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Strengthening Android Malware Detection: from 
Machine Learning to Deep Learning 

 
Abstract— In the recent era of modern world, Android malware 
continues to escalate, the challenges associated with its usage are 
growing at an unprecedented rate. This cause a rapid growth in 
Android malware infections points to an alarming and swift rise 
in their prevalence, signalling a cause for concern. Traditional 
anti-malware systems, reliant on signature-based detection, 
prove inadequate in addressing the expanding scope of newly 
developed malware. Various strategies have been introduced to 
counter the escalating threat in the Android mobile field, with 
many leaning towards machine learning (ML) models limited by 
a constrained set of features. This paper introduces a novel 
approach employing a deep learning (DL) framework, 
incorporating a significant number of diverse features. The 
proposed framework uses Deep Neural Network (DNN) 
techniques on OmniDroid dataset, comprising 25,999 features 
extracted from 22,000 Android Package Kits (APKs). Of these, 
16,380 features are meticulously selected for analysis, 
encompassing Permission, Opcodes, API calls, System 
Commands, Activities, and Services. Additionally the data is 
partitioned feature wise and subjected to feature selection on 
each feature set to ensure equitable consideration of all features. 
A comparative analysis is presented by comparing the 
framework accuracy with the accuracies produced by the 
existing ML models. The presented framework demonstrates 
notable enhancements in detection accuracy, achieving 89.04% 
accuracy, attributed to the incorporation of a substantial number 
of features. 
 

Keywords— Android malware; malware detection; deep learning; 
artificial neural network; feature selection; 

I. INTRODUCTION 

The adoption of technology is making Smartphones an 
essential part of everyday life and an important phenomenon in 
the mobile security landscape. A study says every day 11000 
new malware apps come to market whose main target is 
individual handheld devices [1]. The widespread anxiety 
induced by the COVID-19 pandemic encountered various 
malicious entities such as banking Trojans, spyware adware 
droppers, etc. [2]. It is noteworthy that the Google Play app 
store alone hosts approximately 2.57 million Android 
applications of diverse types [3]. Users are also able to use 
applications from third parties in the Android operating system 
platform that misleads the users to download malicious 
applications from the attacker’s server. 

To develop an Android app developer has to add certain 
files into the package format with a .apk extension. 
AndroidManifest.xml is one among them that reveals various 
information about the app such as the version of the package, 
permissions it needs, intents, actions, services, etc. 

The classes.dex file encapsulates the complete byte code 
that delineates the genuine functionality of the application. In 
upholding access control, Android utilizes a permission-based 
security model, meticulously granting applications only those 
permissions explicitly allowed by the user, thereby enhancing 
the overall security framework. To attain access, permissions 
must be explicitly listed in the AndroidManifest.xml file. 
Despite the incorporation of these security features, Android 
continues to face a diverse range of attacks, highlighting the 
persistent challenges in safeguarding the platform against 
evolving cybersecurity threats. 

Most of the antivirus detection systems use signature-based 
detection that can be easily obfuscated by a malware writer by 
just changing the signature of the malicious application. A little 
obfuscation performed on a malware code can also evade 
detection. Zhan et al. [4] in their experiment used a patch 
technique where a piece of code is appended at a nonfunctional 
location of the code that resulted the malware file evade 
detection. Android malware detection is a vital issue for the 
android users. Numerous researchers have put forth various 
solutions aimed at mitigating Android malware attacks, 
reflecting ongoing efforts to enhance the platform's resilience 
against malicious threats. The feasibility of the detection model 
may be compromised if it does not incorporate a diverse set of 
features during the training process, underscoring the 
importance of exploring a wide range of characteristics for 
robust model development. Based on the literature survey in 
this work, it is observed that many detection frameworks are 
available but the frameworks often undergo training on a 
significantly limited number of features to mitigate model 
complexity. This in turn may affect the detection possibility of 
malicious application whose features are not considered at the 
time of feature selection in a particular dataset. Ignorance of 
such features may have an erroneous impact on the detection 
model. Instead, if a substantial no of features are considered as 
input features to train a model that may increase the detection 
possibility of a malicious application. Considering above 
problem in account, this proposed framework gives a solution 
on the subsequent following sections. This research is 
dedicated to developing a supervised deep learning framework 
using DNN techniques utilizing an array of static features 
identified through an extensive review of diverse research 
works. A comparative analysis is made by conducting several 
experiments using a substantial number of features as input.  

The subsequent sections covers: the related literature survey 
are listed in Section 2, in Section 3 methodology of the 
proposed system is explained, proposed framework is 
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enlightened in Section 4, Section 5 outlines the experimental 
setup, result and discussion derived from the experiments are 
briefed in Section 6, Section 7 produce a comprehensive 
comparative analysis and finally Section 8 summarizes the 
work. 

II. LITERATURE SURVEY 

Gopinath et al. [5] surveyed the efficiency of deep learning 
in the field of malware detection and stated that models based 
on deep learning are robust and offer solutions to the 
shortcomings of traditional detection models.  

Wang et al. [6] proposed a Multi-Network (MN) based 
classification model with multilevel permission extraction. 
They extracted 135 permissions and applied Principal 
component analysis (PCA) on permissions to eliminate 
redundant features and finally used 25 features for 
classification. They compared MN with Support Vector 
Machines (SVM), Decision Tree (DT), and Random Forest 
(RF) algorithms and found that MN performed better with over 
95.8% accuracy. 

ALTAİY et al. [7] In their study, utilized three deep learning 
methods, namely Convolutional Neural Network (CNN), DNN, 
and Long-Short-Term Memory Network (LSTM), focusing on 
a dataset comprising network traffic of botnet samples. Their 
experimental results indicated that, among the three methods, 
LSTM demonstrated superior performance. 

Bai et al. [8] in their study introduced a framework aimed at 
Android malware family classification through the analysis of 
permissions, API calls, and Intents. Their research included a 
comparative evaluation of multiple machine learning models, 
including SVM, DT, RF, K-Nearest Neighbor (KNN), and 
Multi-Layer Perceptron (MLP), with findings indicating that 
MLP outperformed the other models in terms of classification 
accuracy. 

Le et al. [9] proposed a machine learning-based approach on 
three different feature sets such as APIs, permissions, and other 
Characteristics of APK files such as the size of the application, 
the number of classes included in the application, the number 
of User Interface created by that the application. They used RF, 
Stochastic Gradient Boosting (SGB), and AdaBoost 
classification methods. They extracted 65 features; 62 features 
about behavior and permissions and three features about the 
size of the application, the number of classes in the application, 
and the number of User Interface of the application. They 
achieved 98.66% accuracy using the RF among all other 
models.   

Rodrigo et al. [10] introduced a hybrid detection model 
utilizing the Omnidroid dataset. Employing Pearson 
Correlation for feature selection, they narrowed it down to 840 
features. The model underwent training and validation using a 
neural network, yielding an initial accuracy of 85.8%. 
Subsequent refinement involving threshold relabeling led to a 
notable accuracy boost, reaching 92.9%. 

Oliveira et al. [11] introduced a hybrid detection approach 
combining the results of different models employing DNN 

techniques. One model utilizes 200 static features, the second 
model uses images, and the third model uses system call 
sequences. The final classifier produced 90.9% accuracy on a 
combination of all features. 

Gao et al. [12] proposed a framework using DNN and GAN 
for malware family classification against packed malware. 
They considered two datasets of packers from 10 different 
malware families. One dataset contains malware packed by a 
single packer, and the other dataset contains malware packed 
by multiple packers. They used DNN for malware detection 
and family classification. The detection accuracy of the packed 
malware achieved 98.20% and for family classification of the 
malware they achieved 91.66% accuracy which is elevated to 
97.8% after using GAN. Hence they concluded that their 
framework is a solution to the packed malware. 

Li et al. [13] in their proposed framework addressed the 
issue that, models trained on outdated datasets often result in 
suboptimal decision-making, particularly when confronted with 
contemporary malware types. instead of using DNN for 
prediction and classification they used the misclassifications or 
uncertainties done by the model and trained another model 
called the correction model that evaluates whether a sample has 
been accurately or inaccurately predicted by the DNN model, 
providing crucial insights into the model's performance and 
identifying areas for improvement. Then they used the 
outcomes of the Correction Model to refine and optimize the 
performance of the DNN model, thereby improving its 
accuracy and effectiveness in predicting malware instances. 
Their proposed model achieved 94.38% accuracy. 

Aamir et al. [14] introduced a framework using CNN for 
Android malware detection. They used the Drebin dataset for 
their experiment. As CNN works on image data they converted 
the APK files into images using techniques like Spectrogram or 
Scalogram and trained the model using CNN and achieved an 
accuracy of 99.92%. 

Nasser et al. [15] proposed a deep learning-based detection 
model called DL-AMDet. Their model performs the detection 
in stages. In the first stage, the model performs static analysis 
using permission and API calls trained on the CNN-BiLSTM 
model. if the application is detected as malware in the static 
analysis stage the model does not perform the dynamic analysis 
otherwise if the application is detected as nonmalicious then the 
application again has to go for dynamic analysis. The used 
system calls as input feature for an anomaly detection model 
using deep autoencoders. They evaluated the model on 
different datasets and achieved 99.93% higher accuracy in the 
anomaly detection model. 

III. PROPOSED METHODOLOGY 

For detection, the proposed framework uses six important 
features such as permissions, opcodes, API calls, system 
commands, activities, and services. Obtaining a representative 
dataset is a difficult task because of the access restriction by its 
researchers. In this paper OmniDroid dataset [16] is used for 
the experiments. Out of 25999 features 16380 distinct features 
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are considered for this experiment including 5500 Permissions, 
224 Opcodes, 2128 API calls, 103 System Commands, 6089 
Activities, and 2336 Services. The features are extracted from 
11000 benign and 11000 malicious samples. The details about 
the features are explained below. 

Permissions: Permissions are nothing but the safeguards that 
control the access rights of the apps to the features and data of 
the device. The permissions are declared under <uses-
permission> of the AndroidManifest.xml file of the APK. 
Permissions play a crucial role in malware detection. It brings 
the user's consent towards the app's access to sensitive data by 
seeking an explicit grant for the requested access. Permissions 
are categorized into normal, dangerous, and signature. Fig. 1 
lists some permission extracted from a malicious app of Trojan 
type. It contains both normal and dangerous permission. As 
shown in the bellow figure the app asks for INTERNET, and 
ACCESS_NETWORK_STATE permissions, which are 
commonly asked by most applications and considered normal 
permissions whereas the other permissions such as; 
READ_PHONE_STATE, WRITE_EXTERNAL_STORSGE, 
MOUNT_UNMOUNT_FILESYSTEM, READ_SETTINGS 
and WRITE_SETTINGS are the dangerous permissions that 
may authorize access to external data and resources beyond the 
application's controlled environment, in most cases putting user 
data and system integrity at risk. Various studies have been put 
forth to date aimed at detecting Android malware through the 
analysis of permission features [17] [18]. 

 

Fig. 1 Example of Normal and Dangerous Permissions 

Opcodes: these are the readable instructions in a program that 
are executed by the Dalvik Virtual Machine (DVM). These 
opcodes are generated during the compilation process that 
represents the operations to be performed within the 
application. Fig. 2 is an example that shows the opcodes that 
can be extracted from Android applications. Many studies with 
good performance have been conducted so far utilizing opcodes 
[19] [20].  

 
Fig. 2 Example of Opcodes  

Services: services are one of the primary components that 
every Android app has to have. Services do not need a visible 
interface instead they seamlessly operate in background for the 
tasks like downloading a large file, uploading a large data, 
playing music, etc. Inter-process Communication (IPC) also 
happens through services between the apps. Fig. 3 shows an 
example of the services listed by a malicious app in its 
AndroidManifest.xml file. 

 
Fig. 3 Example of Services 

Activities: activities in Android applications are another 
component that operates in individual User Interfaces (UI) 
within an app. They are the entry points for user interaction like 
the main () method in other programs. The code initiation by 
OS happens by a callback method in an activity instance and it 
corresponds to stages of lifecycle to accomplish a single task. 
Activities manage the user interface, handle user input events, 
and facilitate interaction between the app and the user. They 
play a crucial role in the Android app lifecycle, transitioning 
between different states such as creation, pausing, resuming, 
and destruction based on user interaction and system events. 
Fig. 4 is an example to show the activities in an application. 

 

Fig. 4 Example of Activities 
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API Calls: API calls in Android refer to the services, resources, 
or functionalities the applications access from remote servers 
or web services. Any action that needs interaction with the 
remote server such as data fetching, user authentication, 
sending notifications, etc. is done by making API calls. These 
calls are made using HTTP requests by the API (Application 
Programming Interface) of the service provider. Fig. 5 shows 
the API calls of an application mentioned in its classes.dex file. 
The API calls involve; constructing the request, sending the 
request, handling the response, parsing the response, and 
finally performing the requested action or updating the user 
interface (UI). The HTTP request contains the method, URL, 
header, and body. Then the constructed request is sent using 
any of the libraries like Retrofit, Volley, etc. Once the request 
is processed by the server, the application receives a response. 
This response may include data or the status of the request 
such as success or failure. Then the received response is parsed 
to extract the relevant information and based on it the 
application performs the specific required action. The API call 
is another extensively utilized feature for Android malware 
detection, with numerous researchers incorporating it into their 
studies [21] [22]. 

 

Fig. 5 Example of API Calls  

System Commands: system commands sometimes modify the 
installed applications, which can potentially cause unintended 
damage to the device. Some common system commands are; 
logcat, reboot, install, and uninstall, etc. 

3.1. Data Pre-processing and Feature Selection 

In this study data cleaning process involves a row reduction 
technique to eliminate duplicate entries. Rather than 
conducting feature selection on the entire dataset as a whole, 
the data is partitioned feature-wise, and feature selection is 
subsequently carried out using the Information Gain (IG) 
algorithm on each feature set separately. Each feature's IG 
score is computed by subtracting individual feature entropies 
from the entropy of the output column, representing 
uncertainty in the given context. The calculation of IG scores 
for each feature follows Equation (1). 

             )()()( ii fHyHfIG                                                (1)                                                                                           

In Equation (1), IG(fi) is the score calculated using the IG 
technique of individual features that reflects the amount of 
information those features contain, is the feature column in the 
dataset, i represents the column number in the dataset, H (y) 
represents the entropy of output column, H () is the entropy of 
each feature. In this proposed work individual features 
(Permissions, Opcodes, API calls, System Commands, 
Activities, and Services) are separated from the whole dataset. 
Then using the IG technique the features are evaluated and 
scored to understand the information content of individual 
feature types such as; the impact of permission in malware 
detection, the impact of API calls in malware detection, and 
likewise for other features. Figures 2 through 6 provide a 
comprehensive insight into the information content of various 
feature types. Fig. 2 represents the information content of 
permissions concerning the target variable. Fig. 3 represents 
the information content of services concerning the target 
variable. Fig. 4 represents the information content of opcodes 
concerning the target variable. Fig. 5 represents the 
information content of activities concerning the target 
variable. Fig. 6 represents the information content of API calls 
concerning the target variable and Fig. 7 represents the 
information content of system commands concerning the 
target variable. 

 

 

 

 

 

 

Fig. 2 ranking of the permissions in descending order. 

 

Fig. 3 ranking of the services in descending order. 
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Fig. 4 ranking of the opcodes in descending order. 

 

Fig. 5 ranking of the activities in descending order. 

 

Fig. 6 ranking of the API calls in descending order. 

 

Fig. 6 ranking of the system commands in descending order. 

Upon individual feature evaluation, it becomes evident that 
each feature makes a distinct contribution to the prediction of 
the output. When multiple feature types are considered within a 
single dataset, there exists a possibility that during feature 
selection, the algorithm might disregard one feature type 
entirely due to its lower information gain score compared to 
another feature type. For instance, in scenarios where features 
of opcode type demonstrate higher information gain values 
than those of permission types, permission type features may 
probably be entirely overlooked during the feature selection 
stage. To address this scenario, feature selection is applied 
individually to each feature type ensuring equal importance is 
given to all considered feature types. Based on the observation, 
40% of features from each feature type are selected and 
subsequently combined into a single dataset. Then IG is again 
applied to observe the considered data and calculated IG score 
for the considered features.  Fig. 7 represents the IG score of 
the features and the features are plotted based on the score in 
descending order as shown in Fig. 8. 

 
 

 

 

Fig. 7 IG score of the features  
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Fig. 8 Features plotted in descending IG score 

IV. PROPOSED FRAMEWORK 

This segment presents a framework using the DNN 
approach for Android malware detection. The DNN 
architecture encompasses the arrangement of an input layer, 
hidden layers, and an output layer. Through forward 
propagation, the data is computed, and subsequently, the back-
propagation algorithm is employed to fine-tune the efficient 
parameters at each layer.  

 The input is given to the network in batches for processing. 
The hidden layers present in the network process the input and 
the output is predicted by the neurons in the output layer.  

The output computed by the model is expressed in a 
simplified form by equation (2). The model incorporates the 
rectified linear activation unit (ReLU) for non-linear 
transformations on each hidden layer. It addresses the 
vanishing gradient problem as denoted in equation (3). The 
computation at the output layer by the sigmoid activation 
function is shown in equation (4).  

b
n
p

n
ihiddenrelusigmoidn lffZ ))))(((( 11                (2)                                                          

where, NnZf nrelu  ),,0max(                       (3)                                                                           

and,
)(1

1
zsigmoid

e
f


                              (4) 

In equation (4); ‘i’ is the number of hidden layers the network 
contains, ‘p’ is the number of epochs, and Zn is the model 

output score.  

Table 1: The final set of model parameters for the proposed 
system 

Hyper-Parameters in the 
Network 

Values 

Number of Epochs 400 
Number of hidden layers 13 

Dropout 0.2 
Batch Size 128 

Loss Optimization function Binary_crossentropy 

Efficiently training an Artificial Neural Network (ANN) 
demands significant effort in the exploration and identification 
of optimal parameters that enhance the model's performance. 
Instead of employing a trial-and-error approach to determine 
efficient parameter values, the experiments utilized the 
RandomSearch optimization algorithm. This algorithm 
identifies a suitable combination of hyperparameters, 
encompassing variables such as the number of hidden layers, 
the number of neurons in each hidden layer, and the learning 
rate, among others. Several experiments were performed with 
epoch (number of times the network performs learning) 
numbers (i.e., 50, 100, 200, 400, 500), with 5 values for the 
dropout rate (0.0, 0.1, 0.2, 0.3, 0.5). Based on the results 
obtained in different experiments 400 as the epoch no and the 
dropout rate of 0.2 as best values are considered for all the 
experiments. In this study, the considered hyper-parameters are 
explained in Table 1. 

In this proposed model regularizers are used at different 
levels of the model such as kernel level, bias level, and output 
layer with L2 regularization penalty to deal with the overfitting 
problem during model training.  The loss calculation by the 
model using the L2 regularization technique is represented in 
Equation (5) which says the sum of the squares of the entire 
feature weights are added to the original entropy and the 
penalty is calculated based on it. 

  


n

k iwEtionregularizawithLoss
0

2__      (5)                  

In equation (5); E is entropy (the loss generated by the model),
 is a regularization constant ( λ > 0 ), w  represent the 
feature weights. 

V. EXPERIMENTAL SETUP 

All experiments conducted in this study utilized a "Tesla 
T4" GPU, with TensorFlow 2.8.0 [23] as the backend and 
Keras [24], provided by Google Colaboratory. The 
experimental setup employed a system running Microsoft 
Windows 10 Professional (64-bit) with a 1.80 GHz Intel Core 
i5 processor and 8.00 GB of memory. Dataset preprocessing 
was facilitated using the Scikit-learn [25] Python library. 
Model performance was evaluated using key metrics, including 
True Positives (TP), True Negatives (TN), False Positives 
(FP), and False Negatives (FN), which are essential 
components in computing the mean accuracy derived using 
Equation (6). 

FNFPTPTN

TNTP
Accuracy




    (6) 

 
 

VI. RESULT AND DISCUSSION 

 
Multiple experiments are conducted on the proposed system 

to generate a comprehensive comparative analysis, shedding 
light on various aspects of the study. It includes evaluating the 
impact of feature selection versus without considering feature 
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selection, as well as contrasting the performance of machine 
learning algorithms with the proposed DNN-based model 
using a substantial number of features. The framework's 
effectiveness is determined through the analysis performed in 
the following sections.  

4.1. Analysis Based on the Data Without Feature Selection: 

This is the first set of experiments performed on the 
framework without performing feature selection. A total of 
16,380 distinct static features, including permissions, opcodes, 
API calls, system commands, Activities, and Services, are 
taken into account for analysis. The dataset is divided into 
three parts such as 75% of the whole data is used for training 
15% for testing and 10% for validation. The model is trained 
using deep neural network techniques. Keras TensorFlow is 
used to deal with the overfitting of the model. Fig.2 describes 
the system architecture. To ensure a valid comparative 
analysis, the model parameters, as outlined in Table 1, remain 
consistent across all experiments conducted in this study. 

Accuracy and Loss: 

The experiments are done on the considered features 
without performing any feature selection mechanism on the 
dataset and accuracy and loss are measured. The model 
achieves a mean accuracy of 87.22%, as depicted in Fig. 2, 
while demonstrating a mean loss of 0.71 on the testing set, as 
illustrated in Fig. 3. It is observed that after a certain no of 
iterations, the model loss is not reducing anymore, it is floating 
between particular ranges from 0.60 to 0.71. 

 
Fig.  2 : Model Accuracy Score Without Feature Selection 

 

Fig.  3 : Model Loss Score Without Feature Selection 

4.2. Analysis Based on the Data With Feature Selection: 

This is another set of experiments performed on the 
framework with the same model parameters, but here feature 
selection is performed on the dataset using the IG method. 
Based on the IG ranking of the features it is observed that near 
about 50% of the total features have more or less contribution 
to the dataset and the rest of other features have very less or 
zero contribution to the dataset. Out of 16380 features 6552 
features from the feature set are considered for classification 
purposes. 

Accuracy and Loss: 

Validation accuracy and validation loss are assessed on the 
feature-selected dataset containing 6552 features. The findings 
reveal a mean accuracy of 89.04% and a decreasing mean loss 
of 0.61 on the testing set following feature selection, as 
illustrated in Fig. 4 and Fig. 5. 

 
Fig.  4: Model accuracy score with feature selection

 
Fig.  5 : Model loss score with feature selection 

VII. COMPARISON ANALYSIS 

This section performs the comparison between the results 
obtained by performing feature selection and without 
considering feature selection. A detailed breakdown of the 
comparative analysis, focusing on evaluation metrics such as 
accuracy and loss, is presented in Fig. 6 and Fig. 7. Accuracy 
and loss are monitored in both the training set and testing set. 
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Fig.  6: Comparison of model accuracy score 

 
Fig.  7: Comparison of model loss score 

Fig. 6 clearly illustrates that the accuracy of the model on 
feature selected dataset is improved from 87.22% to 89.04% 
with considering feature selection. 87.22% is the accuracy 
obtained by the model on the whole dataset without performing 
any feature selection. Similarly, Fig. 7 represents the model 
loss for both experiments. It is observed that the model loss is 
reduced from 0.71 to 0.61 with feature-selected data.  

7.1 Time Comparison Between Both the Experiments: 

Based on the statistics of Table 2; it is observed that model 
training time for the set of experiments with feature selection 
requires comparatively less time compared to experiments 
without considering feature selection as described in Table 3. 
Though the feature selection process takes a little extra time 
(10 minutes) as it is a one-time process this time can be 
ignored in the model evaluation process. In our experiment 
sufficient number of features is considered as compared to the 
other existing models in the literature survey as shown in Table 
3. This implies the coverage of the most possible vulnerable 
holes for malware detection. 

 

 

 

Table 2:  Time Comparison between Both the Experiments. 

Steps  With feature 
selection 

Without feature 
selection 

IG calculation 10 minute Nil 
Feature 
selection 

10 minute Nil 

Model training 41 sec (100 
epochs) 

60 sec (100 epochs) 

92 sec (200 
epochs) 

130 sec (200 epochs) 

174 sec (400 
epochs) 

250 sec (400 epochs) 

Model 
validation 

1 sec 1 sec 

Time taken for 
training 

5 minute 7 sec 7 minute 20 sec 

Total time 
taken 

25 minute 8 sec 7 minute 21 sec 

 

7.2 Comparison with other machine learning models: 

In the assessment of the proposed system, the model's 
performance is compared with the performance of other 
machine learning methods employing the same dataset. The 
performance comparison, outlined in Table 3, provides insights 
into the efficacy of the approach relative to other machine 
learning classifiers. 

Table 3: Comparison with other Machine Learning models 
based on Accuracy 

Classifier  Accuracy(without 
feature selection) 

Accuracy(with 
feature selection) 

RF 86.58% 87.37% 
KNeighbors 82.32% 83.57% 
SVC 85.30% 85.44% 
DecisionTree 83.94% 84.44% 
DNN 87.22% 89.04% 

The above results show that all classification models 
employed in our research work effectively in detecting 
malware apps with a marginal difference. The RF classifier 
gives better accuracy compared to other considered ML 
classifiers. However, the proposed DNN model gives better 
results than the RF classifier because neural networks perform 
better on large amounts of training data to give better detection 
accuracy.  

7.3 Comparison With Similar Work 

To show the effectiveness of the framework the accuracy 
obtained by our proposed framework is compared with other 
related static approaches based on the same OmniDroid dataset 
[16] listed in the literature survey section. Rodrigo et.al [10] 
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and Oliveira et.al [11] also used the OmniDroid dataset. The 
result they obtained in their static detection models is quite 
impressive and the result obtained by our proposed model is 
also better reaching an accuracy of 89.04%, provided our 
proposed model is trained on a sufficient number of features as 
shown in Table 4. It is believed that when the dataset is bigger 
enough, it would be more representative and consequently the 
resulting classifier is more effective in detecting malicious 
content. Therefore, the experimental results affirm the 
assertion that the proposed model yields substantial 
improvement in the realm of malware detection. 

Table 4: Comparison with Similar Works in terms of 
Number of Features. 

Other Similar Works Number of Features used 

 Wang et.al. [6] 25 
Le et.al[9] 65 
Rodrigo et.al [10] 840 
Oliveira et.al [11] 200 
Proposed framework 6552 

VIII. CONCLUSION 

In response to the escalating infection rate of Android 
malware, a critical need for gateway-level malware detection 
has emerged. This study introduces a framework that employs 
DNN techniques, on static features such as permissions, 
Opcodes, API calls, Activities, Services, etc. extracted from 
Android applications. Feature selection is independently 
carried out on each feature set to prevent overlooking any 
specific type of feature.The proposed framework demonstrates 
a remarkable 89.04% accuracy, leveraging an extensive feature 
set for model training. This not only signifies a more precise 
malware detection capability but also outperforms frameworks 
trained on limited feature sets. Comparative analysis with 
existing literature and studies utilizing the OmniDroid dataset 
reveals that the proposed system is validated on a substantial 
number of features, surpassing the accuracy achieved by 
models with fewer features. As part of future work, we aim to 
enhance malware detection accuracy further by exploring 
additional deep-learning methods. 
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