
1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

14	

15	

16	

17	

18	

19	

20	

21	

22	

23	

24	

25	

26	

27	

28	

29	

30	

31	

32	

33	

34	

35	

36	

37	

38	

39	

40	

41	

42	

43	

44	

45	

46	

47	

48	

49	

50	

51	

52	

53	

54	

55	

56	

57	

60	

61	

62	

63	

64	

65	

Strengthening Android Malware Detection: from
Machine Learning to Deep Learning

Abstract— In the recent era of modern world, Android malware
continues to escalate, the challenges associated with its usage are
growing at an unprecedented rate. This cause a rapid growth in
Android malware infections points to an alarming and swift rise
in their prevalence, signalling a cause for concern. Traditional
anti-malware systems, reliant on signature-based detection,
prove inadequate in addressing the expanding scope of newly
developed malware. Various strategies have been introduced to
counter the escalating threat in the Android mobile field, with
many leaning towards machine learning (ML) models limited by
a constrained set of features. This paper introduces a novel
approach employing a deep learning (DL) framework,
incorporating a significant number of diverse features. The
proposed framework uses Deep Neural Network (DNN)
techniques on OmniDroid dataset, comprising 25,999 features
extracted from 22,000 Android Package Kits (APKs). Of these,
16,380 features are meticulously selected for analysis,
encompassing Permission, Opcodes, API calls, System
Commands, Activities, and Services. Additionally the data is
partitioned feature wise and subjected to feature selection on
each feature set to ensure equitable consideration of all features.
A comparative analysis is presented by comparing the
framework accuracy with the accuracies produced by the
existing ML models. The presented framework demonstrates
notable enhancements in detection accuracy, achieving 89.04%
accuracy, attributed to the incorporation of a substantial number
of features.

Keywords— Android malware; malware detection; deep learning;
artificial neural network; feature selection;

I. INTRODUCTION

The adoption of technology is making Smartphones an
essential part of everyday life and an important phenomenon in
the mobile security landscape. A study says every day 11000
new malware apps come to market whose main target is
individual handheld devices [1]. The widespread anxiety
induced by the COVID-19 pandemic encountered various
malicious entities such as banking Trojans, spyware adware
droppers, etc. [2]. It is noteworthy that the Google Play app
store alone hosts approximately 2.57 million Android
applications of diverse types [3]. Users are also able to use
applications from third parties in the Android operating system
platform that misleads the users to download malicious
applications from the attacker’s server.

To develop an Android app developer has to add certain
files into the package format with a .apk extension.
AndroidManifest.xml is one among them that reveals various
information about the app such as the version of the package,
permissions it needs, intents, actions, services, etc.

The classes.dex file encapsulates the complete byte code
that delineates the genuine functionality of the application. In
upholding access control, Android utilizes a permission-based
security model, meticulously granting applications only those
permissions explicitly allowed by the user, thereby enhancing
the overall security framework. To attain access, permissions
must be explicitly listed in the AndroidManifest.xml file.
Despite the incorporation of these security features, Android
continues to face a diverse range of attacks, highlighting the
persistent challenges in safeguarding the platform against
evolving cybersecurity threats.

Most of the antivirus detection systems use signature-based
detection that can be easily obfuscated by a malware writer by
just changing the signature of the malicious application. A little
obfuscation performed on a malware code can also evade
detection. Zhan et al. [4] in their experiment used a patch
technique where a piece of code is appended at a nonfunctional
location of the code that resulted the malware file evade
detection. Android malware detection is a vital issue for the
android users. Numerous researchers have put forth various
solutions aimed at mitigating Android malware attacks,
reflecting ongoing efforts to enhance the platform's resilience
against malicious threats. The feasibility of the detection model
may be compromised if it does not incorporate a diverse set of
features during the training process, underscoring the
importance of exploring a wide range of characteristics for
robust model development. Based on the literature survey in
this work, it is observed that many detection frameworks are
available but the frameworks often undergo training on a
significantly limited number of features to mitigate model
complexity. This in turn may affect the detection possibility of
malicious application whose features are not considered at the
time of feature selection in a particular dataset. Ignorance of
such features may have an erroneous impact on the detection
model. Instead, if a substantial no of features are considered as
input features to train a model that may increase the detection
possibility of a malicious application. Considering above
problem in account, this proposed framework gives a solution
on the subsequent following sections. This research is
dedicated to developing a supervised deep learning framework
using DNN techniques utilizing an array of static features
identified through an extensive review of diverse research
works. A comparative analysis is made by conducting several
experiments using a substantial number of features as input.

The subsequent sections covers: the related literature survey
are listed in Section 2, in Section 3 methodology of the
proposed system is explained, proposed framework is

IJCDS 1571000835

1

enlightened in Section 4, Section 5 outlines the experimental
setup, result and discussion derived from the experiments are
briefed in Section 6, Section 7 produce a comprehensive
comparative analysis and finally Section 8 summarizes the
work.

II. LITERATURE SURVEY

Gopinath et al. [5] surveyed the efficiency of deep learning
in the field of malware detection and stated that models based
on deep learning are robust and offer solutions to the
shortcomings of traditional detection models.

Wang et al. [6] proposed a Multi-Network (MN) based
classification model with multilevel permission extraction.
They extracted 135 permissions and applied Principal
component analysis (PCA) on permissions to eliminate
redundant features and finally used 25 features for
classification. They compared MN with Support Vector
Machines (SVM), Decision Tree (DT), and Random Forest
(RF) algorithms and found that MN performed better with over
95.8% accuracy.

ALTAİY et al. [7] In their study, utilized three deep learning
methods, namely Convolutional Neural Network (CNN), DNN,
and Long-Short-Term Memory Network (LSTM), focusing on
a dataset comprising network traffic of botnet samples. Their
experimental results indicated that, among the three methods,
LSTM demonstrated superior performance.

Bai et al. [8] in their study introduced a framework aimed at
Android malware family classification through the analysis of
permissions, API calls, and Intents. Their research included a
comparative evaluation of multiple machine learning models,
including SVM, DT, RF, K-Nearest Neighbor (KNN), and
Multi-Layer Perceptron (MLP), with findings indicating that
MLP outperformed the other models in terms of classification
accuracy.

Le et al. [9] proposed a machine learning-based approach on
three different feature sets such as APIs, permissions, and other
Characteristics of APK files such as the size of the application,
the number of classes included in the application, the number
of User Interface created by that the application. They used RF,
Stochastic Gradient Boosting (SGB), and AdaBoost
classification methods. They extracted 65 features; 62 features
about behavior and permissions and three features about the
size of the application, the number of classes in the application,
and the number of User Interface of the application. They
achieved 98.66% accuracy using the RF among all other
models.

Rodrigo et al. [10] introduced a hybrid detection model
utilizing the Omnidroid dataset. Employing Pearson
Correlation for feature selection, they narrowed it down to 840
features. The model underwent training and validation using a
neural network, yielding an initial accuracy of 85.8%.
Subsequent refinement involving threshold relabeling led to a
notable accuracy boost, reaching 92.9%.

Oliveira et al. [11] introduced a hybrid detection approach
combining the results of different models employing DNN

techniques. One model utilizes 200 static features, the second
model uses images, and the third model uses system call
sequences. The final classifier produced 90.9% accuracy on a
combination of all features.

Gao et al. [12] proposed a framework using DNN and GAN
for malware family classification against packed malware.
They considered two datasets of packers from 10 different
malware families. One dataset contains malware packed by a
single packer, and the other dataset contains malware packed
by multiple packers. They used DNN for malware detection
and family classification. The detection accuracy of the packed
malware achieved 98.20% and for family classification of the
malware they achieved 91.66% accuracy which is elevated to
97.8% after using GAN. Hence they concluded that their
framework is a solution to the packed malware.

Li et al. [13] in their proposed framework addressed the
issue that, models trained on outdated datasets often result in
suboptimal decision-making, particularly when confronted with
contemporary malware types. instead of using DNN for
prediction and classification they used the misclassifications or
uncertainties done by the model and trained another model
called the correction model that evaluates whether a sample has
been accurately or inaccurately predicted by the DNN model,
providing crucial insights into the model's performance and
identifying areas for improvement. Then they used the
outcomes of the Correction Model to refine and optimize the
performance of the DNN model, thereby improving its
accuracy and effectiveness in predicting malware instances.
Their proposed model achieved 94.38% accuracy.

Aamir et al. [14] introduced a framework using CNN for
Android malware detection. They used the Drebin dataset for
their experiment. As CNN works on image data they converted
the APK files into images using techniques like Spectrogram or
Scalogram and trained the model using CNN and achieved an
accuracy of 99.92%.

Nasser et al. [15] proposed a deep learning-based detection
model called DL-AMDet. Their model performs the detection
in stages. In the first stage, the model performs static analysis
using permission and API calls trained on the CNN-BiLSTM
model. if the application is detected as malware in the static
analysis stage the model does not perform the dynamic analysis
otherwise if the application is detected as nonmalicious then the
application again has to go for dynamic analysis. The used
system calls as input feature for an anomaly detection model
using deep autoencoders. They evaluated the model on
different datasets and achieved 99.93% higher accuracy in the
anomaly detection model.

III. PROPOSED METHODOLOGY

For detection, the proposed framework uses six important
features such as permissions, opcodes, API calls, system
commands, activities, and services. Obtaining a representative
dataset is a difficult task because of the access restriction by its
researchers. In this paper OmniDroid dataset [16] is used for
the experiments. Out of 25999 features 16380 distinct features

2

are considered for this experiment including 5500 Permissions,
224 Opcodes, 2128 API calls, 103 System Commands, 6089
Activities, and 2336 Services. The features are extracted from
11000 benign and 11000 malicious samples. The details about
the features are explained below.

Permissions: Permissions are nothing but the safeguards that
control the access rights of the apps to the features and data of
the device. The permissions are declared under <uses-
permission> of the AndroidManifest.xml file of the APK.
Permissions play a crucial role in malware detection. It brings
the user's consent towards the app's access to sensitive data by
seeking an explicit grant for the requested access. Permissions
are categorized into normal, dangerous, and signature. Fig. 1
lists some permission extracted from a malicious app of Trojan
type. It contains both normal and dangerous permission. As
shown in the bellow figure the app asks for INTERNET, and
ACCESS_NETWORK_STATE permissions, which are
commonly asked by most applications and considered normal
permissions whereas the other permissions such as;
READ_PHONE_STATE, WRITE_EXTERNAL_STORSGE,
MOUNT_UNMOUNT_FILESYSTEM, READ_SETTINGS
and WRITE_SETTINGS are the dangerous permissions that
may authorize access to external data and resources beyond the
application's controlled environment, in most cases putting user
data and system integrity at risk. Various studies have been put
forth to date aimed at detecting Android malware through the
analysis of permission features [17] [18].

Fig. 1 Example of Normal and Dangerous Permissions

Opcodes: these are the readable instructions in a program that
are executed by the Dalvik Virtual Machine (DVM). These
opcodes are generated during the compilation process that
represents the operations to be performed within the
application. Fig. 2 is an example that shows the opcodes that
can be extracted from Android applications. Many studies with
good performance have been conducted so far utilizing opcodes
[19] [20].

Fig. 2 Example of Opcodes

Services: services are one of the primary components that
every Android app has to have. Services do not need a visible
interface instead they seamlessly operate in background for the
tasks like downloading a large file, uploading a large data,
playing music, etc. Inter-process Communication (IPC) also
happens through services between the apps. Fig. 3 shows an
example of the services listed by a malicious app in its
AndroidManifest.xml file.

Fig. 3 Example of Services

Activities: activities in Android applications are another
component that operates in individual User Interfaces (UI)
within an app. They are the entry points for user interaction like
the main () method in other programs. The code initiation by
OS happens by a callback method in an activity instance and it
corresponds to stages of lifecycle to accomplish a single task.
Activities manage the user interface, handle user input events,
and facilitate interaction between the app and the user. They
play a crucial role in the Android app lifecycle, transitioning
between different states such as creation, pausing, resuming,
and destruction based on user interaction and system events.
Fig. 4 is an example to show the activities in an application.

Fig. 4 Example of Activities

3

API Calls: API calls in Android refer to the services, resources,
or functionalities the applications access from remote servers
or web services. Any action that needs interaction with the
remote server such as data fetching, user authentication,
sending notifications, etc. is done by making API calls. These
calls are made using HTTP requests by the API (Application
Programming Interface) of the service provider. Fig. 5 shows
the API calls of an application mentioned in its classes.dex file.
The API calls involve; constructing the request, sending the
request, handling the response, parsing the response, and
finally performing the requested action or updating the user
interface (UI). The HTTP request contains the method, URL,
header, and body. Then the constructed request is sent using
any of the libraries like Retrofit, Volley, etc. Once the request
is processed by the server, the application receives a response.
This response may include data or the status of the request
such as success or failure. Then the received response is parsed
to extract the relevant information and based on it the
application performs the specific required action. The API call
is another extensively utilized feature for Android malware
detection, with numerous researchers incorporating it into their
studies [21] [22].

Fig. 5 Example of API Calls

System Commands: system commands sometimes modify the
installed applications, which can potentially cause unintended
damage to the device. Some common system commands are;
logcat, reboot, install, and uninstall, etc.

3.1. Data Pre-processing and Feature Selection

In this study data cleaning process involves a row reduction
technique to eliminate duplicate entries. Rather than
conducting feature selection on the entire dataset as a whole,
the data is partitioned feature-wise, and feature selection is
subsequently carried out using the Information Gain (IG)
algorithm on each feature set separately. Each feature's IG
score is computed by subtracting individual feature entropies
from the entropy of the output column, representing
uncertainty in the given context. The calculation of IG scores
for each feature follows Equation (1).

)()()(ii fHyHfIG  (1)

In Equation (1), IG(fi) is the score calculated using the IG
technique of individual features that reflects the amount of
information those features contain, is the feature column in the
dataset, i represents the column number in the dataset, H (y)
represents the entropy of output column, H () is the entropy of
each feature. In this proposed work individual features
(Permissions, Opcodes, API calls, System Commands,
Activities, and Services) are separated from the whole dataset.
Then using the IG technique the features are evaluated and
scored to understand the information content of individual
feature types such as; the impact of permission in malware
detection, the impact of API calls in malware detection, and
likewise for other features. Figures 2 through 6 provide a
comprehensive insight into the information content of various
feature types. Fig. 2 represents the information content of
permissions concerning the target variable. Fig. 3 represents
the information content of services concerning the target
variable. Fig. 4 represents the information content of opcodes
concerning the target variable. Fig. 5 represents the
information content of activities concerning the target
variable. Fig. 6 represents the information content of API calls
concerning the target variable and Fig. 7 represents the
information content of system commands concerning the
target variable.

Fig. 2 ranking of the permissions in descending order.

Fig. 3 ranking of the services in descending order.

4

Fig. 4 ranking of the opcodes in descending order.

Fig. 5 ranking of the activities in descending order.

Fig. 6 ranking of the API calls in descending order.

Fig. 6 ranking of the system commands in descending order.

Upon individual feature evaluation, it becomes evident that
each feature makes a distinct contribution to the prediction of
the output. When multiple feature types are considered within a
single dataset, there exists a possibility that during feature
selection, the algorithm might disregard one feature type
entirely due to its lower information gain score compared to
another feature type. For instance, in scenarios where features
of opcode type demonstrate higher information gain values
than those of permission types, permission type features may
probably be entirely overlooked during the feature selection
stage. To address this scenario, feature selection is applied
individually to each feature type ensuring equal importance is
given to all considered feature types. Based on the observation,
40% of features from each feature type are selected and
subsequently combined into a single dataset. Then IG is again
applied to observe the considered data and calculated IG score
for the considered features. Fig. 7 represents the IG score of
the features and the features are plotted based on the score in
descending order as shown in Fig. 8.

Fig. 7 IG score of the features

5

Fig. 8 Features plotted in descending IG score

IV. PROPOSED FRAMEWORK

This segment presents a framework using the DNN
approach for Android malware detection. The DNN
architecture encompasses the arrangement of an input layer,
hidden layers, and an output layer. Through forward
propagation, the data is computed, and subsequently, the back-
propagation algorithm is employed to fine-tune the efficient
parameters at each layer.

 The input is given to the network in batches for processing.
The hidden layers present in the network process the input and
the output is predicted by the neurons in the output layer.

The output computed by the model is expressed in a
simplified form by equation (2). The model incorporates the
rectified linear activation unit (ReLU) for non-linear
transformations on each hidden layer. It addresses the
vanishing gradient problem as denoted in equation (3). The
computation at the output layer by the sigmoid activation
function is shown in equation (4).

b
n
p

n
ihiddenrelusigmoidn lffZ))))((((11   (2)

where, NnZf nrelu ),,0max((3)

and,
)(1

1
zsigmoid

e
f


 (4)

In equation (4); ‘i’ is the number of hidden layers the network
contains, ‘p’ is the number of epochs, and Zn is the model

output score.

Table 1: The final set of model parameters for the proposed
system

Hyper-Parameters in the
Network

Values

Number of Epochs 400
Number of hidden layers 13

Dropout 0.2
Batch Size 128

Loss Optimization function Binary_crossentropy

Efficiently training an Artificial Neural Network (ANN)
demands significant effort in the exploration and identification
of optimal parameters that enhance the model's performance.
Instead of employing a trial-and-error approach to determine
efficient parameter values, the experiments utilized the
RandomSearch optimization algorithm. This algorithm
identifies a suitable combination of hyperparameters,
encompassing variables such as the number of hidden layers,
the number of neurons in each hidden layer, and the learning
rate, among others. Several experiments were performed with
epoch (number of times the network performs learning)
numbers (i.e., 50, 100, 200, 400, 500), with 5 values for the
dropout rate (0.0, 0.1, 0.2, 0.3, 0.5). Based on the results
obtained in different experiments 400 as the epoch no and the
dropout rate of 0.2 as best values are considered for all the
experiments. In this study, the considered hyper-parameters are
explained in Table 1.

In this proposed model regularizers are used at different
levels of the model such as kernel level, bias level, and output
layer with L2 regularization penalty to deal with the overfitting
problem during model training. The loss calculation by the
model using the L2 regularization technique is represented in
Equation (5) which says the sum of the squares of the entire
feature weights are added to the original entropy and the
penalty is calculated based on it.

  


n

k iwEtionregularizawithLoss
0

2__  (5)

In equation (5); E is entropy (the loss generated by the model),
 is a regularization constant (λ > 0), w୧ represent the
feature weights.

V. EXPERIMENTAL SETUP

All experiments conducted in this study utilized a "Tesla
T4" GPU, with TensorFlow 2.8.0 [23] as the backend and
Keras [24], provided by Google Colaboratory. The
experimental setup employed a system running Microsoft
Windows 10 Professional (64-bit) with a 1.80 GHz Intel Core
i5 processor and 8.00 GB of memory. Dataset preprocessing
was facilitated using the Scikit-learn [25] Python library.
Model performance was evaluated using key metrics, including
True Positives (TP), True Negatives (TN), False Positives
(FP), and False Negatives (FN), which are essential
components in computing the mean accuracy derived using
Equation (6).

FNFPTPTN

TNTP
Accuracy




 (6)

VI. RESULT AND DISCUSSION

Multiple experiments are conducted on the proposed system

to generate a comprehensive comparative analysis, shedding
light on various aspects of the study. It includes evaluating the
impact of feature selection versus without considering feature

6

selection, as well as contrasting the performance of machine
learning algorithms with the proposed DNN-based model
using a substantial number of features. The framework's
effectiveness is determined through the analysis performed in
the following sections.

4.1. Analysis Based on the Data Without Feature Selection:

This is the first set of experiments performed on the
framework without performing feature selection. A total of
16,380 distinct static features, including permissions, opcodes,
API calls, system commands, Activities, and Services, are
taken into account for analysis. The dataset is divided into
three parts such as 75% of the whole data is used for training
15% for testing and 10% for validation. The model is trained
using deep neural network techniques. Keras TensorFlow is
used to deal with the overfitting of the model. Fig.2 describes
the system architecture. To ensure a valid comparative
analysis, the model parameters, as outlined in Table 1, remain
consistent across all experiments conducted in this study.

Accuracy and Loss:

The experiments are done on the considered features
without performing any feature selection mechanism on the
dataset and accuracy and loss are measured. The model
achieves a mean accuracy of 87.22%, as depicted in Fig. 2,
while demonstrating a mean loss of 0.71 on the testing set, as
illustrated in Fig. 3. It is observed that after a certain no of
iterations, the model loss is not reducing anymore, it is floating
between particular ranges from 0.60 to 0.71.

Fig. 2 : Model Accuracy Score Without Feature Selection

Fig. 3 : Model Loss Score Without Feature Selection

4.2. Analysis Based on the Data With Feature Selection:

This is another set of experiments performed on the
framework with the same model parameters, but here feature
selection is performed on the dataset using the IG method.
Based on the IG ranking of the features it is observed that near
about 50% of the total features have more or less contribution
to the dataset and the rest of other features have very less or
zero contribution to the dataset. Out of 16380 features 6552
features from the feature set are considered for classification
purposes.

Accuracy and Loss:

Validation accuracy and validation loss are assessed on the
feature-selected dataset containing 6552 features. The findings
reveal a mean accuracy of 89.04% and a decreasing mean loss
of 0.61 on the testing set following feature selection, as
illustrated in Fig. 4 and Fig. 5.

Fig. 4: Model accuracy score with feature selection

Fig. 5 : Model loss score with feature selection

VII. COMPARISON ANALYSIS

This section performs the comparison between the results
obtained by performing feature selection and without
considering feature selection. A detailed breakdown of the
comparative analysis, focusing on evaluation metrics such as
accuracy and loss, is presented in Fig. 6 and Fig. 7. Accuracy
and loss are monitored in both the training set and testing set.

7

Fig. 6: Comparison of model accuracy score

Fig. 7: Comparison of model loss score

Fig. 6 clearly illustrates that the accuracy of the model on
feature selected dataset is improved from 87.22% to 89.04%
with considering feature selection. 87.22% is the accuracy
obtained by the model on the whole dataset without performing
any feature selection. Similarly, Fig. 7 represents the model
loss for both experiments. It is observed that the model loss is
reduced from 0.71 to 0.61 with feature-selected data.

7.1 Time Comparison Between Both the Experiments:

Based on the statistics of Table 2; it is observed that model
training time for the set of experiments with feature selection
requires comparatively less time compared to experiments
without considering feature selection as described in Table 3.
Though the feature selection process takes a little extra time
(10 minutes) as it is a one-time process this time can be
ignored in the model evaluation process. In our experiment
sufficient number of features is considered as compared to the
other existing models in the literature survey as shown in Table
3. This implies the coverage of the most possible vulnerable
holes for malware detection.

Table 2: Time Comparison between Both the Experiments.

Steps With feature
selection

Without feature
selection

IG calculation 10 minute Nil
Feature
selection

10 minute Nil

Model training 41 sec (100
epochs)

60 sec (100 epochs)

92 sec (200
epochs)

130 sec (200 epochs)

174 sec (400
epochs)

250 sec (400 epochs)

Model
validation

1 sec 1 sec

Time taken for
training

5 minute 7 sec 7 minute 20 sec

Total time
taken

25 minute 8 sec 7 minute 21 sec

7.2 Comparison with other machine learning models:

In the assessment of the proposed system, the model's
performance is compared with the performance of other
machine learning methods employing the same dataset. The
performance comparison, outlined in Table 3, provides insights
into the efficacy of the approach relative to other machine
learning classifiers.

Table 3: Comparison with other Machine Learning models
based on Accuracy

Classifier Accuracy(without
feature selection)

Accuracy(with
feature selection)

RF 86.58% 87.37%
KNeighbors 82.32% 83.57%
SVC 85.30% 85.44%
DecisionTree 83.94% 84.44%
DNN 87.22% 89.04%

The above results show that all classification models
employed in our research work effectively in detecting
malware apps with a marginal difference. The RF classifier
gives better accuracy compared to other considered ML
classifiers. However, the proposed DNN model gives better
results than the RF classifier because neural networks perform
better on large amounts of training data to give better detection
accuracy.

7.3 Comparison With Similar Work

To show the effectiveness of the framework the accuracy
obtained by our proposed framework is compared with other
related static approaches based on the same OmniDroid dataset
[16] listed in the literature survey section. Rodrigo et.al [10]

8

and Oliveira et.al [11] also used the OmniDroid dataset. The
result they obtained in their static detection models is quite
impressive and the result obtained by our proposed model is
also better reaching an accuracy of 89.04%, provided our
proposed model is trained on a sufficient number of features as
shown in Table 4. It is believed that when the dataset is bigger
enough, it would be more representative and consequently the
resulting classifier is more effective in detecting malicious
content. Therefore, the experimental results affirm the
assertion that the proposed model yields substantial
improvement in the realm of malware detection.

Table 4: Comparison with Similar Works in terms of
Number of Features.

Other Similar Works Number of Features used

 Wang et.al. [6] 25
Le et.al[9] 65
Rodrigo et.al [10] 840
Oliveira et.al [11] 200
Proposed framework 6552

VIII. CONCLUSION

In response to the escalating infection rate of Android
malware, a critical need for gateway-level malware detection
has emerged. This study introduces a framework that employs
DNN techniques, on static features such as permissions,
Opcodes, API calls, Activities, Services, etc. extracted from
Android applications. Feature selection is independently
carried out on each feature set to prevent overlooking any
specific type of feature.The proposed framework demonstrates
a remarkable 89.04% accuracy, leveraging an extensive feature
set for model training. This not only signifies a more precise
malware detection capability but also outperforms frameworks
trained on limited feature sets. Comparative analysis with
existing literature and studies utilizing the OmniDroid dataset
reveals that the proposed system is validated on a substantial
number of features, surpassing the accuracy achieved by
models with fewer features. As part of future work, we aim to
enhance malware detection accuracy further by exploring
additional deep-learning methods.

REFERENCES
[1] https://safeatlast.co/blog/mobile-malware-statistics/
[2] https://www.av-test.org/en/statistics/malware/
[3] https://www.statista.com/statistics/276623/number-of-apps-

available-in-leading-app-stores/
[4] D. Zhan, Y. Duan, Y. Hu, W. Li, S. Guo and Z. Pan, "MalPatch:

Evading DNN-Based Malware Detection With Adversarial
Patches," IEEE Transactions on Information Forensics and
Security, vol. 19, pp. 1183-1198, 2024, doi:
10.1109/TIFS.2023.3333567.

[5] M. Gopinath and S. C. Sethuraman, "A comprehensive survey
on deep learning based malware detection techniques", Elsevier,
Computer Science Review, 47 (100529), 2023,
https://doi.org/10.1016/j.cosrev.2022.1005291574-0137/.

[6] Z. Wang, K. Li, Y. Hu, A. Fukuda and W. Kong, “Multilevel
Permission Extraction in Android Applications for Malware

Detection”, International Conference on Computer, Information
and Telecommunication Systems (CITS), 2019, IEEE.

[7] M. ALTAİY, İ. YILDIZ and B. UÇAN, "Malware Detection
using Deep Learning Algorithms ", Aurum Journal of
Engineering Systems and Architecture, Volume 7, No 1, 2023.

[8] Y. Bai, Z. Xing, D. Ma, X. Li, and Z. Feng, "Comparative
analysis of feature representations and machine learning
methods in Android family classification", Elsevier, 2020,
https://doi.org/10.1016/j.comnet.2020.107639.

[9] N. C. Le, T. M. Nguyen, T. Truong, N. D. Nguyen and T. Ngo,
“A Machine Learning Approach for Real Time Android
Malware Detection”, IEEE Xplore, 2020
10.1109/RIVF48685.2020.9140771.

[10] C. Rodrigo, S. Pierre, R. Beaubrun and F. E. Khoury,
“BrainShield: A Hybrid Machine Learning-Based Malware
Detection Model for Android Devices”, J. Electronics, 2021,
https://doi.org/10.3390/electronics10232948.

[11] A. S. Oliveira, R. J. Sassi, “Chimera: An Android Malware
Detection Method Based on Multimodal Deep Learning and
Hybrid Analysis”, TechRxiv, Preprint, 2020,
https://doi.org/10.36227/techrxiv.13359767.v1.

[12] X. Gao, C. Hu, C. Shan, W. Han, "MaliCage: A packed
malware family classification framework based on DNN and
GAN", Journal of Information Security and
Applications,Volume 68, 2022, 103267, ISSN 2214-2126,
https://doi.org/10.1016/j.jisa.2022.103267.

[13] H. Li, et al., "MalCertain: Enhancing Deep Neural Network
Based Android Malware Detection by Tackling Prediction
Uncertainty," in 2024 IEEE/ACM 46th International
Conference on Software Engineering (ICSE), Lisbon, Portugal,
2024 pp. 934-934. doi:https://doi.ieeecomputersociety.org/

[14] M. Aamir, M. W. Iqbal, M. Nosheen, M.U. Ashraf,A. Shaf,
K.A. Almarhabi, A.M. Alghamdi, A.A. Bahaddad,
“AMDDLmodel: Android smartphones malware detection
using deep learning model.” PLoS One, 2024, doi:
10.1371/journal.pone.0296722.

[15] A.R. Nasser, A.M. Hasan, A.J. Humaidi, "DL-AMDet: Deep
learning-based malware detector for android Intelligent
Systems with Applications", Volume 21, 2024, 200318, ISSN
2667-3053,https://doi.org/10.1016/j.iswa.2023.200318.

[16] http://aida.etsisi.upm.es/download/omnidroid-dataset-csv-
features-v1/

[17] K. Khariwal, J. Singh and A. Arora, "IPDroid: Android
Malware Detection using Intents and Permissions," 2020
Fourth World Conference on Smart Trends in Systems,
Security and Sustainability (WorldS4), London, UK, 2020, pp.
197-202, doi: 10.1109/WorldS450073.2020.9210414.

[18] F. Akbar, M. Hussain, R. Mumtaz, Q. Riaz, A.W.A. Wahab,
K.H. Jung, "Permissions-Based Detection of Android Malware
Using Machine Learning", Symmetry, 2022, 14(4):718.
https://doi.org/10.3390/sym14040718.

[19] B. Kang, S. Y. Yerima, K. Mclaughlin and S. Sezer, "N-
opcode analysis for android malware classification and
categorization," 2016 International Conference on Cyber
Security and Protection of Digital Services (Cyber Security),
London, UK, 2016, pp. 1-7, doi:
10.1109/CyberSecPODS.2016.7502343.

[20] G. Canfora, A. De Lorenzo, E. Medvet, F. Mercaldo and C. A.
Visaggio, "Effectiveness of Opcode ngrams for Detection of
Multi Family Android Malware," 2015 10th International
Conference on Availability, Reliability and Security, Toulouse,
France, 2015, pp. 333-340, doi: 10.1109/ARES.2015.57.

[21] J. Jung; H. Kim, D. Shin, M. Lee, H. Lee, S.J. Cho, K. Suh,
"Android Malware Detection Based on Useful API Calls and

9

Machine Learning," 2018 IEEE First International Conference
on Artificial Intelligence and Knowledge Engineering (AIKE),
Laguna Hills, CA, USA, 2018, pp. 175-178, doi:
10.1109/AIKE.2018.00041.

[22] D.J. Wu, C. -H. Mao, T.E. Wei, H.M. Lee and K.P. Wu,
"DroidMat: Android Malware Detection through Manifest and
API Calls Tracing," 2012 Seventh Asia Joint Conference on

Information Security, Tokyo, Japan, 2012, pp. 62-69, doi:
10.1109/AsiaJCIS.2012.18

[23] https://www.tensorflow.org/
[24] https://keras.io/getting_started/

[25] https://scikit-learn.org/stable/

10

