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Abstract: Globally this second blinding condition which affects millions of people is the reason for the advocacy of early diagnosis 

and treatment needed to stop these conditions from gettiong worse in the future  Deep Learning as a Sustainable Technology to 

Detect Retinal Diseases: In this article, we touch on the elements of retinal disease diagnosis using the deep learning models. The 

tool, which adopts an ensemble of optimized state-of-the-art neural network architectures including MobileNetV2, ResNet50, 

InceptionV3, and DenseNet, will undergo a detailed evaluation of their respective performance with classifying retinal images. The 

strategy set behind our preprocessing steps, resize images, convert grayscale to RGB and extensive training cycles gives rise in the 

evolution of a top model. Interestingly all the results showcase ResNet50 the best persoiling which produces accuracy of 0.89; 

consequently, setting a new mark on retinal scan analysis. This research yields up a valular aspect of early retinal disease detection; 

we end up having an increased chance of conducting a precise diagnosis and improved patient outcomes. 

Using retinal fundus pictures, ophthalmologists may diagnose retinal issues with great precision. Early detection helps avoid 

blindness and increase the likelihood of a cure. Medical professionals can diagnose retinal fundus images to help with conditions 

including diabetic retinopathy and retinitis pigmentosa. Machine learning research has recently concentrated on using feature 

extraction and image classification to diagnose conditions such as diabetic retinopathy. Our objective in this work is to automatically 

identify, without explicit segmentation or feature extraction, photos with retinal abnormalities from those of the healthy. Instead, we 

automatically categorise every retinal fundus image as healthy or sick using a deep learning algorithm 

 

Keywords: Retinal abnormalities, disease detection, deep learning, ResNet50, MobileNetV2, InceptionV3, DenseNet. 

 

1. INTRODUCTION 

Diabetic retinopathy (DR), a significant consequence 
of the global diabetes epidemic, emerges as a primary 
cause of adult blindness in the United States. This 
condition arises from the deleterious effects of diabetes 
mellitus, leading to various complications. The risk for the 
appearance of DR grows longer the term of diabetes is, 
the higher the blood sugar levels are and better the 
positive pressure the arterial hypertension leads to [1] [2]. 
Firstly, DR forms the circle of a great number blood 
vessels in the retina with a purpose to send light to the 
brain. Adding to this, the sustained exposure to high 
glucose levels directly affects the permeability of blood 
vessels to macromolecules. First, it causes endothelial 
damage that permits the increase of capillary cell 
permeability, further scaling the process of capillary 
obstruction [3]. 

Diabetic retinopathy, impacting a vast global 

population, is a severe visual impairment stemming from 

a range of diabetes-related complications. Eye exams are 

crucial for detecting this condition, but the large number 

of retinal images requires careful analysis for accurate 

diagnosis. In this digital era, computer-assisted decision-

support systems provide a valuable tool for precise and 

efficient diagnostic evaluations. This study explores 

recent computer-assisted research focused on DR. The 

impact of diabetes extends beyond the retina, affecting 

organs like the heart and kidneys [4] [5]. The International 

Diabetes Federation reports that out of 537 million people 

with diabetes worldwide, about 90 million suffer from DR 

[6]. DR affects the retina by causing vascular 

inflammation and fluid accumulation, leading to vision 

impairment and potentially irreversible blindness. DR is 

responsible for approximately 2.6% of global blindness 

cases [7] [8]. The fig. 1 contrasts the anatomical 
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differences between a normal eye and an eye affected by 

Diabetic Retinopathy (DR). On the left, the ‘Normal Eye‘ 

is depicted with clear, healthy blood vessels within the 

retina, which is the light-sensitive layer at the back of the 

eye. On the right, the ‘Eye with Retinopathy‘ 

demonstrates the characteristic changes of DR, including 

the presence of tiny blood vessels that have begun to leak 

fluid into the retina. This leakage is a hallmark of the 

disease, leading to the potential for significant visual 

impairment. 

 

Figure 1: Diabetic Retinopathy 

Diabetic retinopathy is a multifaceted disorder in 
which diabetes adversely affects the retina, and a 
combination of various visual disturbances eventually 
results in irreversibility blindness [9]. Early detection of 
DR is of the essence in the prevention of blindness and re-
establishment of the health of the retina [10]. High 
volumes of data and errors in the misclassification of the 
traditional diagnostic procedures limit their application in 
detecting DR [11]. Computer-aided decision-making tools 
have shown a great deal of accuracy in detecting DR [12]. 
A majority of the people living with DR reside in socio-
economically disadvantaged countries [13], which brings 
to the fore the importance of effective diagnostic solutions 
in these countries. The diagnosis and assessment of the 
severity of DR crucially rely on a detailed analysis of 
retinal images in search of some specified lesions such as 
hemorrhages, microaneurysms, and exudates [14]. 

Before 1961, diagnosis of diabetic retinopathy 
included some assessment of visual acuity and, in dilated 
examinations, for the retina and the optic nerve. Other 
methods included estimating the intraocular pressure with 
tonometry and finding abnormalities in the results [15]. 
Advanced imaging technology in diabetic retinopathy was 
initiated by introducing fluorescein angiography. This was 
the earliest time when a fluorophore was injected into the 
bloodstream, and its distribution and concentration were 
mapped and imaged using a fundus camera. Vascular 
leakage in the retina is outlined by vessels highlighting 
with the fluorescent dye [16] [17]. Although effective, 
fluorescein angiography has eventually been outstripped 
by optical coherence tomography (OCT), a method 
allowing to get extremely detailed 3D images of the 
retina, without pupil dilation, and working well in 

combination with diverse telemedicine approaches [18, 
19]. 

The newer fundus photography innovations of recent 

years include techniques like ultra-widefield (UWF) 

retinal imaging, such as those provided by the Optos 200 

Tx from Optos plc. Such methods enable the observation 

of the retina through 200 degrees, which is helpful for 

proper diagnosis other than fast image processing and 

manipulation. The field that has seen the most significant 

impact from deep learning has been the field of machine 

learning applied to medical diagnostics. Medical Image 

Analysis: Deep learning models using multi-layered 

architectures in analyzing the images have been quite 

successful and can be well demonstrated by the research 

work of LeCun et al. [20], Liu et al. [21], and Litjens et al. 

[22]. Most of the research work carried out on OCT 

images is related to the recognition of critical features and 

stages of the condition with the help of classifiers. 

Besides, the recent works of Pratt et al. [23] and 

Sangeethaa et al. [24] have recently even made use of 

Convolutional Neural Networks (CNNs) for DR 

diagnosis. Due to the automatic capability of feature 

extraction and adaptability for many classifications of 

tasks, many Convolutional Neural Networks used for 

analyzing OCT images employed for DR have been of 

interest. What remains to be further explored is that they 

have not been applied to UWF fundus images or the 

diagnosis of the various stages of DR. 

In this article, we propose to create a comprehensive 

model for detecting retinal eye diseases using advanced 

deep learning techniques, with a focus on transfer 

learning. Acknowledging the difficulties in obtaining 

large, varied, and annotated retinal datasets, along with 

the significant computational resources needed for 

training deep neural networks, we plan to utilize pre-

trained models. By fine-tuning these models, which have 

already been trained on extensive datasets, for the specific 

task of retinal disease detection, we aim to enhance the 

efficiency and effectiveness of our approach. Our 

objectives include assessing various pre-trained models 

for their suitability, adapting them to identify disease-

specific features in retinal datasets, and thoroughly 

comparing our model‘s performance with traditional 

methods. Ultimately, our research aspires to deliver a 

model that not only improves the accuracy and speed of 

diagnosing retinal diseases but also offers scalable and 

accessible diagnostic tools for diverse global populations. 

2. RELATED WORKS 

Retinal eye diseases play a major role in the incidence 
of vision problems in different corners of the globe; 
hence, the need for early diagnosis is fundamental in 
avoiding vision loss. In recent years, deep learning within 
the world of ophthalmology has ushered in a whole new 
wave of opportunities, for not just fast, but also accurate 
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diagnosis of these illnesses. This domain-specific field has 
many related works that have been using deep learning 
techniques to identify and evaluate retinal diseases. 

In [25] a system is being automated which is used for 
grading the severity of DR images that deal with 
variations in the light and eye field range. Machine 
learning models including CNN, VGG-16, and VGG-19 
were employed by researchers to classify images into five 
severity grades that represent no DR and proliferative DR. 
The sensitivity was 20%, specificity was 22% and 
accuracy was 22% though AUC was 0.904. 

Another research [26] presented an automatic deep-
learning method for staging DR using a single fundus 
photograph. They introduced a multistage transfer 
learning approach that takes advantage of datasets with 
various labeling styles. This method, particularly useful 
for early DR screening, attained impressive sensitivity and 
specificity of 0.99 and ranked 54th out of 2943 methods 
in the APTOS 2019 Blindness Detection Dataset, 
achieving a quadratic weighted kappa score of 0.925466. 

In a different approach [27], researchers introduced a 
novel DR monitoring model that first enhances image 
quality using the Contrast Limited Adaptive Histogram 
Equalization technique. The model then employs the 
EfficientNet-B5 architecture for classification, known for 
its uniform scaling. This model showed significant 
improvements in AUC metrics when trained and 
evaluated on combined datasets of Messidor-2 and 
IDRiD, and Messidor-2 and Messidor, outperforming 
previous models. 

Another team [28] utilized a CNN leveraging the pre-
trained VGG-16 model for refined DR severity 
classification. Implementing advanced deep learning 
strategies like data augmentation, batch normalization, 
dropout layers, and learn-rate scheduling on high-
resolution images, they achieved an average class 
accuracy of 74%, a sensitivity of 80%, a specificity of 
65%, and an AUC of 0.80, surpassing previous studies 
using other pre-trained networks or models. 

Further, researchers [29] employed the Densely 
Connected Convolutional Network, particularly 
DenseNet-169, for early DR detection. They categorized 
fundus images into varying severity levels and used 
datasets from Diabetic Retinopathy Detection 2015 and 
Aptos 2019 Blindness Detection. Their process included 
data collection, preprocessing, augmentation, and 
modeling, resulting in a 90% accuracy rate for the primary 
model and 78% accuracy for a supplementary regression 
model, aiming to establish an effective system for 
automatic DR detection. 

A study [30] introduced a deep learning-based method 
to classify DR severity using variations of the 
EfficientNet. This method trained on diverse datasets and 
the most proficient model achieved a quadratic kappa 

score of 0.924377 on the APTOS test dataset, 
demonstrating the model‘s potential in hastening DR 
diagnoses for early detection. 

Another novel model, the Hinge Attention Network 
(HANet) [31], was presented, incorporating multiple 
attention stages and a pre-trained VGG16 base. This 
model, enhanced with a Convolutional LSTM layer, 
achieved accuracies of 85.54% and 66.41% on Kaggle 
APTOS and IDRiD datasets, respectively. 

In [32] method, deep learning model as well as 
automatic detection of diabetic retinopathy was 
introduced. The processing adopted deformable 
registration and image classification with four models of 
CNN where the classification accuracy was 85.28% on 
APTOS 2019 dataset. 

In [33], the approach was to use 28 hybrid models in 
comparison with 7 deep learning models to classify 
images for DR. The best hybrid of SVM and MobileNet 
V2 approach showed the accuracy levels of up to 88.80%, 
thus playing a proof of the validity of this mixing of deep 
learning feature extraction and the classical machine 
learning classification algorithms. 

Table 1: RELATED  WORKS 

Ref Methods Dataset Results 

[25] 
Transfer learning 
of VGG16 and 
VGG19 

Kaggle competi- 
tion dataset 2015 

Accuracies: 
71%  (VGG16), 
73%  (VGG19), 
Improved to 
83% after 
modification 

[26] 
Three-head CNN APTOS 2019 

Blindness 
Detection 
Dataset 

Sensitivity: 99% 

[27] 
EfficientNet B5 MESSIDOR, 

MESSIDOR-2, 
IDRiD 

AUC: 0.94 
(MESSIDOR), 
0.93 (IDRiD) 

[28] 
VGG-16 Kaggle EyePACS Accuracy:   74%, 

Sensitivity: 80%, 
Specificity: 65% 

[29] 
DenseNet-169 Diabetic 

Retinopathy 
Detection   2015, 
Aptos 2019 
Blindness 

Accuracy: 90% 

[30] 
Ensemble of Effi- 
cientNet models 

Kaggle APTOS EfficientNet- 
B3 performed 
better than the 
ensemble and 
other models 

[31] 
Hinge Attention 
Network 
(HANet) 

IDRid Accuracy: 66.4% 

[32] 
DenseNet- 
121, Xception, 
InceptionV3, 
ResNet-50 

Kaggle APTOS Best accuracy: 
85.28% 

[33] 
SVM- 
MobileNet V2 

APTOS,   Kaggle 
DR, and 
Messidor-2 

Accuracy: 
88.80% 
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3. MATERIALS AND METHODS 

A. Proposed Retinal Eye Disease model 

In our proposed model (Fig.2), we adopt the Retinal 
Optical Coherence Tomography (OCT) dataset if 
researches have done great job in collecting a massive 
catalog of such scans. This OCT image is our key 
component used for the development of deep learning 
framework. Before thoroughly integrating the dataset into 
the neural networks, we perform a few preprocessing 
operations to have cleaner data that will work better for 
the model. These stages include image resizing to have 
uniform standard, converting grayscale images to the 
RGB format to standardize the input and capture the 
subtle differences near around a center of symmetry, and 
finally, a normalization of pixel values for the purpose of 
speeding up convergence and reducing the chance of local 
optimization during training. 

For the model‘s training, we employ an ensemble of 
advanced neural network architectures: MobileNetV2, 
ResNet V50, Inception V3, and DenseNet are some of the 
networks used. Every single network that is capable of 
image classification is intently trained on the ‗train set‘ 
folder using the dataset of OCT. This diversity of 
structures provides the capability of the model of 
achieving a higher depth and accuracy of analytics. In the 
last step, these models are exercised using random query 
in the ‘test set‘ folder of the dataset to check their 
performance and to point out potential errors. The goal of 
the all our methods is to create the novel strategy to detect 
the retinal diseases and analysis it by utilizing the best 
qualities of different architectures on the OCT dataset. 

 

B. Dataset Description 

The Retinal Optical Coherence Tomography (OCT) 

dataset, available on Kaggle 1 , features detailed cross-
sectional images of retinas from living patients, with an 
annual volume of approximately 30 million scans. This 
extensive dataset includes over 84,000 images, classified 
into four categories: choroidal neovascularization (CNV), 
diabetic macular edema (DME), drusen (early age-related 
macular degeneration or AMD), and normal retinas. The 
dataset is thoughtfully divided into training, validation, 
and testing segments. Collected from various medical 
institutions between 2013 and 2017, these images have 
been meticulously evaluated and labeled through a 
comprehensive grading system by multiple trained 
graders, ensuring the reliability of the diagnostic 
categories. 

C. Data pre-processing 

In our dataset, we first organize the retinal images, 

stored in the .tfrecord format, by grouping and sorting 

them based on their prefix before the ‘tfr‘ tag. This initial 

step involves creating directories for each prefix and 

relocating corresponding files, setting the stage for 

efficient preprocessing. Each .tfrecord file contains key 

features like the image in binary string format, encoded 

label, and class indication (NORMAL, CNV, DME, or 

DRUSEN). We then create a TFRecordDataset from 

these paths for further processing. 

The primary goal of preprocessing is to convert raw 

retinal images into a format suitable for deep learning 

models. We begin by resizing the images to a uniform 

dimension of 224×224 pixels to ensure consistency 

across the dataset and compatibility with popular deep 

                                                           

1 https://www.kaggle.com/datasets/harshsoni/retina-oct-tfrecord-

dataset/data 

Figure 2: Proposed Retinal Eye Disease Model 
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learning architectures. This resizing is crucial for 

leveraging pre-trained models and reducing 

computational demands. Next, we convert any grayscale 

images to RGB format.  

 

This step is critical as many neural networks are 

designed for 3-channel input and this conversion 

maintains the grayscale information across all three 

channels, aligning with standard input structures. 

Normalization is another key step where pixel values 

are scaled, aiding in faster convergence of the neural 

network and reducing the likelihood of getting trapped 

in local optima. To align with the categorical nature of 

our problem, we employ one-hot encoding to transform 

class labels into a binary matrix, facilitating effective 

classification by the neural network. 

D. Deep Learning Models 

Deep learning has revolutionized medical diagnostics, 
especially in detecting retinal eye diseases. This 
technology employs advanced neural network 
architectures to interpret complex patterns in medical 
imagery, thereby enhancing diagnostic precision. This 
section focuses on evaluating four deep learning models: 
MobileNetV2, ResNet50, InceptionV3, and DenseNet. 
Renowned for their architectural uniqueness and 
proficiency in image classification, these models are 
scrutinized for their suitability and performance in retinal 
disease detection. This exploration sets the groundwork 
for advancing ophthalmic diagnostic methods. 

1) MobileNetV2 Method: MobileNetV2 stands out 

due to its inverted residuals and linear bottlenecks, 

making it both compact and computationally efficient. 

We use it primarily as a feature extractor, leveraging 
its depthwise separable convolutions to identify crucial 
features in retinal images. To tailor MobileNetV2 for our 
needs, we modify it by removing its top classification 

layers, transforming it into a potent feature extractor pre-
trained on ImageNet data. To avoid overfitting and 
optimize training, most layers are frozen, allowing only 
the final two layers to be fine-tuned for our specific 
dataset. Our custom layering includes a global average 
pooling layer followed by a dense layer with 128 neurons 
and ReLU activation, a dropout layer for regularization, 
and a final dense layer with softmax activation for binary 
classification. 

ReLU(x) = max(0, x)          (1) 

This means that if x is positive, the function returns x; 

if x is negative, the function returns 0. 

      (2) 

where, x is the input vector to the softmax 

function ,xi is the i-th element of this vector, and K is 

the number of classes. We employ the ‘adam‘ optimizer 

for its effectiveness with sparse gradients and the 

categorical cross-entropy loss function to guide model 

training. An early stopping mechanism is also 

implemented, monitoring validation loss to prevent 

overtraining and maintain generalization. This 

combination of the modified MobileNetV2 architecture, 

custom layers, and optimization strategy creates a model 

finely tuned for accurate and efficient retinal image 

analysis. 

2) ResNet50 Method: The ResNet50 architecture, a key 

member of the Residual Network family, is notable for 

its innovative solution to the vanishing gradient 

problem in deep neural networks. Featuring 50 layers 

and distinctive ‖skip connections‖ that bypass layers 

during propagation, ResNet50 effectively learns 

identity functions, allowing for deeper networks 

without performance degradation. 

Figure 3: MobileNet architecture 
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In our study, we adapt ResNet50 as a core element of 

our model, leveraging its pre-trained weights from 

ImageNet and repurposing it as a feature extractor for 

retinal images. To fit our dataset and avoid 

overfitting, most ResNet50 layers are non-trainable, 

maintaining their weights during training. Our model 

includes a customized classification head on top of 

ResNet50. Following a Global Average Pooling layer to 

reduce dimensions and retain critical features, a 

Dense layer with 128 neurons and ReLU activation 

introduces non-linearity. A Dropout layer (0.2 rate) is 

added to prevent overfitting. The architecture 

concludes with a final Dense layer with softmax 

activation for binary classification. We use the ‘adam‘ 

optimizer for efficient, accurate learning and categorical 

crossentropy loss to measure performance. An early 

stopping mechanism, tracking validation loss, prevents 

overtraining, ensuring the model retains its best 

weights. This integration of ResNet50‘s deep network 

capabilities with our specialized layers aims to achieve 

new heights in retinal image analysis, focusing on 

depth and precision. 

Table 2: CONFIGURATION AND TRAINING PARAMETERS FOR 

THE RESNET50 BASED RETINAL IMAGE ANALYSIS MODEL 

Parameter Value 

Pre-trained Weights ImageNet 

Include Top Layers False 

Input Shape (224, 224, 3) 

Trainable Base Layers None (All frozen) 

Global Average Pooling Yes 

Dense Layers 128 (ReLU), 2 (Softmax) 

Dropout Rate 0.2 

Optimizer Adam 

Loss Function Categorical Cross-Entropy 

Metrics Accuracy 

Early Stopping Monitor Validation Loss 

Early Stopping Patience 10 epochs 

Training Epochs 100 (max, with early stopping) 

Batch Size 32 

Validation Split 20% 

Shuffle Training Data True 

 

Figure 4: ResNet50 architecture 

Figure 5: InceptionV3 architecture 
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3) InceptionV3 Method: The InceptionV3 architecture, part 
of the Inception series, is renowned for its innovative 
‖network within a network‖ design. This design utilizes 
multiple filter sizes and a mix of 1x1, 3x3, and 5x5 
convolutions at the same level, enabling effective 
capture of spatial hierarchies. InceptionV3 also features 
‖bottleneck‖ layers that reduce parameter count, thus 
speeding up training without sacrificing feature 
extraction capabilities. 

In our study, InceptionV3 is crucial, acting as a feature 

extractor with pre-trained weights from ImageNet. To 

tailor it to our dataset, the top classification layers are 

removed, leaving the base layers skilled in pattern 

recognition. The layers of the InceptionV3 base model are 

frozen to maintain their pre-trained weights during 

training. We then add custom classification layers to the 

InceptionV3 base. This includes a Global Average 

Pooling layer for dimensionality reduction, a Dense layer 

with 128 neurons and ReLU activation for non-linearity, 

and a Dropout layer (0.2 rate) to reduce overfitting. The 

architecture concludes with a Dense layer featuring soft- 

max activation for binary classification. For optimization, 

the ‘adam‘ optimizer is used for its adaptability, and 

categorical cross-entropy loss measures training 

performance. An early stopping mechanism, monitoring 

validation loss, halts training when no improvement is 

observed, ensuring the preservation of the best model 

weights. This integration of InceptionV3‘s advanced 

architecture with our customized layers aims to create a 

model uniquely suited for precise and in-depth retinal 

image analysis. 

 

4) DenseNet121 Method: part of the Dense 

Convolutional Network family, revolutionizes deep 

learning architecture with its unique connectivity 

pattern. Each layer is directly con- nected to all 

preceding layers, enhancing depth and improving 

gradient flow, thus mitigating the vanishing gradient 

problem typical in deep networks. 

In our research, DenseNet121 serves as a critical 

component of our model, functioning as a feature 

extractor with pre- trained weights from ImageNet. To 

tailor it to our dataset, we remove its top classification 

layers, focusing on the base feature-learning layers. The 

layers of the DenseNet121 base model are frozen to 

prevent overfitting and maintain their weights during 

training. Our custom layering includes a Global Average 

Pooling layer for dimension reduction, followed by a 

Dense layer with 128 neurons and ReLU activation 

for non-linearity. A Dropout layer (0.2 rate) is included to 

combat overfitting. The architecture ends with a Dense 

layer for binary classification using softmax activation. 

We use the ‘adam‘ optimizer for effective and precise 

optimization, with categorical cross-entropy loss as the 

performance metric. An early stopping mechanism, 

tracking validation loss, halts training when no further 

improvement is detected, ensuring optimal model 

weights. This combination of DenseNet121‘s deep 

architecture with our specialized layers aims to create a 

model adept in retinal image analysis, balancing depth 

and precision. 

4. RESULTS AND DISCUSSION 

A. Evaluation Metrics 

In the classification tasks delineated in this chapter, 

a comprehensive suite of evaluation metrics, namely 

accuracy, precision, recall, and F1-score, is 

employed to rigorously assess the model‘s 

performance. To provide a holistic view, we will also 

present the confusion matrix for each model evaluation. 

Accuracy serves as a cornerstone metric, quantifying the 

proportion of correctly classified samples to the total 

sample count, represented as: 

    (3) 

Moreover, precision and recall refine the notions. 
Precisely, precision wraps the definition of aa model‘s 
ability to correctly predict positive samples as follows: 

         (4) 

where TP is a number of true positives, and FP is false 

positives. In turn, recall defines a model‘s competence to 

include all possible positive samples, and is 

mathematically expressed as: 

       (5) 
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FN is false negatives. Finally, the F1-score considers 

the balance perception of the model‘s relevancy, 

especially regarding class imbalance, which is presented 

as follows: 

 

 Aggregate measure is provided that takes into account 

not only false positives, but also false negatives. By using 

this comprehensive set of parameters, we intend to 

provide our audience with a detailed and comprehensive 

measure of the model‘s performance. This matrix 

provides a short visual representation of how well the 

model‘s predictions correspond to the actual labels. Given 

our specific task, the two categories are presented as 

―ABNORMAL‖ , which is denoted by 0, and 

―NORMAL‖ , which has a label of 1: 

TABLE 3: CONFUSION  MATRIX 

 Predicted: 0 Predicted: 1 

Actual: 0 TN FP 

Actual: 1 FN TP 

 

Here, True Negative (TN) represents the count of 
‘ABNORMAL‘ samples accurately predicted as such, 
while True Positive (TP) signifies the ‘NORMAL‘ 
samples correctly identified. Conversely, False Positive 
(FP) indicates ‘ABNORMAL‘ samples misclassified as 
‘NORMAL‘, and False Negative (FN) denotes 
‘NORMAL‘ samples incorrectly predicted as 
‘ABNORMAL‘. This matrix provides an insightful 
breakdown, enabling a comprehensive understanding of 
the model‘s accuracy, precision, recall, and specificity for 
our Retinal Eye Disease Detection task. 

B. Evaluation Methods 

The evaluation of our proposed deep learning models 

reveals insightful performance metrics, particularly in the 

context of retinal image classification. 

MobileNetV2: The MobileNetV2 model‘s 

performance, as shown in Fig.7 analysis of the 

MobileNetV2 model over 45 epochs reveals significant 

training improvements, with loss decreasing from 0.5510 

to 0.1010, and accuracy increasing from 0.7183 to 

0.9638, demonstrating the model‘s learning 

effectiveness. In contrast, validation metrics show 

variability; although accuracy peaks at 0.8817, it also 

presents fluctuations that may indicate overfitting. 

Figure 6: DenseNet121 architecture 

Figure 7: Training and Validation Accuracy and Loss Trends for MobileNetV2 Model over 45 Epochs 

Figure 8: Training and Validation Accuracy and Loss Trends for ResNet50 Model over 16 Epochs 
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Similarly, validation loss varies, with its nadir at the 26th 

epoch, followed by irregular increases, suggesting a 

need for vigilant model refinement. 

ResNet50: In our study focusing on Retinal Eye 
Disease Detection, the ResNet50 model‘s training and 
validation performance was critically examined. Fig.8 
illustrates the model‘s accuracy and loss across epochs. 
The training accuracy commenced at 83.35% with a 
corresponding validation accuracy of 85.08%, both 
displaying an up-ward trajectory as epochs advanced, 
reflecting positive learning. Nonetheless, vigilance is 
necessary to prevent overfitting, which is suggested when 
training accuracy rises while validation accuracy does not 
improve. The initial training and validation loss were 
0.3670 and 0.3564, respectively, with the model‘s 
objective to reduce these as a sign of improving prediction 
accuracy. Steady decrease in loss is indicative of 
effective parameter optimization, while any irregularities 
may point towards convergence problems or overfitting. 

InceptionV3: The InceptionV3 model‘s training and 
val idation performance over 27 epochs, shown in Fig.9, 
reveals a complex learning pattern. Training accuracy 
begins at 67.35%, showing some early gains followed by 
notable fluctuations, while validation accuracy starts at a 
lower 38.08%, also fluctuating as epochs progress. These 
variations suggest the model struggles to consistently 
learn from the data. Training loss decreases from a high of 
2.0672, indicating progress, yet validation loss starts at  

1.0032 and varies, sometimes increasing, which could 
imply that the model‘s generalization to new data is 
unstable. 

DenseNet121: The DenseNet121 model showcased in 
Fig.10 notable performance over 13 epochs, as training 
and validation accuracies steadily climbed, reflecting its 
capability to learn and generalize effectively. Training 
accuracy peaked at around 86%, while validation 
accuracy closely followed at approximately 88%, 
indicating the model‘s proficiency in recognizing patterns 
in the retinal  

images. Concurrently, both training and validation 
losses consistently declined, signifying successful 
optimization and the model‘s convergence towards an 
optimal state. 

Our analysis, as detailed in Table IV, includes models 

such as MobileNetV2, ResNet50, InceptionV3, and 

DenseNet121, with a primary focus on their accuracy 

scores. 

ResNet50 stands out with the highest accuracy of 

0.89, indicating its exceptional capability in 

distinguishing between normal and abnormal retinal 

images. This near 90% accuracy can be attributed to 

ResNet50‘s deep architecture and the effectiveness of its 

skip connections in capturing complex image features. 

This result underscores the model‘s robustness and its 

Figure 19: Training and Validation Accuracy and Loss Trends for InceptionV3 Model over 27 Epochs 

Figure 10: Training and Validation Accuracy and Loss Trends for DenseNet121 Model over 27 Epochs 
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potential utility in clinical settings for retinal disease 

diagnosis. 

DenseNet121 follows closely, showcasing an 
accuracy of 0.81. This performance demonstrates 
DenseNet121‘s efficiency in image classification, likely 
benefiting from its densely connected layers which 
facilitate feature reuse and consolidation, leading to 
over 80% accuracy. 

In comparison, MobileNetV2 and InceptionV3 

achieved slightly lower accuracies of 0.79 and 0.77, 

respectively. MobileNetV2‘s slightly lower accuracy 

might stem from its trade-off between efficiency and 

depth, as it prioritizes a lightweight architecture. 

InceptionV3, despite its sophisticated design, seems to 

have encountered challenges in capturing the nuanced 

features of retinal images, which might explain its 

modest performance. 

C. Comparision Results 

Our research undertakes this crucial task, presenting 

a comprehensive comparison of our proposed ResNet50-

based model with several established models in the 

field. Table V compares the accuracy of various 

existing diabetic retinopathy (DR) detection models with 

our ResNet50-based model. 

TABLE 4: COMPARISON  RESULTS 

Models Accuracy 

MobileNetV2 0.79 

ResNet50 0.89 

InceptionV3 0.77 

DenseNet121 0.81 

 

We note that earlier models cited in research 

works [25] and [28], which utilized architectures like 

VGG-16 and VGG-19, achieved accuracies of 82% and 

74%, respectively. These figures, while respectable, fall 

short of the 89% accuracy attained by our ResNet50 

model, underscoring our model‘s enhanced 

performance. 

Additionally, studies [31] and [32] reported accuracies 

of 85.54% and 85.28%, respectively, employing advanced 

models like HA-Net with multiple attention stages and an 

ensemble of CNN models, including DenseNet-121, 

Xception, Inception-v3, and ResNet-50. Notably, recent 

research [33] incorporating a hybrid approach by fusing a 

SVM with MobileNet V2 architecture has reached an 

impressive 88.80% accuracy. This hybrid model 

underscores the potential of integrating deep learning 

with traditional classifiers for feature extraction in DR 

classification. Despite these sophisticated approaches, our 

ResNet50 model still achieves a higher accuracy, 

evidencing its effectiveness in DR detection. 

TABLE 5: COMPARISON  WITH  EXISTING  WORKS 

Reference Accuracy 

[25] 82% 

[28] 74% 

[31] 85.54% 

[32] 85.28% 

[33] 88.8% 

Our ResNet50 89% 

The standout feature of our ResNet50 model is its 

remarkable 89% accuracy, which surpasses existing 

models by a significant margin. This implies that the 

deep architecture with the use of skip connections of 

ResNet50 are skillful at extracting information about the 

minute features in the fundus pictures. Such high 

accuracy is extremely vital for early detection and 

management of diabetic retinopathy, which indeed 

indicates that our ResNet50-based approach not only 

provides higher accuracy but may be even more reliable 

than those are usually used in the clinical applications in 

diagnosing various degrees of DR. 

5. CONCLUSION 

The presence of Retinal Eye Disease and in its role as 

one of the complications of chronic diabetes has been a 

major problem in the field of ophthalmology and 

healthcare. Prompt detection and timely management 

proves to be the basic factor in inhibiting the loss of 

vision and providing the best care for the patient. This 

article has really shone the light on different aspects of 

diabetic retinopathy, including the difficulties in its 

diagnosis and the emerging solutions by the advanced 

technology. Our proposed deep learning based model 

with various neural network architectures show clear 

progress towards the fight against this disease. Through 

equally careful data preprocessing and thorough training, 

the model becomes an excellent example of the ability to 

accurately discriminate and identify diabetic retinopathy. 

The standout performance of our ResNet50-based model, 

achieving an accuracy of 89%, signifies a notable leap 

forward in setting new standards for the field. This 

achievement not only underscores the effectiveness of our 

model but also highlights its potential impact on the early 

diagnosis and management of diabetic retinopathy, 

offering new avenues for improved patient outcomes in 

ophthalmic care. 

Future enhancements to our research include 

expanding the dataset for better model generalization and 

exploring transfer learning techniques for more robust 

diagnostics. Additionally, integrating model 

interpretability will build trust and offer valuable insights, 

while incorporating telemedicine applications could 

improve patient outcomes through timely interventions. 
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