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ABSTRACT The COVID-19 pandemic has had a devastating impact on global health, economies, and societies. Early detection 

of COVID-19 is crucial to prevent transmission and reduce mortality, but conventional imaging techniques such as X-rays and 

computed tomography (CT) scans have limitations in accessibility, cost, and sterilization. Therefore, in this study, we explore the 

use of lung ultrasound (LUS) for COVID-19 diagnosis and evaluate the performance of various deep learning (DL) models such 

as AlexNet, ResNet, DenseNet, Inception, VGG, Inception-ResNet, MobileNet, and Xception with transfer learning. In the 

presented study, initially, we collected 455 COVID-19 and 226 non-COVID images, including bacterial pneumonia and healthy 

subjects, from a POCOVID-Net database. However, DL networks demand more data to explore and develop a significant model, 

so we employ data augmentation using geometric transformations. After that, we utilize the suggested deep transfer learning 

architectures for identifying COVID-19 subjects from LUS images. Finally, we estimate the performance of these models by well-

received metrics such as sensitivity, specificity, precision, F1-score, the area under the curve (AUC), and accuracy. From the 

experimental results, we observed that DenseNet-201 achieved 100% accuracy and outperformed other models. This indicates that 

deep learning with transfer learning is a promising approach for COVID-19 identification from LUS data when data is scarce. 

These findings could have important implications for improving the efficiency and accessibility of COVID-19 diagnosis, 

particularly in resource-limited settings. 

INDEX TERMS COVID-19, DL, data augmentation, transfer learning, CT, X-ray, and LUS imagery.
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I. INTRODUCTION 

  Coronaviruses are a diverse group of respiratory viruses that may cause everything from a typical cold to severe respiratory 

syndromes, such as MERS (Middle East respiratory syndrome) and SARS (severe acute respiratory syndrome). In many cases, these 

viruses may adapt and infect people, allowing them to spread quickly. Coronavirus disease 2019 (COVID-19) first appeared in 

humans toward the end of 2019 as a novel strain of coronavirus [1]. The first instance was identified at the end of December 2019 in 

Wuhan city, China's provincial capital, and spread rapidly to several countries worldwide. As proof of the disease's fast spread, there 

were approximately 4,600 confirmed cases of COVID-19 in various countries on January 28, 2020, with 106 deaths. These figures 

climbed to 49,053 cases and 1,381 fatalities by February 15 (less than a month). In March 2020, Italy will be the worst-affected 

country in Europe. On April 5, 2020, Italian authorities recorded approximately 15.9 thousand deaths, among which 8.9 thousand 

occurred in the Lombardia region, 2.1 thousand in the Emilia-Romagna region, and 1.2 thousand in the Piedmont area. By April 

2020, the number of coronavirus-related deaths in Italy surpassed that reported in China. According to the World Health 

Organization (WHO) guidelines, Wuhan was quarantined on January 23, 2020 [2], to restrict the spread of the virus by suspending 

public transportation. The next day, similar restrictions were extended to the nearby towns of Huanggang, Ezhou, Chibi, Jinzhou, 

and Zhejiang. Later, they enforced the same rules and regulations in several countries, including Europe, India, and the United States 

of America (USA). Table 1 illustrates the statistics of the top 20 COVID-19-infected countries by April 06, 2023, 13:59 GMT [3]. 

 
TABLE 1: COVID-19 STATISTICS OF THE TOP-20 COUNTRIES 

S.No Country Total cases Total 

deaths 

Total 

Recovered 

Active 

Cases 

Total Test 

1 USA 106,305,779 1,156,300 104,088,992 1,060,487 1,175,014,579 

2 India 44,739,054 530,929 44,182,538 25,587 922,164,863 

3 France 39,817,657 165,794 39,517,588 134,27  271,490,188 

4 Germany 38,366,479 171,279 38,110,400 84,800  122,332,384 

5 Brazil 37,319,254 700,556 36,249,161 369,537 63,776,166 

6 Japan 33,500,042 74,029 21,722,879 11,703,134 98,535,136 

7 South 

Korea 

30,883,824 34,309

  

30,664,734 184,781 15,804,065 

9 United 

Kingdom  

24,448,729 209,396 24,221,314 18,019 522,526,476 

10 Russia 22,689,110 397,459 22,060,308 231,343 273,400,000 

11 Turkey 17,042,722 101,492 16,639,596 301,634 162,743,369 

12 Spain 13,798,747 120,426 13,645,949 32,372 471,036,328 

13 Vietnam 11,527,497 43,186 10,615,028 869,283 85,826,548 

14 Australia 11,327,773 19,856 11,264,265 43,652 78,835,048 

15 Taiwan  10,239,998 19,005 10,187,477 33,516 30,742,304 

16 Argentina  10,044,957 130,472 9,914,485 0 35,716,069 

17 Netherlands 8,610,372 22,992 8,575,974 11,406  25,984,435 

18 Iran 7,592,255 145,391 7,342,490 104,374 55,353,767 

19 Mexico 7,550,548 333,570 6,791,127 425,851 19,818,207 

20 Indonesia 6,749,564 161,044 6,582,409 6,111  114,158,919 

 
A. Variants  

Viruses consistently change over genetic mutations, which can generate a new virus variant. Suppose a virus has one or more 

mutations; then, it is a variant of the original virus. The Centers for Disease Control and Prevention (CDC) and SARS-CoV-2 

Interagency Group (SIG) identified various types of COVID-19 variants, represented in Table 2.  

  
TABLE 2: VARIANTS OF CORONAVIRUS [4] 

S.No WHO 

Label 

Lineage Date of Identification and 

Country 

1 Alpha B.1.1.7 November 2020 and 

Southeastern England (UK) 

2 Beta B.1.351 October 2020 and South Africa 

3 Gamma P.1 January 2021 and Brazil  

4 Delta B.1.617.2 December 2020 and India 

5 Epsilon B.1.427 July 2020 and USA 

2



  

B.1.429 

6 Eta B.1.525 December 2020 and UK, 

Nigeria 

7 Lota B.1.526 November 2020 and US (New 

York) 

8 Kappa B.1.617.1 December 2020 and India 

9 Zeta P.2 November 2020 and Brazil  

10 Mu B.1.621,  

B.1.621.1 

January 2021 and Colombia  

11 Omicron B.1.1.529, 

BA.1, BA.1.1, 

BA.2, BA.3, 

BA.4 and 

BA.5  

November 2021 and Botswana 

 
B. Symptoms  

  Symptoms of COVID-19 vary from person to person, and they range from mild to severe, which are tabulated in Table 3. 

Usually, these symptoms can begin at any time from 2-14 days after exposure to COVID-19. However, most people suffered from 

mild to moderate symptoms and healed without hospitalization.  
    

TABLE 3: SYMPTOMS OF COVID-19 [5] 

Mild Symptoms Moderate Symptoms Severe Symptoms 

Headache  

Throat and body pains 

Color changing of toes   

Diarrhea 

Skin rashes 

Fever 

Cough 

Fatigue 

Taste and smell loss 

Breathing trouble 

Loss of speech or 

confusion  

Difficulty in walking 

Bluish skin or lips 

Chest pain 

 
C. Diagnosis  

  Detection of COVID-19 at the initial stage is essential since symptoms are very similar to other pulmonary diseases. So, we 

required the necessary diagnostic tools to confirm COVID-19. The US Food and Drug Administration (FDA) and CDC approved the 

following diagnostic tests [6-7]: 
1) NUCLEIC ACID AMPLIFICATION TESTS (NAATS):  

Real-time RT-PCR is a widely used molecular test in NATTs to identify the genetic material of COVID-19. Healthcare professionals 

use a fluid sample from the nose or throat, with results usually obtained within 15 minutes. However, it has limitations like longer 

turnaround times, high costs, and false negatives. 
2) ANTIGEN TEST 

The test detects proteins on the coronavirus's outer surface using a nasopharyngeal swab, with low cost and quick results. However, it 

has high false negatives. C-reactive protein (CRP) and medical imaging methods like X-rays, CT, and ultrasound are used for 

COVID-19 prognosis, with US imaging being the most cost-effective and portable. 
3) PREVENTION MEASURES    

To minimize the dissemination of COVID-19 along with other infections like fever, we need to take the following measures [8]:   

 Wear a well-fitted mask (ex: N95), especially in public gathering spaces.  

 Maintain at least more than 1.5 meters’ distance between person-to-person. 

 Wash the hands with soap at regular intervals, such as before eating, after the squeeze, after using the toilet, etc. 

 Prevent intimate contact with persons who are ill. 

 Regularly sanitize the commonly touched surfaces and items. 

 Get vaccinated as early as possible if you are eligible, and strengthen the immune system by maintaining a proper diet, 

exercising, etc. 

 Quarantine ourselves when we are unwell for at least one week.  
4) IMPACT  

The COVID-19 pandemic has severely impacted global health, economy, and food sectors, with 193 million people suffering 

from extreme hunger in 2021 and 235 million by 2022, with India being particularly affected. 

5) HOSPITALITY AND TOURISM 
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The hospitality and tourism industry includes various businesses such as bars and restaurants, hotels, pubs, service apartments, and 

amusement parks. It is one of the sectors adversely affected by COVID-19, especially in Asia and Europe, because it contributes 

significantly to gross domestic product (GDP) growth. Based on the current statistics, this industry slowly bounced back after 

October 2021. However, due to the COVID-19 crisis, most people hesitate to travel internationally. Fig. 1 represents the opinion of 

people interested in traveling during COVID-19 [9]. 

 

 

FIGURE 1. Fig. 1. Graphical representation of people’s views toward travelling. 

 
6) AUTOMOBILE  

India is the third largest two-wheeler manufacturer and the fifth largest car manufacturer country globally, contributing 

approximately 7% of India’s GDP. However, in the last 12-18 months, the growth of the automobile or automotive sector has been 

continuously impacted by axle-load reforms and goods and service tax (GST); in addition, the lockdown commenced by the 

government in March 2020. Therefore, there is a severe effect on financial companies, sales, suppliers, and auto dealers. Table 4 

represents the car sales statistics before and after the coronavirus in 2019 and 2020. This table shows that most company sales 

decreased during COVID-19, except for Hyundai and Renault. 

 
TABLE 4: PASSENGER CAR SALE REPORT BEFORE AND DURING COVID-19 [10] 

Company Pre-COVID 

(2019) 

During COVID 

(2020) 

Deviation 

Maruti 
Suzuki 

51.90 51.30 -0.6 

Hyundai 16.40 17.60 +1.2 

Mahindra 7.1 6.5 -0.6 

Tata 6.3 4.8 -1.5 

Toyota 4.5 4.1 -0.4 

Honda 5.5 3.7 -1.8 

Renault 2.4 3.2 +0.8 

Ford 2.8 2.4 -0.4 

Volkswagen 1 0.9 -0.1 

Skoda 0.5 0.5 0.0 

 
7) REAL ESTATE  

 The real estate industry, especially housing and commercial subsectors, faced many problems during the COVID-19 pandemic due 

to immense lockdown restrictions, skilled labor moving to their native places, and construction halting. As a result, companies and 

builders face many financial crises. Therefore, depending on the company's profits, they removed employees or reduced their salaries 

to come out of these crises. In the first wave of coronavirus, the sales of old launched housing projects declined by 67% in almost all 

major cities, except in Noida, whereas new housing projects also reduced by 78% from April-June 2020 [11]. In the same quarter, 

after one year, according to the survey report of 99 acres, the sales of housing projects drastically decreased by approximately 80%. 

Table 5 describes the percentage of sales down during April-June, 2020. Similarly, Table 6 illustrates the net revenue of the top 5 

companies in India. 

 
TABLE 5: SUMMARY OF THE DEALS FALLING DURING APRIL-JUNE, 2020 [11]. 

City Percentage of sales fall 

Gurugram 79 

Chennai 74 

Hyderabad 74 

Bangalore 73 

Kolkata 75 

Mumbai 63 

Pune 56 

Thane  70 

14% 
3% 4% 3% 9% 

74% 79% 
88% 89% 82% 

13% 8% 9% 9% 9% 

0%

20%

40%

60%

80%

100%

18 to 24
years old

25 to 54
years old

55 to 64
years old

65+ years
old

Total

Yes No Not Sure

4



  

 
TABLE 6: NET REVENUE (IN $) OF TOP 5 COMPANIES IN INDIA [11]. 

 

Company September 

2019 

December 

2019 

March 

2020 

June 

2020 

DLF 529.26 451.23 884.72 270.05 

Phoenix 

Mills 

434 525 409 147 

Goderj 

Properties 

80.62 275.54 780.83 52.27 

Oberoi 

Reality 

126.65 179.42 113.48 63.41 

Prestige 

Estate 

637.5 1019.7 926.3 685.1 

 

8) EDUCATION  

  India's education sector, the second largest globally, has been severely impacted by the COVID-19 lockdown, affecting 

over 300 million students worldwide. The unemployment rate has risen from 8.4% to 23%, affecting employees and other sectors 

like agriculture, transportation, electronics, energy, and power. To minimize the impact, an automated COVID prediction system 

based on LUS images using deep learning models has been presented. This work discusses various existing models for predicting 

COVID-19 from LUS images. 
II. Related Work   

For the last two years, researchers have developed various methodologies for the early identification of COVID-19 using 

conventional machine learning and deep learning approaches [12]. Most of these findings utilized computed tomography (CT) and 

X-rays. However, prediction of COVID-19 from these imaging modalities remains challenging due to radiation involvement, 

inflexibility to some patients, especially pregnant women, and high cost. Therefore, recently radiologists have preferred the LUS 

imaging tool due to its flexibility, noninvasive nature, and reliable deployment, particularly in critical situations [13]. Based on this 

idea, authors recently focused on detecting COVID-19 from LUS data. This section discusses newly developed models and 

summarizes their findings, tabulated in Table 7. 

             Michael et al. [14] developed an optimized VGG 19 architecture to predict COVID-19 from CT, X-ray, and LUS images. 

Jannis et al. [15] suggested an automatic COVID-19 detection network, POCOVID-Net, based on LUS data. Zhang et al. [16] used 

VGG-19, ResNet 101, and Efficient B5 models to identify pneumonia from LUS images effectively. Julia et al. [17] adopted various 

pre-trained convolutional neural network (CNN) architectures, such as VGG19, InceptionV3, Xception, and ResNet50, to detect 

COVID-19 symptoms. Hui et al. [18] derived a multiscale residual CNN architecture to classify COVID-19 from non-COVID 

images. Awasthi et al. [19] proposed a lightweight CNN framework, namely mini-COVIDNet, for the early identification of 

COVID-19 using LUS imagery.  

              Salvia et al. [20] introduced a deep learning-based framework for detecting pneumonia and classifying the severity score of 

COVID-19. Born et al. [21] suggested a VGG16-CAM-based model for accurately distinguishing COVID-19 LUS images from 

bacterial pneumonia. Dastider et al. [22] initiated a hybrid model to predict the severity of COVID-19 with the help of CNN, 

autoencoders, and long short-term memory (LSTM). Muhammad et al. [23] developed a novel architecture by fusing the layers to 

classify COVID and non-COVID from LUS images. Bruno et al. [24] presented an integrated system using CNN and LSTM to 

detect COVID-19 using LUS videos.  

           By working on the prediction of COVID-19 from LUS images, a few computer-aided diagnosis (CAD) approaches have been 

developed using the concepts of CNN with transfer learning. However, most of the authors worked on only one optimization 

algorithm. Based on this idea, in this study, we extensively analyzed the performance of various pre-trained CNN models with 

respect to optimization techniques.  

A. Highlights of the Study 

 

1. We introduce, apply, and analyze the importance of AlexNet, ResNet-50, 101, 152, DenseNet-121, 169, 201, InceptionV3, 

VGG-16, 19, Inception-ResNet-V2, Xception, and MobileNetV2-based pre-trained deep learning models for automatic 

screening of COVID-19 from LUS data.  

2. We employ image augmentation to increase the model's performance by minimizing overfitting. 

3. We assess the performance of the presented models using various optimizations such as stochastic gradient momentum 

(SGDM), Adam, Adagrad, AdaMax, Adadelta, Nadam, and RMSProp. It is the significant difference between the existing and 

proposed study.  

4. We demonstrate that the models used in this study significantly improve the classification accuracy by accurately differentiating 

COVID and non-COVID from LUS images and comparing them with other well-known methods. 

5. The experimental results indicate that LUS is a feasible medical imaging tool for assisting COVID-19 when CT and X-rays are 

unavailable. 
TABLE 7 SUMMARY OF THE EXISTING MODELS

Reference Methodology Classification Type 

(Multiclass/ Binary) 

Data  

Augmentation 

Findings 
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(Yes/No) 

 

Michael et al. [14] 

 

VGG-16 

 

Binary 

 

Yes 

Accuracy = 98.54%  

(Healthy vs. COVID & 

Pneumonia) 

Accuracy = 100% 

(COVID vs. Pneumonia) 

 

Jannis et al. [15] POCOVID-Net Multiclass No Accuracy = 89% 

(Healthy vs. COVID vs. 

Pneumonia) 

 

Zhang et al. [16] VGG-19, ResNet-101, and 

Efficient-B5 

Multiclass Yes  Accuracy = 95.5% 

(Healthy vs. COVID vs. 

Pneumonia) 

 

 

 

 

Julia et al. [17] 

 

 

 

 

VGG-19, InceptionV3, 

Xception, and ResNet-50 

 

 

 

 

Binary and Multiclass 

 

 

 

 

Yes 

Accuracy = 89.1%  

(Healthy vs. COVID vs. 

Pneumonia) 

 

Accuracy = 93.4% 

(COVID vs. Pneumonia) 

Accuracy = 91.5% 

(COVID vs. Non-

COVID) 

Hui et al. [18] Multiscale Residual CNN Binary No Accuracy = 95.11% 

(COVID vs. Non-

COVID) 

 

Awasthi et al. [19] Mini-COVIDNet Multi-class No  Accuracy = 83.2%  

(Healthy vs. COVID vs. 

Pneumonia) 

Salvia et al. [20] ResNet50 Multiclass Yes Accuracy = 98.43% 

  

 

Born et al. [21] 

 

VGG16-CAM 

 

Multiclass 

 

No 

Accuracy = 90%  

(Healthy vs. COVID vs. 

Bacterial Pneumonia) 

 

Muhammad et al. [22] Multi-layer Fusion Multiclass Yes  Accuracy = 92.5% 

(Healthy vs. COVID vs. 

Pneumonia) 

 

 

Bruno et al. [23] 

 

CNN-LSTM 

 

Multi-class 

 

No  

Accuracy = 93%  

(Healthy vs. COVID vs. 

Bacterial Pneumonia) 
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III. Materials and Methods 

Fig. 2 represents the flow diagram of the suggested model, which includes five phases: dataset collection, image data augmentation, 

deep learning models, transfer learning (TL) and fine-tuning, and performance evaluation. 

 
A. Dataset 

To evaluate the performance of the proposed models, we collected the LUS images from a publicly available database, namely 

POCOVID-Net [15]. Here, images are acquired by sampling the video sequences gathered from various sources with a frame rate of 

3 Hz and 17 frames per video. We obtained 455 COVID-19 and 226 non-COVID subjects, including bacterial pneumonia and 

healthy subjects. However, this data may not be sufficient for developing a better predictive model. Hence, we employed data 

augmentation. 

 
B. Image Data Augmentation 

The performance of deep learning networks (DNNs) heavily relies on the size and quality of the training database. For example, 

during the training progress of a DNN, we need more training data, which leads to overfitting problems. Therefore, image data 

augmentation is vital in improving model prediction accuracy and the model's generalization ability. Image data augmentation means 

the artificial creation of images using traditional image processing operations such as rotation, scaling, reflection, translation, 

shearing, etc. The data augmentation operations and the corresponding results are depicted in Table 8. We finally obtained 3185 

COVID-19 and 1582 non-COVID LUS images with these operations. 

 

 

FIGURE 2. Stepwise diagram of the proposed framework. 

 

The database is organized into two folders (training and testing) containing COVID and non-COVID subfolders. Table 9 represents 

the number of images for each class in a given folder, and Fig. 3 illustrates the sample images used in this article. Afterward, we 

deployed various pre-trained models on these augmented images by employing transfer learning and the necessary fine-tuning 

process. 

TABLE 8 IMAGE DATA AUGMENTATION OPERATIONS UTILIZED IN THIS WORK 

Augmentation 

operator 

Value 

Rotation Randomly from -350 to 350 

Translation Translate along X- (horizontal) and Y- 

(vertical) direction with a range of  [-10 10] 

Reflection Reflect randomly along X- and Y- direction 

Scale Uniform scaling with a range of [0.5 5] 

Shear Shearing along vertical and horizontal with 

a range of [0 450] 

 

TABLE 9 NUMBER OF SAMPLES FOR EACH CLASS IN THE COVID-19 LUS DATASET 

Database Training set Testing set 

COVID Non-

COVID 

COVID Non-

COVID 
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COVID-19 LUS 364 181 91 45 

COVID-19 LUS 

+ Augmentation 

2548 1265 637 317 

C. Deep Learning Models 

1) BACKGROUND 

Deep learning (DL) architectures can learn complex tasks by hierarchically constructing feature maps. Among all the  

available DL models, CNN-based methods are more popular and have the following layers: convolutional, pooling, activation, 

batch normalization, fully connected (FC), dropout, and softmax. 
 

2) CONVOLUTIONAL LAYER 

Among all the layers of CNN, the convolutional layer is a crucial aspect, particularly in tumor identification scenarios. The 

convolutional layer builds feature maps by accumulating the layers over each other in a hierarchical manner. Note that each 

convolution layer takes feature maps as input from its previous layer, except the first convolutional layer, since it is directly 

associated with the input image. Usually, the convolutional layer produces many feature maps as output.  

  The convolutional layers generate feature maps, F  by convolving the input image with the corresponding nonlinear 

feature generators; namely, the filter kernel in a sliding window manner using Eq. (1), and the tiny size of the rectangular box 

illustrates them.   

 

     

     , , ,
u v

F m n C u v K m u n v  
                   (1)    

  where C denotes the LUS image; K represents the convolutional filter kernel; u and v  are the dimensions of image C , 

while m and n give the dimensions of the generated feature map. The kernels in a convolutional layer behave like edge detectors, 

learning distinct features by the characteristics of training image data. 

 

 
4) BATCH NORMALIZATION 

Normalization is mainly used to normalize the features obtained from a convolutional layer. In this work, we used batch 

normalization, also called the batch norm. The significant advantage of the usage of a batch norm is as follows: 

1. Improving the training speed of the network. 

2. Enhance the network's performance by smoothing the objective function [24]. 

3. Minimize the internal covariance shift [25]. 

4. Reduces the over-fitting since it has a slight regularization effect. 

               The entire procedure involved in the batch norm is illustrated in Algorithm 1. 

 
Algorithm 1: Batch normalization 

Input: Values of F over a mini-batch:  1 2, , , Kb F F F  ; 

 Parameters to be learned:  , . 

Output:  n jb F   

1

1
,b j

j

M

F
M




        (2) 

 
22

1

1
,b j b

j

M

F
M

 


       (3) 

2
,

j b

j

b

F
F









      (4) 

( ) ,n j jb F F        (5) 

where  represents scale;  illustrates shift; K is the number of feature inputs;  and 
2 are the mean and variance across the batch, b ; is a constant, 

which is used to enhance the stability when 
2
b is too small. 

 

5) ACTIVATION LAYER 

  Let us assume a neural network (NN) without an activation function. Each neuron will conduct only a linear 

transformation to the inputs in that scenario based on the bias and weights. Despite this, the linear transformation makes the 

network simpler. However, the corresponding network will not be able to learn complex tasks. Hence, to limit these issues, 

8



  

introduce a nonlinear transformation into the output of each neuron and achieve it by action functions. Due to these activation 

functions, the network will be able to learn many complex tasks by making use of important information and minimizing 

inappropriate data points. Among several activation functions, ReLU and its variants, such as ELU, PReLU (probabilistic ReLU), 

and leaky ReLU, are widely used in CNNs since they significantly overcome vanishing gradient problems.    
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(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

    

(i) (j) (k) (l) 

    

FIGURE 3. Sample LUS images used in this article: (a)-(d) COVID-19; (e)-(h) Bacterial Pneumonia; (i)-(l) Healthy 

 
6) POOLING LAYER 

  Pooling is another vital aspect of CNN and typically occurs after the convolutional layer. The main objective of pooling 

is as follows: 

o It shrinks the spatial size of feature maps. As a result, it minimizes the number of parameters to learn and the network's 

computational time. 

o As we know, the convolutional layer is effectively generated from its previous layers. However, these feature maps are 

sensitive to variations in the position of the features of the input space. Due to this, we will obtain different feature maps. To 

avoid this, we perform pooling by summarizing the features present in the patches of the feature map. 

   Average and max-pooling are the most frequently used pooling approaches [26] and are represented in Fig. 4. After 

performing pooling, the size of the feature map can be reduced from cF F f 
to cW W f 

using Eq. (6). Here, cf defines the 

number of filters; F and W represent the size of a feature map before and after performing a pooling operation.                           

     

   
1 1

m nF Z F Z
W

D D

     
      
                     (6) 

         

where mF
and nF

illustrate the height and width of the feature map, F ; Z  indicates the padding size; D  describes the length of the 

stride. 
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FIGURE 4. Average and max-pooling with a filter kernel of 2×2 and stride of [2 2]   

 

7) FULLY CONNECTED OR DENSE LAYER 

The fully connected (FC) or dense layer is a crucial element of CNN and has proven to be very successful in identifying and 

classifying images, particularly in computer vision applications. The FC layers are input from previous layers, either the 

convolutional or final pooling layer and then transformed into a single feature vector, s  by flattening. Note that the number of FC 

layers varies with the model in which you are trained. Therefore, in the proposed model, the output value of the FC layer is set to 2 

since we have two classes. 
8) DROPOUT LAYER 

DNNs include numerous hidden layers of nonlinear nature, building a significant model that can effectively learn complex 

relationships between their inputs and outputs. However, when dealing with limited data, these complex relationships can result in 

sampling noise in the training database and overfitting problems. Several approaches have been implemented to minimize the issue, 

as mentioned above [27]; the dropout layer is typically used in DNN [28]. The main idea is to randomly nullify or drop some hidden 

layers during the training progress, which will result in reducing the co-adaption. 
9) SOFTMAX LAYER 

Generally, the softmax activation function takes place at the end of the neural network to transform the features into class 

probabilities. The softmax yields a value for each class based on the probabilities' computation using Eq. (7) 
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where, s  is the feature vector, T indicates the transpose operator, w illustrates the weight vector, P is the predicted probability of the 

i th class and finally, N represents the number of classes. In this work, N will be chosen as 2 since we perform binary 

classification. Based on these layers, researchers have developed numerous deep-learning networks [29]. We adopted the following 

DL models (section 3.3.2) from the literature to detect COVID-19 from LUS imagery, and they are summarized in Table 10. 

D. Pretrained DL architectures 

1) ALEXNET 

AlexNet [30] is a popular and widely used CNN architecture in deep learning, especially in the machine and computer vision 

applications. It won the Image Net Large Scale vision recognition challenge 2012 competition (ILSVRC 2012) [31] with a 15.3% 

error rate. This network was trained on 12 lakhs of high-resolution natural images with a size of 227×227 into 1000 distinct 

categories with 60 million parameters, 6.5 lakhs of neurons, and 0.63 billion connections. AlexNet comprises five convolutional 

layers with filter sizes 11×11, 5×5, and 3×3, overlapping max-poling layers of filter size 3×3 with stride two at each of three 

convolutional layers, and three fully-connected layers with 4096 and 1000 neurons. Note that each convolution layer is equipped 

with a ReLU actuation layer. 

 
2) RESNET 

Generally, deeper networks are more capable of learning highly complex tasks. However, many researchers have identified that after 

some depth, the performance of the deeper networks degrades when the deeper networks begin to converge. With this, the deeper 

networks lead to higher training errors. To limit this problem, a deep residual network, namely ResNet, was proposed [32]. ResNet 

stands for residual networks and is a backbone for many computer and machine vision applications. In this model, we used skip 

connections to resolve the exploding gradient problem or minimize the training error while increasing the number of layers. Hence, it 

won first place in the ILSVRC 2015 competition with an error rate of 3.5%, and it also achieved first place in the COCO 2015 

challenging round on the COCO object detection database [33] with an improvement of 28% accuracy. The main advantages of 

ResNet are         
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 Easy to optimize compared to the other “plain” networks. 

 Quickly gain accuracy from highly deeper networks and yield better performance than other networks. 

The available ResNet variants are 18, 34, 50, 101, and 152. However, in this work, we utilized ResNet-50, 101, and 152 to detect 

COVID-19 from LUS data. 

 

3) DENSENET 

Many researchers have identified that vanishing-gradient issues might arise as the deeper network's depth increases. Therefore, as 

mentioned earlier, ResNet was proposed in 2015 to address this problem [32]. However, the use of skipping connections in the 

residual learning approach reduces the learning capacity of the model [34]. Hence, to mitigate this problem, the authors [35] 

proposed the DenseNet architecture. DenseNet is a recently developed DNN architecture suggested by the corn well and Tsinghua 

universities, along with Facebook AI research in 2017. Due to its dense connections, DenseNet gives surprising results on widely 

used object detection databases, namely CIFAR-10, CIFAR-100, and ImageNet 2015. 

The main features of Dense Net are as follows: 

 Each layer is connected to all other preceding layers in a feed-forward manner. 

 Enhance the feature propagation in both forward and backward computation. 

 Support (or) Encourage feature reuse.  

 Enhance the performance of detection and classification with less computational complexity due to feature-map concatenation.  

 Require fewer parameters to realize the architecture. 

 

   DenseNet consists of transition layers, dense blocks, convolutional layers, max, average, global-averaging pooling layers, fully 

connected layers, and a softmax layer. Each transition layer comprises a 1×1 convolutional layer followed by average pooling with a 

2×2 filter size and stride 2. DenseNet has various versions; we utilized DenseNet-121, 169, and 201. 

 
4) VGGNET 

The VGG [36] is a very deep CNN architecture developed by K. Simonyand and Zisserman in 2014 from Oxford University, which 

stands for "Visual Geometry Group." In this model, rather than large filter kernels (11×11 and 5×5 in [30]), they utilize tiny filter 

kernels such as 3*3 throughout the network. Furthermore, they also introduce a 1×1 convolution filter followed by a ReLU activation 

function. Thus, we can reduce the number of trainable and non-trainable parameters, which improves the training speed. It is the 

significant advantage of VGG over AlexNet [30] and attained 92.7% of the top-5 test classification accuracy. There are different 

types of VGGNet configurations: VGG-11, 13, 16, and 19. This article considers the VGG-16 and VGG-19 models to detect 

COVID-19 from the LUS image database. The VGG-16 has 16 layers: thirteen convolution layers (ten 3×3 and three 1×1) and three 

dense layers, whereas VGG-19 includes sixteen convolutional and three dense layers. 

 
5) MOBILENETV2 

MobileNetV2 [37] is a newly developed mobile network architecture for next-generation mobile computing applications such as 

classification, object recognition, and semantic segmentation. Usually, MobileNetV2 is an enhanced version of mobile network 

architecture such as MobileNetV1 [38]. In MobileNetV2, they introduced an inverted residual structure to reduce computational cost 

and the size of the mobile model network. In addition, it also eliminates non-linearity in narrow layers. Due to this, the network is 

adequate for mobile (or) devices with less computational power. MobileNetV2 mainly consists of two different types of blocks. The 

first is a residual block with stride one and a residual block with stride two for downsizing. Each block has three layers:  

 1×1 convolutional layer followed by ReLu6. 

 Depth-wise, 3×3 convolutional layer along with ReLu6. 

 1×1 convolution layer with linearity. 

 
6) XCEPTION 

Xception [39] is a 71-layer deep CNN architecture with depthwise separable convolution. It was introduced by a Google researcher, 

Francois Chollet, in 2017 by inspiring the Inception network, which stands for "Extreme Inception." The fundamental difference 

between Xception and Inception is as follows: 

 Order of convolution operations: In the Inception model, we initially perform an 11 convolution (a pointwise convolution) 

and then implement depthwise convolution (spatial convolution) independently over each input channel. However, in Xception, 

we first perform spatial convolution across channels and then apply pointwise convolution. 

 Presence of ReLU activation: In Xception, we do not introduce any nonlinearity after each convolution operation, whereas, in 

Inception, we employ ReLU activation after both convolutions. 

Based on the above remarks, we observed that the Xception network performs slightly better than the Inception model on the 

ImageNet 2015 dataset.    
 

7) INCEPTIONV3 

12



  

The Inception networks are deep CNN architectures, and they were developed by Google researchers in 2015. There are three 

versions of Inception networks, namely InceptionV1 (GoogleNet), V2, and V3. Among them, InceptionV3 [40] performs 

significantly better than other versions since it yields a low-error rate and low-computational cost. InceptionV3 is a 42-layer deep 

learning network, and it was the first runner-up in the ImageNet 2015 challenging competition. By analyzing all versions of 

Inception models, versions V2 and V3 have similar features but slight modifications in InceptionV3, and they are: 

 Factorization into smaller convolutions. 

 Factorization into asymmetric convolutions. 

 Usage of auxiliary classifiers. 

 Efficient grid size reduction. 

 
8) INCEPTION-RESNET-V2 

The Inception-ResNet [41] is a 164-layer deep CNN model, and it was introduced in 2016 by Google with a combination of 

Inception and residual frameworks. Due to this, we can speed up the Inception network's training progress and significantly reduce 

the training error compared to other models such as Inception V1, V2, and V3. They suggested two residual network-based Inception 

models, such as Inception-ResNet-V1 and Inception-ResNet-V2. In this work, we adopted Inception-ResNet-V2 to classify COVID-

19 and non-COVID from LUS data.  

The main features of this architecture are as follows: 

 Computationally less expensive 

 Utilize filter expansion  

 It does not employ batch normalization after summations. 

 Replace the pooling layers used in the Inception block with residual connections. 

The presented DL models are evaluated on the ImageNet dataset, which includes a thousand classes. However, in our study, the data 

is limited due to the expensive cost of acquisition, the scarcity of diseases, and ethical and legal issues. Therefore, furthermore, we 

employ transfer learning (TL) on the suggested DL architectures due to feature reuse capability, which improves the detection rate of 

COVID-19 from LUS imagery. In the following section, we briefly summarize the significance of TL and its process in detail. 

 

TABLE 10 SUMMARY OF THE IMPLEMENTED CNN MODELS 

Network Layers  Freezing the 

layers 
(Yes/No) 

GAP 

(Yes/No) 

Trainable 

Parameters 

Non-trainable 

parameters  

Total Parameters 

AlexNet 8 No No 71,940,166 19,140 71,959,306 

ResNet-50 50 No Yes 23,538,690 53,120 23,591,810 

ResNet-101 101 No Yes 42,556,930 105,344 42,662,274 

ResNet-152 152 No Yes  58,223,618 151,424 58,375,042 

DenseNet-121 121 No Yes 6,955,906 83,648 7,039,554 

DenseNet-169 169 No Yes 12,487,810 158,400 12,646,210 

DenseNet-201 201 No Yes  18,096,770 229,056 18,325,826 

InceptionV3 42 No Yes 21,772,450 34,432 21,806,882 

Inception-ResNet-
V2 

164 No  Yes 54,280,803 60,544 54,341,347 

VGG 16 16 Yes Yes  119,554,050 14,714,688 134,268,738 

VGG 19 19 Yes Yes 119,554,050 20,024,384 139,578,434 

MoblieNetV2 53 Yes Yes 125,442 2,257,984 2,383,426 

Xception 71 No Yes  20,811,050 54,528 20,865,578 

 
E. Transfer Learning and Fine-Tuning 

1) TRANSFER LEARNING 

Transfer learning (TL) is a widely used machine learning approach in various classification problems, including natural language 

processing (NLP), computer vision, medical image processing, agriculture, etc. Generally, TL implies transferring knowledge from 

one task to another to enhance learning. Expressly, in deep learning, TL signifies transferring a pre-trained CNN model's learning 

parameters (weights and bias) to a new task of our model, which means that instead of training our model from scratch, we transfer 

the learned features. As a result, the learning process can be faster and more accurate, especially when dealing with a smaller 

database. Fig. 5 describes the working of transfer learning. 

The proposed TL process includes the following sequence of steps: 
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 Choose one of the architectures from the existing CNN models and import the data from that architecture. 

 We truncate the output layer (softmax or classification layer) in the selected model, replace it with our model output layer, and 

then utilize the rest of the network as a feature extractor for our model. For example, the classification layer comes with 

thousands of categories in the existed DL networks, but our model works on two classes (COVID vs. non-COVID). Therefore, 

the new classification layer of the model will be two classes instead of a thousand. 

 Freezing layers: During training, we do not train the layers in the feature extraction, which leads to high classification accuracy. 

The main benefits of TL in our framework are as follows:   

 Conquers the data scarcity issues. In addition, we can save hardware resources and time.  

 Minimize the data size.  

 Lower distance between the source and target. 

 

2) FINE-TUNING 

Fine-tuning is one technique to transfer learning and behaves like an optimization. The main objective of fine-tuning is to improve 

the network's performance by minimizing the loss with the help of changing the number of layers and filters, learning rate, etc. In this 

work, to obtain the desired performance, we modify the learning rate of various optimization techniques (section 4) from 0.001-0.01, 

represented in Table 11. 

TABLE 11: PARAMETER SETTINGS OF VARIOUS OPTIMIZATION TECHNIQUES 

Optimizer Parameters 

SGD   = 0.01 

Adam   = 0.001, 1 = 0.9, 2 =0.999, and  = 1e-07 
AdaMax   = 0.002, 1 = 0.9, 2 =0.999, and  = 1e-07 

Adagrad   = 0.001 and  = 1e-07 
Adadelta   = 0.001,  = 1e-07 and 


= 0.95 

RMSProp   = 0.001,  = 1e-07 and 


= 0.9 

Nadam   = 0.001, 1 = 0.9, 2 =0.999, and  = 1e-07 

 

Note:  represents the learning rate; 1 , and 2  are the decay factors;   is the constant for numerical stability and usually takes a 

smaller value. 

 

 

 

FIGURE 5. Working flow of transfer learning [42] 

 

F. Evolution Criteria 

The performance of the suggested approach is validated through the following widely used measures: 

Accuracy
TP TN

TP TN FP FN




      (8) 

True Positive Rate (TPR)
TP

TP FN


   (9) 

True Negative Rate (TNR)
TN

TN FP


   (10) 

Positive Predictive Value (PPV)
TP

TP FP


   (11) 

Pre-train 

Train from 

Scratch 

Fine Tune 

14



  

F-Score 2
PPV TPR

PPV TPR

 
  

     (12) 

Area Under Curve (AUC)
2

TPR TNR


  (13) 

where TP = true positive; FN  = false negative; FP  = false positive and TN  = true negative. 

 
G. Optimization Algorithms 

Optimization algorithms play a pivotal role in enhancing the performance of neural networks by modifying the weights and learning 

rate of the model during the training progress, which results in minimizing the error or loss function. To achieve this, the authors 

developed various optimization algorithms [43]. Here, we discuss a few widely used approaches. 

 
1) STOCHASTIC GRADIENT DESCENT 

The traditional gradient descent (GD) approach is computationally expensive in each iteration when dealing with massive data and 

cannot be utilized for online learning. Therefore, stochastic gradient descent (SGD) was developed [44], one of the most popular 

variants of gradient descent. The main idea behind SGD is that instead of considering all samples for each iteration, we randomly 

choose one sample per iteration to update the gradient. Due to this, SGD significantly improves convergence efficiency and reduces 

the computational cost compared to GD. The mathematical expression for updating the gradient is as follows: 

 

          j j j
ww w y f x x                      (14) 

where w is the mapping function parameter, 
jx is the input feature vector of the 

j th
 sample, 

jy
represents the corresponding 

labeling of the 
j th

sample, and 
 f x

is the mapping function.    

 
2) ADAPTIVE GRADIENT DESCENT  

Adaptive gradient descent (Adagrad) [45] is also a gradient-based optimization algorithm, but there is a minute difference between 

them. In gradient descent, we used a fixed learning rate for all iterations, while in Adagrad; we dynamically changed the learning rate 

based on the gradients of previous iterations. The significant benefit of Adagrad is eliminating the manual tuning of the learning rate. 

The mathematical intuition behind Adagrad is as follows: 
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where ig
denotes the gradient of w at iteration i , 

 L w
is the loss function, iH

 is the collection of previous gradients (or gradient 

history) of w at iteration i  and iw
is the value of w at iteration i . 

 

3) ROOT MEAN SQUARE PROPAGATION 

Ideally, root mean square propagation (RMSProp) [46] is an extended version of Rprop [47] and solves the varying gradients 

problem. The issues with gradients, some of them were small, but others were massive, which was challenging. Thus, defining a 

single learning rate may not be the best action. Therefore, in Rprop, they utilized two gradients. If they have the same sign, increase 

the step size; if they have opposite signs, decrease the step size. However, Rprop performs poorly on larger datasets when we deal 

with mini-batch weight updates. Thus, the authors introduced RMSProp, which also considers the idea of the Adagrad optimization 

algorithm. The RMSProp optimizer primarily concentrates on speeding up the optimization process by lowering the number of 

function evaluations to meet the local minimum. The mathematical intuition behind RMSProp is as follows: 

 2 2 2

1
1 i

i i
E g E g g 


     
       (18) 
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3) ADADELTA  

The main drawbacks of RMSProp and Adagrad optimizers are as follows:  

 The initial learning rate must and should be manually set. 

 Decaying learning rate issue. 

Due to the earlier problems, the network may not learn new information/knowledge after a few iterations in both optimizers. Hence, 

Adadelta was introduced based on the adaptive learning concept [48]. In Adadelta, instead of considering the sum of all previous 

gradients, we employed an exponential moving average over a period in a given window by the following expression: 

 

   
2

1 1i i iH H g        (20) 

4) ADAPTIVE MOMENT ESTIMATION 

Adaptive movement estimation (Adam) [49] is an extension of SGD that utilizes different learning rates for each iteration. The Adam 

optimizer is developed by combining the features of both RMSProp and Adadelta, integrating moment and adaptive learning rate 

concepts. Unlike in Adadelta and RMSProp, the Adam optimizer also updates the learning rate based on the exponential moving 

average of past gradients ( im
) as follows:      
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5) MAXIMUM ADAPTIVE MOMENT ESTIMATION  

The maximum adaptive moment estimation (AdaMax) [49] is a generalization or extension version of the Adam optimization 

algorithm. In the Adam optimizer, updated weights are inversely proportional to the scaled 2l norm of present and past gradients, but 

in AdaMax, this was extended from the 2l norm to the 
l norm. The mathematical expression for updating weights in AdaMax:   
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6) NESTEROV-ACCELERATED ADAPTIVE MOMENT ESTIMATION 

In Adam, we use different learning rates during the training process; however, this may reduce the learning rate to a very small value. 

Hence, researchers proposed a Nesterov-accelerated moment Adam optimizer (Nadam) by incorporating the Nesterov-accelerated 

moment (NAG) into the Adam optimizer [50], which results in a lower-training time than Adam. In Nadam, the learning rate is 

updated by the following expressions: 
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IV. Results and Discussion 

Medical imaging modalities, namely chest X-ray, CT, and LUS, play a pivotal role in validating the primary prognosis of COVID-19 

from the RT-PCR test. These modalities are also crucial in monitoring disease advancement and patient care. Thus, extracting 

relevant features from imaging approaches is a critical phase of training deep learning models because a model's accuracy 
significantly relies on the features we extracted. Fig. 6 shows feature maps generated by the first three convolution layers of the 
AlexNet architecture. Among X-ray, CT, and LUS, we mainly focus on LUS imagery due to its low-cost and low harm, particularly 

for pregnant women.  
In this research, we mainly focus on the comprehensive analysis of the classification of COVID and non-COVID from LUS imagery 

using various existing pre-trained CNN models. To evaluate the performance of these models, we split the dataset into 80% training 

and 20% testing. Table 12 represents the configurations utilized in the proposed models. The training and testing procedures of the 

suggested models were performed in Python 3 using a high-level application programming interface of TensorFlow, such as the 

Keras deep learning framework, and run on the Collaboratory (Colab) GPU accelerator developed by Google researchers with 25.45 

GB RAM. All these operations were carried out on a Windows-based computer with Intel(R) Core(TM) i3-5005U CPU 

configuration @ 2.00 GHz with 12 GHz RAM. 
TABLE 12 CONFIGURATIONS OF THE PROPOSED ARCHITECTURES 

Optimizers Learning 

Rate 

Batch 

Size 

Epochs 

SGD, Adam, Adagrad, 

Adadelta, AdaMax, 

Nadam, RMSProp 

0.001-0.01 32 30 

 

Tables 13-19 illustrate the performance of thirteen pre-trained deep learning architectures under seven optimization techniques. In 

this work, to analyze the importance of our architectures in predicting COVID-19, we are mainly focused on the F-score, AUC, and 

accuracy since these are some crucial indicators for the analysis of medical image applications [51]. Here, red-colored underlined 

values indicate the topmost (first-best) value. Similarly, purple-colored underlined values show the second-best value and blue-

colored underlined values signify the third-best value of our CNN models. The Adam optimizer performed well compared to the 

other techniques, especially on DenseNet-121, with 100% accuracy, AUC, and F-score. In this work, we examine the experimental 

results in two aspects: 

 Based on optimization algorithms. 

 Based on the deep learning architecture. 

A. Based on optimization algorithms  

From tables 13-19, we made the following observations based on the performance of optimization techniques:  

 The Adam optimizer performed well compared to the other techniques, especially on DenseNet-121, with 100% accuracy, 

AUC, and F-Score since it slows down when converging to the local minima and minimizes the high variance. 

 AdaMax optimization attained more than 99.16% accuracy on almost all the networks except DenseNet-201 and 

MobileNetV2, with a learning rate of 0.002 because it is less sensitive to noise in the gradients. 

 Among all optimizers, Adadelta yields poor outcomes on the proposed pre-trained models except DenseNet-169 because the 

learning rate will become very low in the late training period. Similarly, Adagrad has yet to attain significant performance 

compared to all other optimizers except Adadelta since the learning rate will decrease due to many iterations.   

 RMSProp obtained relatively better performance than Adadelta but is still low compared to other approaches since it may 

replicate the update process around the local minimum in the late training period. 

 Overall the SGD optimizer achieved reasonably good accuracy compared to Adadelta and RMSProp however; it was lower 

than Adam, AdaMax, and Nadam because it may overshoot even after reaching global minima and holds a high variance. 

Based on the above analysis, we conclude that even though the Adam optimizer attained high accuracy (100%), AdaMax performs 

better since it consistently performs well on almost all architectures. 

 
B. Based on the deep learning model 

Tables 13-19, we identify the following remarks based on the performance of pre-trained CNN techniques:   

 Among all the networks, the ResNet model consistently performed well on all optimizers (more than 98% accuracy) 

because for the following reasons:  

o It effectively minimizes the impact of the vanishing gradient problem during the training process. 

o Trained with a large number of layers without improving the percentage of training error. 

 The DenseNet architecture achieved relatively good performance, especially DenseNet-121 on the Adam optimizer, 

which yields the highest accuracy with a value of 100% compared to other pre-trained CNN models due to the following 

features: 

o Features reuse capability. 

o DenseNet works effectively even with limited since it utilizes high-level features. 

o Enhancing feature propagation. 
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 The VGG performs reasonably well compared to AlexNet due to the increasing depth of the model and the usage of a 

small kernel. However, it offers low accuracy compared to ResNet, DenseNet, Inception, Xception, etc., because of the 

vanishing gradient problem. 

 AlexNet yields low performance compared to the other pre-trained architectures, such as ResNet, VGG, and DenseNet, 

because the depth of the network is less, and it is not easy to learn relevant features from images. 

 The Inception V3 and Inception-ResNet-V2 models obtained relatively better classification accuracy than VGG due to 

their computational cost and usage of smaller convolutions. 

 The Xception model is a good improvement in accuracy compared to Inception due to its depthwise separable 

convolutions.  

     

(a) Convolution Layer 1                  (b) Convolution Layer 2                   (c) Convolution Layer 3 

FIGURE 6. Feature maps of the first three convolution layers of the AlexNet model 

 
TABLE 13: PERFORMANCE ANALYSIS OF THE PROPOSED FRAMEWORK WITH THE SGD OPTIMIZER 

Network Performance Measures (%) 

TPR TNR PPV F-Score AUC Accuracy 

AlexNet 99.08 99 99.54 99.31 99.04 99.06 

ResNet-50 98.92 100 100 99.46 99.46(3) 99.26 

ResNet-101 100 99.71 99.83 99.91(1) 99.85(1) 99.89(1) 

ResNet-152 99.7 100 100 99.85(2) 99.85(1) 99.79(2) 

DenseNet-

121 

99.53 99.05 99.53 99.53 99.29 99.37 

DenseNet-
169 

99.36 100 100 99.68(3) 99.68(2) 99.58(3) 

DenseNet-

201 

98.73 95.37 97.64 97.05 98.18 97.58 

InceptionV3 99.37 99.37 99.68 99.52 99.37 99.37 

Inception-
ResNet-V2 

99.06 98.4 99.22 99.14 98.73 98.5 

VGG-16 98.5 99.15 99.5 98.99 98.82 98.74 

VGG-19 97.72 98.18 97.88 97.8 97.8 97.17 

MobileNetV2 99.05 99.38 99.68 99.36 99.21 99.16 

Xception 99.84 98.43 99.22 99.53 99.13 99.37 

TABLE 14 PERFORMANCE ANALYSIS OF THE PROPOSED FRAMEWORK WITH THE ADAM OPTIMIZER

Network Performance Measures 

TPR TNR PPV F-Score AUC Accuracy 

AlexNet 100 98.75 99.37 99.68 99.37 99.58 

ResNet-50 100 95.65 97.83 98.9 97.82 98.53 

ResNet-101 99.05 99.38 99.68 99.36 99.21 99.16 

ResNet-152 99.54 100 100 99.77 99.77 99.68 

DenseNet-

121 

100 100 100 100(1) 100(1) 100(1) 

DenseNet-

169 

99.7 99.67 99.84 99.77 99.68 99.68 

DenseNet-
201 

99.53 96.5 98.3 98.91 98.01 98.53 

InceptionV3 99.84 99.7 99.84 99.84(3) 99.77 99.8(3) 
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Inception-

ResNet-V2 

100 99.7 99.84 99.92(2) 99.85(3) 99.9(2) 

VGG-16 99.24 97.94 99.09 99.16 98.5 98.85 

VGG-19 97.56 100 100 98.76 98.78 98.32 

MobileNetV2 99.68 99.05 99.53 99.6 99.36 99.47 

Xception 99.85 100 100 99.92(2) 99.92(2) 99.9(2) 

 

TABLE 15 PERFORMANCE ANALYSIS OF THE PROPOSED FRAMEWORK WITH THE ADAGRAD OPTIMIZER 

Network Performance Measures 

TPR TNR PPV F-Score AUC Accuracy 

AlexNet 98.17 100 100 99.07 99.08 98.74 

ResNet-50 98.95 99.3 99.7 99.32 99.12 99.05 

ResNet-101 99.7 100 100 99.85(1) 99.85(1) 99.8(1) 

ResNet-152 99.52 97.86 98.9 99.21 98.69 98.95 

DenseNet-

121 

99.84 98.75 99.37 99.6 99.3 99.48 

DenseNet-

169 

99.68 99.37 99.68 99.68(2) 99.52(2) 99.58(2) 

DenseNet-

201 

96.46 86.90 93.6 95.01 91.68 92.97 

InceptionV3 97.99 97.7 98.91 98.45 97.84 97.9 

Inception-

ResNet-V2 

98.7 99.11 99.51 99.1 98.9 98.74 

VGG-16 99.54 98.37 99.23 99.38 98.95 99.16 

VGG-19 99.38 99.02 99.53 99.45 99.2 99.26 

MobileNetV2 99.21 100 100 99.60(3) 99.6(3) 99.47(3) 

Xception 100 98.25 99.02 99.51 99.12 99.37 

 

TABLE 16 PERFORMANCE ANALYSIS OF THE PROPOSED FRAMEWORK WITH THE ADADELTA OPTIMIZER 

Network Performance Measures 

TPR TNR PPV F-Score AUC Accuracy 

AlexNet 94.63 99.6

7 

99.84 97.16 97.15 96.22 

ResNet-50 98.55 98.7

9 

99.35 98.95 98.67(3

) 

98.64(3) 

ResNet-

101 

98.56 99.0

8 

99.52 99.04(2

) 

98.82(2

) 

98.74(2) 

ResNet-

152 

97.53 98.6

8 

99.37 98.44 98.1 97.9 

DenseNet-

121 

99.08 97.3

2 

98.78 98.93 98.2 98.53 

DenseNet-

169 

99.37 99.6

8 

99.84 99.6(1) 99.52(1

) 

99.47(1) 

DenseNet-

201 

96.94 95.3

2 

97.84 97.38 96.13 96.43 

InceptionV

3 

99.38 97.0

8 

98.62 98.99(3

) 

98.23 98.64(3) 

Inception-

ResNet-V2 

96.09 91.7

2 

95.94 96.01 93.90 94.65 

VGG-16 98.31 96.3

7 

98.31 98.31 97.34 97.7 
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VGG-19 98.6 95.4

7 

97.85 98.22 97.03 97.6 

MobileNet

V2 

97.42 93.8

7 

97.27 97.34 95.64 96.33 

Xception 98.42 86.9

4 

93.84 96.07 92.68 94.65 

TABLE 17: PERFORMANCE ANALYSIS OF THE PROPOSED FRAMEWORK WITH THE ADAMAX OPTIMIZER 

Network Performance Measures 

TPR TNR PPV F-Score AUC Accuracy 

AlexNet 98.92 100 100 99.46 99.46 99.26 

ResNet-50 99.68 99.68 99.84 99.76(3) 99.68 99.68(3) 

ResNet-101 100 99.66 99.85 99.92(1) 99.83(1) 99.9(1) 

ResNet-152 99.83 100 100 99.91(1) 99.91(1) 99.9(1) 

DenseNet-

121 

100 99.68 99.84 99.92(1) 99.92(1) 99.9(1) 

DenseNet-

169 

99.54 100 100 99.76(3) 99.77(3) 99.68(3) 

DenseNet-

201 

99.68 95.37 97.66 98.66 97.52 98.22 

InceptionV3 99.48 99.38 99.68 99.58 99.4 99.68(3) 

Inception-

ResNet-V2 

99.84 99.7 99.84 99.84(2) 99.77(2) 99.8(2) 

VGG-16 99.68 98.12 99.06 99.37 98.9 99.16 

VGG-19 99.33 99.43 99.67 99.5 99.38 99.37 

MobileNetV2 99.22 96.75 98.46 98.84 97.98 98.43 

Xception 99.84 99.1 99.52 99.68 99.47 99.58 

 

TABLE 18: PERFORMANCE ANALYSIS OF THE PROPOSED FRAMEWORK WITH THE NADAM OPTIMIZER 

Network Performance Measures 

TPR TNR PPV F-Score AUC Accuracy 

AlexNet 99.37 97.47 98.75 99.06 98.42 98.74 

ResNet-50 98.73 99.38 99.68 99.35 99.05 98.95 

ResNet-101 99.51 99.7 99.84 99.67(3) 99.6 99.58 

ResNet-152 100 98.32 99.24 99.62 99.16 99.47 

DenseNet-121 99.84 100 100 99.92(1) 99.92(1) 99.9(1) 

DenseNet-169 98.93 95.64 98.04 98.48 97.28 97.9 

DenseNet-201 99.54 97.98 99.09 99.31 98.76 99.05 

InceptionV3 100 99.33 99.7 99.85(2) 99.66(3) 99.8(2) 

Inception-

ResNet-V2 

100 99.68 99.84 99.92(1) 99.84(2) 99.9(1) 

VGG-16 99.68 99.07 99.52 99.6 99.37 99.47(3) 

VGG-19 99.7 98.37 99.23 99.46 99.03 99.26 

MobileNetV2 99.23 99.02 99.53 99.38 99.12 99.16 

Xception 98.77 97.7 98.92 98.84 98.23 98.43 

 

TABLE 19 PERFORMANCE ANALYSIS OF THE PROPOSED FRAMEWORK WITH THE RMSPROP OPTIMIZER 

Network Performance Measures 
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TPR TNR PPV F-Score AUC Accuracy 

AlexNet 100 98 99.0

9 

99.54 99 99.37 

ResNet-50 99.07 100 100 99.53 99.53 99.37 

ResNet-

101 

98.55 88.2

5 

94.0

2 

96.23 93.4 94.97 

ResNet-

152 

99.53 99.6

8 

99.8

4 

99.68(3

) 

99.61(2

) 

99.58(3) 

DenseNet-

121 

99.68 99.0

5 

99.5

3 

99.6 99.36 99.47 

DenseNet-

169 

98.6 95.8

3 

97.9

8 

98.28 97.21 97.69 

DenseNet-

201 

99.41 96.0

3 

98.3

9 

98.89 97.72 98.43 

InceptionV

3 

99.67 93.8 97.3

5 

98.5 96.73 97.90 

Inception-

ResNet-V2 

99.85 99.3

2 

99.7 99.77(2

) 

99.58(3

) 

99.68(2) 

VGG-16 99.36 99.0

8 

99.5

2 

99.44 99.22 99.26 

VGG-19 99.68 96.9

4 

98.4

2 

99.04 98.31 98.74 

MobileNet

V2 

98.9 99.0

6 

99.5

2 

99.21 98.98 98.95 

Xception 100 99.4 99.6

8 

99.84(1

) 

99.7(1) 99.8(1) 

C. Comparison with Existing Models 

The classification performance of the implemented framework was compared with the state-of-the-art approaches, and their 

outcomes are represented in Table 20. From this, we observed that the adopted DenseNet-121 model with transfer learning achieved 

an accuracy of 100% on the Adam optimizer with a learning rate of 0.002. Hence, the presented deep transfer learning architecture 

can be used as a predictive tool in clinical analysis to assist doctors in identifying COVID-19 from LUS imagery data.   

 
TABLE 20 COMPARATIVE ANALYSIS OF THE PROPOSED AND EXISTING ARCHITECTURES  

Reference Method Optimizer Learning 

Rate 

Accuracy 

Michael 

et al. [14] 

VGG-16 - 0.0001-

0.00001 

98.54% 

Julia et 

al. [17] 

Inception-

V3 

Adam 0.0001 91.5% 

Hui et al. 

[18] 

Multi-

Scale 

RCNN 

Adam 0.00001 95.11% 

The 

Proposed 

DenseNet-

121 

Adam 0.002 100% 

 
V. Conclusion and Future Scope 

 

Researchers have developed a deep learning-based COVID-19 automatic screening tool using LUS data instead of CT and X-ray 

images. The DenseNet-121 model achieved 100% accuracy, F-Score, and AUC in identifying COVID-19 samples from non-

COVID samples. However, the project has limitations due to a limited LUS database. Future work aims to incorporate the 

model's results into a larger database and extend it to multiclass classification for bacterial pneumonia and non-COVID samples. 
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