABLE V.  SAMPLE OF REVIEWS 

Name App Target 
Class Sample of reviews before preprocessing Sample of reviews after 

preprocessing 

Pubg Mobile 
(Android app) 

Critical #1: Very bad, I tried updating the game, It updated and kept saying error failed. very bad try update game keep say 
error fail 

Critical #2: The new update is the worst update I’ve seen yet. I just want my game to work 
smoothly, and the server lag to be fixed. 

new update is worst want game 
work smoothly server lag fix 

Positive #3: This is my favourite mode to play. The graphics are pretty good, the controls are 
good and gameplay is good. 

favourite mode to play graphics 
pretty controls gameplay good 

Subway 
Surfers 

Critical #4: Please fix this if it is a bug, I really want to play this again but all my boards are 
gone fix bug want to play 

Critical #5: Worst game I have ever played. There is no legal cause to make you fall suddenly 
on the train. 

worst game ever play no legal cause 
fall suddenly 

Critical #6: Why this game still not automatically connected to google account. I lost my data game no connect google account 

Critical #7: There’s no online save option, neither I can login to my previous records nor I can 
save my current progress. There should be option for google or facebook. 

no online save login previous 
records save current progress 

google facebook 
Critical #8: Lost progress. Logged into my accounts and still no items. lost progress log account no item 

8 Ball Pool 
(iOs app) 

Critical #9: STOP ASKING FOR ACCESS TO MY FACEBOOK FRIENDS!!! The many 
pop-up ads are irritating enough. 

stop ask for access Facebook 
friends popup ads irritate 

Critical #10: DO NOT DOWNLOAD! This is set up to cheat you out of your in-game funds to 
force you to pay. do not download cheat force to pay 

Positive #11: It is nice game, easy to log in, very addictive and challenging. Little of 
considerable advert 

nice game easy login addictive 
challenge advert 
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TABLE VI.  RESULTS OF TF-IDF TECHNIQUE ON PRE-PROCESSED DATA FOR THE TWO FIRST PREPOSSESSED SAMPLE REVIEWS 

Sentences 

TF 

IDF 

TF*IDF 

Sample reviews #1 
(very bad try update game keep say error fail) 

Sample reviews #2 
(new update is worst want 

game work smoothly server lag 
fix) 

Sample 
reviews #1 

Sample reviews 
#2 

Update 1/9 1/11 Log(2/2) = 0 0 0 

New 0 1/11 Log(2/1) = 
0.3 0 0.27 

Bad 1/9 0 Log(2/1) 
=0.3 0.33 0 

Fix 0 1/11 Log(2/1) 
=0.3 0 0.27 

Error 1/9 0 Log(2/1) 
=0.3 0.33 0 

TABLE VII.  RESULTS OF AUR-BOW TECHNIQUE ON PRE-PROCESSED DATA 

 

These words were used to understand specific complaints 
about features found in the user’s reviews. NFR types 
included security, availability, operational, portability, 
maintainability, performance, reliability, scalability, and 
usability. This research considered only three types such 
as Security, Flexibility, and Maintainability aspects. Table 
VIII depicts top 15 topic terms mined from each type of 
NFR while Table IX listed for the vocabulary list. Based 
on the topics as presented as example in Table VIII 
extracted from the reviews, the senti_score was calculated 
with the feature types, the associated words and the 
frequency where these features appeared. Table IX shows 
three examples of sentences scored by SentiWordnet. 
These words were used to understand specific praising, 
complaints about features found in the apps. Table X 
showed samples of topics and the sentiments associated 
with them. The feature extraction output and sentiment are 
given as input to the classifiers used in this research SVM, 
NB, DT, and LR algorithms to mine app reviews. The 
classification and prioritization results will be presented in 
the next step. 

F. Classification and Ranking Results 
In this section, the results from the features extraction 

done using TF-IDF, Chi2, and AUR-BoW after the  

 
application of ML algorithms SVM, NB, DT, LR, are 
presented. Accuracy, Precision, Recall and F-measure 
were selected as evaluation metrics for performance of  

 
features retrieval, weighted average, and classification 
results of user reviews. A confusion matrix is to describe 
the performance of each classifier composed of True 
Positive (TP), True Negative (TN), False Positive (FP), 
and False Negative (FN) NFRs features.  
For each feature extraction, features that are correctly 
classified are labelled as TP, positive reviews for a feature 
are labelled FP, and bad reviews labelled as referring to 
another feature as FN. Confusion matrix is obtained from 
training data; and comparison with the machine learning 
is presented. Fig. 7(a) presents the confusion matrix of the 
classification results from combining TF-IDF with all 
machine learning algorithms to classify NFRs features 
while Fig. 7(b) presented the confusion matrix of the 
classification results from the combination between AUR-
BoW with all machine learning algorithms to classify 
NFRs features. 

 

No Update Good Favourite Download Uninstall New Account Bad Fix Error 
#1 1 0 0 0 0 0 0 1 0 1 
#2 1 0 0 0 0 1 0 0 1 0 
#3 1 1 0 0 0 0 0 0 0 0 
#4 0 0 0 0 0 0 0 0 1 0 
#5 0 0 0 0 0 0 0 0 0 0 
#6 0 0 0 0 0 0 0 0 0 0 
#7 0 0 0 0 0 0 1 0 0 0 
#8 0 0 0 0 0 0 0 0 0 0 
#9 0 0 0 0 0 0 0 0 0 0 

#10 0 0 0 0 0 0 0 0 0 0 
#11 1 0 0 1 1 0 0 0 0 0 
#12 2 0 0 1 1 0 0 0 0 0 
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TABLE VIII.  SAMPLE INDICATOR TERMS ‘MINED’ FROM THE TRAINING SET 
No Security Flexibility Maintainability 

#1 online adjust update 

#2 access next release 

#3 authorize multiplayer new 

#4 login match additional 

#5 data level season 

#6 account graphics change 

#7 incorrect time integrate 

#8 authenticate soundtrack upgrade 

#9 system characters fix 

#10 verify unlock restart 

#11 lost offline load 

#12 sign in credits reset 

#13 attack rewards uninstall 

#14 sync interface download 

#15 secure appear crash 

TABLE IX.  EXAMPLES OF SENTIWORDNET SCORES IN THE USER REVIEWS 

Topic Pos_Score Neg_Score Neu_Score Synset Sentence 

update 0.625 0 0.375  #1: Very bad, I tried updating the game, It updated and kept saying error failed. 

update 0.575 0 0  #2: The new update is the worst update I’ve seen yet. I just want my game to work 
smoothly, and the server lag to be fixed. 

update 0.115 0 0.785  #3: This is my favourite mode to play. The graphics are pretty good, the controls are 
good and gameplay is good. 

 
 

TABLE X.  MOST COMMON TOPICS EXTRACTED FROM THE USER REVIEWS WITH THEIR SENTIMENTS SCORE 

Topic Senti score Topic Senti score Topic Senti score 

online (+0.25) adjust (-0.181818) update (+0.874333) 

access (+0.25) next (-0.1875) release (+0.5225) 

authorize (-0.222222) multiplayer (+0.4) new (+0.25) 

login (+0.1) match (+0.1174) additional (0) 

data (-0.086) level (+0.6522) season (-0.44) 

account (-0.363636) graphics (+0.46363) change (+0.1159) 

incorrect (-0.14) time (+0.3754) integrate (-0.1875) 

authenticate (-0.30) soundtrack (-0.111111) upgrade (+0.8181) 

system (+0.44) characters (+0.2778) fix (+0.56522) 

verify (+0.4166) unlock (+0.5714333) restart (+0.76923) 

lost (-0.214268) offline (-0.34444) load (+0.6363) 

sign in (-0.27777) credits (-0.115) reset (+0.7277) 

attack (+0.214285) rewards (-+0.41666) uninstall (+0.37) 

sync (0) interface (-0.088888) download (+0.75) 

secure (+0.333333) appear (-0.0597777) crash (+0.67) 
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Fig. 7. Confusion matrices of (a) SVM, DT, LR, and NB using the TF-
IDF technique; (b) SVM, DT, LR, and NB are shown using the AUR-
BoW technique. 

A comparison of the results from the machine 
learning algorithms was performed for each classification 
techniques. 

Furthermore, three attributes (frequency, rating, 
positive and negative reviews) were identified as they 
provide base constructs for priority ranking. Regression-
based ranking was used to get prioritized lists. Table XI 
showed the top 15 significant features from regression 
analysis. The coefficients with higher value have higher 
impact on the dependent variable. From the Table XI, 
update ranks as the highest feature. Exploring the reviews 
containing this feature reveals that the app had become 
unstable. The explanation revealed that most reviews that 
contained the world update were complaining that the 
app had indeed become unusable.  

According to the confusion matrix as shown in Fig. 
7(a), Logistic Regression combined with TF-IDF had the 
best result along with the highest TP and TN rates. LR 
gives 2,781 (1490 positive features & 1,291 bad features) 
correct NFRs predictions and 717 (366 positive features 
& 351 bad features) wrong NFRs predictions. According 
to Fig. 7(b), LR gives 2730 (1520 positive features & 
1210 bad features) correct NFRs predictions and 750 

(320 positive features & 430 bad features) wrong NFRs 
predictions against 3498 (2252 positive features & 1569 
bad features) NFRs predictions with AUR-BoW, which is 
higher than the other classifiers models (SVM, NB, DT). 

Fig. 8 and Fig. 9 illustrated performance measure 
indices and results for the classification model with TF-
IDF, AUR-BoW, respectively. For TF-IDF, the results 
for classified models in Table XII showed that across the 
evaluation metrics, LR had the highest values 
respectively. Evidently, LR is better suited in classifying 
NFRs in user reviews than the other classification 
algorithms. 

 

TABLE XI.  NUMBER OF USER’S REVIEWS CORRESPONDING TO 
EACH RATING SCORE 

Rank Feature Coefficient 

1 update 9.17* 

2 release 8.89* 

4 new 6.12* 

5 additional 6.07* 

6 change 5.95* 

7 integrate 5.70* 

8 upgrade 5.23* 

9 fix 4.89* 

10 restart 4.55* 

11 load 3.48* 

12 reset 3.91* 

13 uninstall 3.58* 

14 download 3.02* 

15 crash 2.87* 

 

TABLE XII.  CLASSIFICATION RESULTS COMBINING MACHINE 
LEARNING WITH TF-IDF 

Classifiers 
Models 

Feature Extraction Technique: TF-IDF 

Accuracy Precision Recall F-
measure 

SVM 0.70 0.78 0.70 0.74 

NB 0.74 0.78 0.74 0.76 

LR 0.79 0.80 0.81 0.80 

DT 0.74 0.79 0.74 0.76 
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TABLE XIII.  CLASSIFICATION RESULTS COMBINING MACHINE 
LEARNING WITH AUR-BOW 

Classifiers 
Models 

Feature Extraction Technique: AUR-BoW 

Accuracy Precison Recall F-measure 

SVM 0.78 0.82 0.78 0.80 

NB 0.80 0.86 0.78 0.82 

LR 0.80 0.82 0.80 0.82 

DT 0.66 0.72 0.63 0.66 

 
Fig. 8. Classification results combining machine learning (SVM, NB, 
LR, DT) with TF-IDF technique. 

 

 
Fig. 9. Classification results combining machine learning (SVM, NB, 
LR, DT) with AUR-BoW technique. 

 According to Fig. 10, F-measure, accuracy, precision, 
recall compared to the performance of classifiers models 
with all feature engineering technique. According to the 
comparison, LR performed better that SVM, DT and NB 
in the case of using AUR-BoW (80%) for all the 
performance metrics. LR model was used as the 
predictive model and combining AUR-BoW with Chi2, 
which gives more valuable features. In this case, it found 
that the LR model achieved the classification accuracy of 
about 80 percent using security features and 
maintainability other hand 66 percent for flexibility type 
form the user reviews. So, Table XIV showed the results 

of classification of NFRs types (Security, Flexibility, 
Maintainability) obtained through the rank prediction with 
LR classifier. One type provided the highest f-measure for 
LR with 82% using AUR-Bow, Chi2 and Ranking as 
shown in Fig. 11. 

 
Fig. 10. Comparison between Classification results combining machine 
learning (SVM, NB, LR, DT) with TF-IDF and AUR-BoW technique. 

TABLE XIV.  CLASSIFICATION RESULTS OF THREE NFRS TYPES 
PREDICTED BY RANK PREDICTION WITH LR CLASSIFIER 

 
Type 

Proportio
n 

Reviews 

AUR-BoW + Chi2 + LR + Ranking 
Accura

cy 
Precision Recall F-

measur
e 

Security 1437 0.80 0.82 0.80 0.81 
Flexibility 1350 0.66 0.72 0.63 0.67 

Maintainabi
lity 

1234 0.80 0.86 0.79 0.82 

 

 
Fig. 11. Comparison between the F-measure and proportion of each 
type. 
 

G. Research Limitations 
Owing to the restriction placed by Google Play 

store’s API when accessing reviews, only the latest 2021 
could be reviewed. As android apps formed the bulk of 
the dataset, the possibility of bias in the reviews and an 
unfair representation of user sentiment is likely. As this 
research considered ratings below 4, any reviews 
containing features that could be considered as NFRs in 
reviews with rating 4 or 5 would not have been accounted 
for. 
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5. CONCLUSION AND FUTURE WORK 
This research validates existing research on the need 

for feedback in the design of efficient systems. By 
extracting and classifying a pool of user reviews, 
developers can identify NFRs in apps that are already in 
use and make improvements to meet user’s expectations. 
Classifying NFRs into maintainability, security and 
flexibility provides clarity on which NFRs would require 
the most attention by developers. 

App stores unlock a new repository of data for 
research and as observed in this work, NFRs can be 
extracted from this data. There are other insights that 
could be derived from user reviews by utilizing machine 
learning and natural language processing. 

Other researchers can consider expanding the number 
of apps used in analysis and enlarge the scope to cover 
user response to NFRs in mobile apps. As the Apple store 
includes both mobile and non-mobile apps, comparing 
results from separate analysis of each would be an area 
worth exploring in the future. 

There are many domain-specific apps in the 
marketplaces. Conducting future evaluation on domains 
such as health and social media is intended, as domain-
specific insights can be gleaned to know features that are 
to be prioritized to improve user experience and app 
functionality. 

Further, it will be necessary to consider conflict 
management, especially the identification and resolution 
of conflicts when classifying the FRs and NFRs. The first 
step to achieve this can be to leverage on the framework 
for resolving conflicts, as postulated in [33] [34] and 
[35]. 
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