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Abstract: This paper introduces a new model for managing data consistency in large-scale, geo-distributed storage systems, pivoting
on the concept of dynamic adaptive consistency. Recognizing the challenges in balancing consistency and availability in such systems,
we propose an innovative, context-aware model that categorizes operations into “consistent blocs.” This categorization allows for a
more granular and efficient management of consistency levels, representing a notable improvement over adaptive approaches that
employ a uniform consistency model across all operations or apply a single consistency level to each operation independently. Our
model dynamically adapts these blocs’ consistency levels in response to real-time changes in the operational context; this can include,
for example, variations in network latency, data access patterns, and workload intensity, ensuring optimal data consistency tailored to
current conditions.
Our approach extends traditional adaptive consistency models by introducing more flexibility. A middleware architecture achieves
this goal by introducing an Adaptation Manager that dynamically adjusts consistency levels. We implement this model and evaluate
its performance using the YCSB benchmark on a Cassandra cluster. Our results reveal significant flexibility in expressing users’
requirements and prompt responsiveness in the dynamic adaptation of the policy. Our proposition holds significant benefits for
applications where rapid adaptation to context is crucial.
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1. Introduction
Nowadays, data processing is in a new age; data reaches

huge volumes, is generated, must be treated with high
velocity, and uses various formats. This kind of data,
often qualified as big data, originates from various sources,
including cloud computing and big science. In such large-
scale systems, data is generally replicated across geo-
distributed datacenters to guarantee high availability.

Managing replicas involves carefully considering data
consistency. Consistency measures the freshness of data re-
turned by the database; the strong consistency level always
returns the most recent value of data, contrary to the weak
level that allows stale values. Strong consistency is ideally
preferred; however, many applications tolerate degraded
levels of consistency to enhance availability. This trade-off
is often necessary because maintaining both strong consis-
tency and high availability simultaneously is challenging, as
stated by the CAP theorem [1] and the PACELC theorem
[2].

To figure out the consistency level, two categories of

evaluative criteria are pivotal: one focuses on server-side,
while the other examines aspects related to the client-side
[3], [4], [5], [6]:

Regarding the server-side, the classification depends on
three factors: the total number of replicas (N), the number of
replicas needed to commit a write (W), and those required
for a read operation (R). Obviously, engaging all the replicas
(N=W=R) for both reading and writing operations ensures
strong consistency. Nevertheless, a configuration where the
sum of replicas for read and write operations exceeds the to-
tal number (W+R>N) can also maintain strong consistency,
though with fewer replicas. This approach reduces conflicts
between operations, thereby enhancing performance. This
principle forms the basis of quorum systems, which operate
on the premise of a majority of replicas.

On the client-side, the interest is given to the manners of
propagating write operations among replicas and choosing
replicas from which to read data. The following examples
illustrate three models, each characterized by a distinct level
of consistency. The strict model synchronously propagates
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updates across replicas, ensuring that read operations always
return the most recently written values. In the eventual
consistency model, all replicas are guaranteed to eventually
converge to the same state, although stale values may be
read before this state is reached. The read-your-writes model
ensures that a user consistently sees their own updates or
a more recent version. The strict model provides strong
consistency, distinguishing it from the others. The read-
your-writes model, while offering a more consistent view
to a user compared to eventual consistency, still falls under
weak consistency since it permits the reading of outdated
values.

Configurable consistency offers the flexibility of se-
lecting the model to use from a set of proposed models.
The configuration is generally supported at the read/write
operation level.

Adaptive consistency proposes to automate the switch
between consistency models according to an adaptation cri-
terion. Adaptive consistency ensures a flexible compromise
between consistency and availability since it forces strong
consistency in critical situations and tolerates degraded
levels otherwise to offer more availability. For instance,
a Webshop is a classic transactional system that needs
classically strong consistency. However, weak consistency
is safe until a threshold is reached. Also, in the case of
auction systems, it is beneficial to use weak consistency
until approaching deadlines. In these examples, adaptive
consistency allows for higher availability without harming
database consistency by switching weak and strong consis-
tency according to some adaptation criteria like threshold
and time.

This paper aims to enhance adaptive consistency by
incorporating a greater degree of flexibility and dynamism
through a context-aware approach that more accurately
aligns with application-specific requirements regarding con-
sistency. We introduce a model that organizes operations
into ’consistent blocs’ based on their individual consistency
needs. These blocs, characterized by their adaptive nature,
employ criteria that automatically adjust consistency levels
in response to the context. Such categorization leads to a
more granular control of consistency levels, representing a
notable improvement over conventional approaches that em-
ploy a uniform consistency model across all operations or
apply a single consistency level to each operation indepen-
dently. Moreover, the model facilitates the dynamic adapta-
tion of the adaptation criteria themselves, allowing ensuring
optimal data consistency tailored to fluctuating conditions
such as changes in network latency, data access patterns,
and varying workload intensities. The implementation of the
proposed policy-based architecture as a middleware makes
its simple integration with database systems that support
configurable consistency. For the performance evaluation,
we use the YCSB benchmark with a Cassandra cluster. The
experimental results prove the flexibility and the dynamicity
of the proposed solution.

The rest of the paper is organized as follows: Section 2
presents related work, and Section 3 presents the proposed
solution. Section 4 discusses the evaluation, and section 5
summarizes the work.

2. RelatedWork
Research on consistency progresses to meet emerging

requirements of distributed systems. Initially, a large set
of consistency models is proposed to support the basic
requirements of applications, such as the strict model,
Sequential consistency, Eventual consistency, Read-your-
writes, Causal consistency, and Session consistency. From
time to time, new models are proposed to deal with specific
requirements, such as the per-record timeline consistency
model proposed by Yahoo! to manage the mail service [7].

Configurable consistency is very suitable for modern
storage systems like Amazon SimpleDB [8], Amazon Dy-
namoDB [9], and Cassandra [10].

Pileus [11] proposes a service level agreements (SLAs)
based model that invites users to describe their consistency
requirements as a set of sub-SLAs listed in order of pri-
ority. Sub-SLAs define how to switch consistency models
according to latency level. The latter is influenced by replica
configuration and network conditions.

Several studies on adaptive consistency have discussed
the criteria for characterizing different consistency policies.
Consistency Rationing [12] rations data into three distinct
categories based on their consistency needs: weak, strong,
and adaptive. This framework delineates five adaptive con-
sistency policies, determined by factors such as stale-
ness probability, temporal points, and specific thresholds.
Chameleon [13] introduces an offline modeling approach
that analyses the application behavior along the timeline
to select the most appropriate consistency policy for each
period. The policies proposed include Strong or Eventual
consistency, Static or Dynamic consistency, and Local or
Geographical consistency. Dynamic Consistency, in par-
ticular, adapts consistency levels to improve performance,
cost, or energy efficiency. The adaptation protocols of this
approach are further detailed by Harmony [14] and Bismar
[15] in the paragraphs below.

Another branch of research in adaptive consistency
involves the development of adaptive protocols. These pro-
tocols periodically monitor incoming operations (both read
and write) to predict the behavior of the storage system.
Such monitoring permits to act dynamically to preserve
a defined tradeoff between consistency and availability.
Harmony [14] employs a model that estimates, in real-
time, the minimum number of replicas needed to maintain
an acceptable level of data staleness, based on network
latency and average write size. Here, ’staleness’ denotes
the proportion of stale read operations. The work detailed
in [16] utilizes a threshold time gap for reading values at an
acceptable correctness level and for delaying conflicting op-
erations. The time gap [17] is estimated using a consistency

https:// journal.uob.edu.bh

https://journal.uob.edu.bh


Int. J. Com. Dig. Sys. 16, No.1, 543-554 (Aug-24) 545

index, which measures the possibility of the correctness of
the next incoming read.

CC-Paxos [18] proposes a configurable protocol for
data replication based on the well-known Paxos protocol
[19]. Users specify their preferences in terms of a tradeoff
between consistency and availability. User preferences are
satisfied by scaling up and down the number of requested
replicas at runtime.

Calibre [20] describes a consistency protocol that for-
wards read requests to the replicas containing the most
recent version of the item. The requested replicas are
identified by consulting a registry that records information
about the last updates. Similarly, Bismar [15] proposes a
tradeoff between consistency and monetary cost. It defines
consistency-cost efficiency as a metric for evaluating the
price of consistency models. This metric is related to the
cost of instances, storage, network, and staleness rates.
Bismar adapts the consistency level at runtime to reduce
the monetary cost and preserve low rates of staleness.
The consistency-aware model [21] proposes incrementing
NoSQL database capabilities by integrating transactional
mechanisms; the paper focuses on providing different levels
of atomicity while respecting a required level of consis-
tency.

MinidoteACE [22] proposes an adaptive consistency
system for edge computing environment based on Minidote
[23]. The idea consists of incrementing the Minidote model
based on casual consistency by adding the ability to handle
selected operations with strong consistency.

[24] proposes visible adaptive consistency, a new ad-
vanced model based on Tree-Based Consistency and Rose
Tree Algorithm. This model allows for dynamic adjustments
in the consistency level, ensuring that the system remains
efficient and responsive to changes without compromising
the integrity and reliability of the data stored in the Cloud
Database Management System. This approach is especially
crucial in heterogeneous environments where different sys-
tem parts may have varying consistency requirements.

Stabilizer [25] offers a flexible and customizable ap-
proach to defining consistency models in geo-replicated
cloud applications catering to various needs and scenar-
ios. This flexibility is achieved through a domain-specific
language that allows clients to specify their consistency
requirements and adjust the system’s behavior to their
specific application’s needs.

The paper [26] introduces the CAL theorem, which
extends the CAP theorem to distributed cyber-physical sys-
tems (CPS). CAL introduces a new language for expressing
tradeoffs between availability and consistency in CPS and
guides system design choices between end devices, edge
computers, and the cloud. [27] demonstrates the significant
impact of consistency on performance, availability, and
energy consumption in NoSQL-based storage systems. The

study focuses on basic models of consistency.

In the following section, we introduce our solution
that aligns with prior research in supporting for adaptive
methods to manage consistency. Our approach enhances
the adaptation criteria based on the specific context and
increases the granularity at which consistency is managed,
shifting the focus from the operation level to the bloc
level. These concepts present the potential for integration
into emerging languages designed to express consistency
requirements. Furthermore, our solution allows for dynamic
adjustments of the adaptation criteria, thereby enhancing
flexibility and adaptability.

3. Dynamic Adaptive Consistency
This section outlines different aspects of our dynamic

adaptive consistency model and describes its implementa-
tion using a policy-based architecture.

A. A Model for Dynamic Adaptive Consistency
Dynamic Adaptive Consistency Model models queries

into a set of consistent blocs that regroup operations char-
acterized by the same consistency requirements. A static
consistent bloc refers to a set of operations following a
unique model of consistency, while adaptive consistent
blocs follow consistency policies. A policy defines a set
of rules that defines the consistency model to use for each
context relevant to the application. Rules can be adapted at
runtime.

The proposed model (Figure 1) describes queries as a
set of Consistent Blocs (CB) characterized by Consistency
Requirements (CR). Q = (CBi,CRi), i >= 1

- A Consistency Bloc is composed of a set of operations
(Op) characterized by the same consistency requirements
CBi = Opi j, i, j.

- An operation is a “read” or “write”: Opi j = r/w

- A Static consistent bloc requires a Consistency Model
(CM), while an adaptive consistent bloc requires a Consis-
tency Policy (CP): CRi = CMi/CPi

- A Consistency Model (CM) refers to a consistency
model provided by the system.

- A Consistency Policy (CP) is defined by a set of
rules(R): CPi = (Ri j), i, j >= 1

- A Rule (R) associates a Consistency Model (CM) with
a Context Descriptor (CD): Ri j = CMi j,CDi j

- A Context Descriptor (CDi j) describes the different
information about the context that influences the choice of
a consistency model.

B. Consistent Bloc
The concept of consistent blocs is proposed to classify

operations into groups according to consistency require-
ments. Operations in a static consistent bloc use the same
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Figure 1. Dynamic Adaptive Consistency Model

model of consistency, regardless of the context. In contrast,
operations in an adaptive consistent bloc follow a policy
of consistency that adapts the used consistency model
according to context.

To clarify this vision, we mention that the idea behind
static consistent blocs is implemented by several config-
urable consistency models. The syntax of Cassandra (Fig-
ure 2 (a)), for example, allows defining series of operations
that use different models of consistency. A default model
is used if none is set. This specification allows the defining
of several static consistent blocs. To integrate the concept
of adaptive blocs into Cassandra, a policy of consistency
should be referenced, where needed, instead of a simple
model (Figure 2 (b)).

Consistent blocs define a level of granularity for specify-
ing users’ requirements using various levels of consistency
in addition to consistency policies that ensure the adaptation
of consistency. Static blocs are designed to improve system
performance because they make consistency customized to
users’ needs as they permit for avoiding strong consistency
for operations that tolerate weak level. Adaptive blocs go
deeper as they allow avoiding strong consistency for an
operation if the context tolerates weak consistency.

For example, in the case of inventory management
applications where data is traditionally manipulated with
strong consistency, it is possible to classify operations into
several consistent blocs with different consistency levels.
Besides static blocs that impose strong consistency, we can
define a static bloc with weak consistency to handle data
that is rarely updated and can tolerate some inconsistency,
like product designation. Also, we can define an adaptive
bloc to switch consistency according to a defined threshold
for operations related to the quantity of products in stock.

C. Context Descriptor
The context [28] refers to “any information that can be

used to characterize the situation of an entity. An entity
is a person, place or object that is considered relevant to
the interaction between a user and an application, includ-
ing the user and applications themselves”. Context-aware
systems can adapt their behaviors according to the current
contexts in order to provide the appropriate response with

Figure 2. Consistent blocs with Cassandra

or without the user’s intervention [29]. Early context-aware
applications used the user’s location to forward calls to the
closest phone. The utilization of this kind of application was
increasingly extended to cover diverse domains like mobile
applications [30], Internet of Things [31], and industrial
applications [32].

Our context-aware consistency model adapts consistency
to context. The information of context that influences the
choice of consistency depends on the nature of the applica-
tions and their needs. For example [12], [13], [33]:

• The threshold is related to E-commerce and stock
management; the quantity of an item in stock can be
considered as a criterion to decide on the consistency
level; above the threshold, a weak level is authorized
to increase availability; elsewhere, a strong level is
imposed to avoid overselling product items.

• Time is important for a large category of applications.
For instance, bids in an auction system can be man-
aged with weak consistency for several days before
the end of the auction. As the deadline approaches,
the exact view of submissions is required, which
imposes strong consistency.

• Disconnections are frequent in mobile contexts and
disaster situations; weak consistency can be accept-
able to get any version of data in case of difficulty in
reaching other nodes. When the connection improves,
the strong level can be imposed to manipulate data
more consistently.

• The staleness presents the percentage of the stale
reads per the total number of reads. Some applications
prefer to tolerate weak consistency if the staleness
is negligible and to impose strong consistency other-
wise.

• Users may not have the same needs in terms of
consistency, so it is possible to switch between the
different models according to users’ profiles in order
to provide a better compromise between consistency
and availability.

The list above is not exhaustive; every type of applica-
tion has specific requirements, and new needs can arise due
to emerging utilizations. Therefore, users are responsible
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Figure 3. A policy based architecture for dynamic adaptive consis-
tency

for identifying the different information of context.

In our solution, all information about the context is
grouped in the context descriptor that consists of a compos-
ite adaptation criterion used to switch between the different
consistency models according to context, which permits
the definition of a policy that accurately meets users’
requirements.

D. A Policy-Based Architecture for Dynamic Adaptive
Consistency
Policy-based architectures are commonly used to im-

plement adaptive systems in different domains, such as the
Internet of Things for vehicular Cloud [34] and disaster situ-
ations [35] . This kind of architecture is characterized by the
particularity of separating the policy from other mechanisms
of adaptation, which allows supporting dynamic adapting of
the policy itself at runtime [30], [33] .

Our Policy-based Architecture (Figure 3) is imple-
mented as a middleware between the user and the storage
system. The core of this architecture is the Adaptation
Manager, which is responsible for the adaptation process.
The components of the adaptation manager have different
roles:

• The Decision Manager decides the consistency model
to adopt for every consistent bloc.

• The Context Manager manages variables of context
based on information provided by the events service.

• The Events Service is charged with inspecting the
environment and collecting context information.

• The Policy Manager is responsible for analyzing
and interpreting the policy. The Policy is a set of
rules that define the behavior to be adopted by the
systems according to some criteria. The specification
of the policy can be updated at any time to support
the dynamic changes of the users’ needs and/or the
execution context.

The adaptation manager is placed above the storage sys-
tem. The component inspects the context in order to select
the consistency model to use from a list of models proposed

Figure 4. The Policy specification

by the storage system, which makes the solution easy to
integrate with systems supporting configurable consistency
since it does not affect the existing architectures or the
internal operations. However, the solution as it is does not
fit precisely systems that offer a unique consistency model
like relational databases.

The inputs for the adaptation manager consist of (i) the
policy specification and (ii) the context information. Firstly,
the policy is specified and can be updated by the user at any
time. Within the adaptation manager, the Policy manager is
tasked with interpreting the policy and identifying necessary
adaptations. Secondly, context information is gathered by
the event service, which operates over the storage system.
This information is then managed by the context manager,
which collaborates with the event service to handle variables
related to the context.

When receiving an operation that requires dynamic
consistency, the Decision manager collaborates with both
the context and policy managers to select the appropriate
consistency model. This is achieved by matching context
variables with the policy rules that are pertinent to the
operation’s consistent bloc.

When receiving an operation that requires dynamic con-
sistency, the Decision manager collaborates with the context
and policy managers to select the appropriate consistency
model. For this, it matches variables of context to rules of
policy related to the operation consistent bloc.

E. Specification of the Adaptation Policy
An XML (Figure 4) specification is adopted to describe

the different policies of consistency that are defined by
consistency models and associated context descriptors. This
specification provides the flexibility to describe consistency
requirements and to ensure dynamic adaptation of the
adaptation criteria.

4. Performance Evaluation
To evaluate the proposed solution, we used YCSB

(Yahoo! Cloud Serving Systems Benchmark) [36], which is
used mainly for benchmarking database systems for cloud
computing and big data. YCSB implements many APIs
to connect to relational and a large number of NoSQL
databases and allows configuring various parameters such as
the percentage of read and write operations, the number of
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Figure 5. Implementation for consistency adaptation with YCSB

threads and the consistency model. The output of YCSB
measures systems performances in terms of throughput
and latency. For the storage system, we chose Cassandra
as it offers a configurable consistency with a rich set of
consistency models [10].

A. Tests Methodology
Our experiments uses a cluster composed of five virtual

nodes deployed on a virtualized platform composed of two
servers. Every node is equipped with a CPU of 2.40 GHz
and a hard disk of 100 GB.

Each node in the cluster is a separate machine running
Apache Cassandra, collaboratively working to store and
manage data. Among these nodes, one is configured to run
YCSB. This node acts as a client that generates database
operations in the Cassandra cluster. The YCSB tool node
executes predefined workloads, simulates different types of
database operations, and collects performance metrics such
as throughput and latency.

Throughput refers to the number of operations that the
database system being tested can handle per unit of time.
Throughput is typically measured in operations per second
(ops/sec). When running a benchmark test using YCSB,
it executes a defined set of database operations, such as
reads, writes, updates, and deletes, based on the specified
workload. After the test is completed, YCSB calculates
and reports the throughput, which indicates how many of
these operations were successfully completed in one second.
High throughput means that the database can handle a
large number of operations quickly, which is often desirable
in scenarios where performance and responsiveness are
critical.

Latency represents the delay between the initiation and
completion of an operation, such as a read, write, update,
or delete. It is typically measured in milliseconds (ms) or
microseconds (us). This metric is crucial for understanding
how long a database takes to respond to individual requests
under various conditions. Read Latency refers to the time
taken to complete a read operation. Meanwhile, write la-
tency measures the time taken to complete a write operation.

The implementation presented in (Figure 5) serves as a
proof of concept for our tests. In this setup, YCSB initiates

Figure 6. Policy used by experiment 1.

the workload and collaborates with the adaptation manager
to meet consistency requirements. The adaptation manager
receives two primary inputs: the policy file and the output
from YCSB. The Decision Manager, at regular intervals (ev-
ery 30 seconds), compares the context information against
the policy in order to decide the appropriate consistency
model for every bloc. The context information is sourced
by the context manager from YCSB’s output.

For our experiments, we employed Workload A in
YCSB, known for its balanced distribution of 50% read
and 50% write operations. Each test was conducted over a
period of 30 minutes. The key steps of the testing process,
included:

• Clearing the database to ensure a clean state for each
test.

• Loading data for 10 minutes to adequately populate
the database.

• Running the benchmark test for a duration of 30
minutes.

• Collecting and analyzing the output from YCSB. In
cases where an anomaly was detected, such as a node
shutting down, we addressed the issue, repeated the
test. Otherwise, we proceeded to record the obtained
values.

B. Experiment 1
This experiment aims to demonstrate how to express

user needs in a policy and to measure the performances of
an adaptive dynamic consistency model. The model used
here equitably divided operations into four consistent blocs:
the two static blocs “sb1” and “sb2” follow strong and weak
consistency, respectively, while the dynamic blocs “db1”
and “db2” use the policy defined by the specification of the
policy in (Figure 6). “db1” uses a simple policy to switch
between two policies according to “write latency”. “db2”
defines three rules of policy based on an adaptation criterion
composed of “throughput” and “read latency”.

The proposed schema for policy demonstrates the ease
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of expressing consistency requirements and the flexibility
in supporting different aspects of the adaptive consistency
model.

The graphs displayed below are generated by launching
strong, weak and our adaptive consistency models. The
number of threads starts at 4 and is then incrementally
increased in steps of 250, beginning from 250 and con-
tinuing up to 5000. This allows us to illustrate the system’s
performance in terms of throughput (see Table I and Fig. 7),
Read latency (see Table II and Fig. 8), and Write latency
(see Table III and Fig. 9).

TABLE I. Throughput Evaluation - Experiment 1

Thrs nbr Strong(Ops/s) Adapt.(Ops/s) Weak.(Ops/s)

4 1309 2053 2283
250 2053 2442 2920
500 2442 2814 3805
750 2601 2849 4106
1000 2424 3150 3893
1250 2194 3008 3716
1500 2318 2761 3946
1750 2247 3646 4513
2000 2761 3522 4283
2250 2796 3203 4141
2500 2849 4000 4548
2750 2938 3769 4654
3000 2796 3858 5699
3250 2619 3327 5504
3500 2477 3929 5557
3750 2460 3469 4637
4000 2460 4000 5663
4250 2584 4336 5292
4500 2265 4424 5575
4750 2318 3398 4389
5000 2300 3911 4601

Figure 7. Throughput evaluation- Experiment 1

Figure 7 clearly demonstrates the variations in through-
put across different consistency models. For instance, at
4 threads, weak consistency yields a throughput of 2283

Ops/s, significantly higher than the 1309 Ops/s achieved
by strong consistency. Similarly, the adaptive consistency
model shows a throughput of 2053 Ops/s, placing it between
the strong and weak models. This trend is consistent as the
number of threads increases. At 1000 threads, weak consis-
tency reaches a throughput of 3893 Ops/s, whereas strong
consistency is at 2424 Ops/s, and adaptive consistency man-
ages 3150 Ops/s. Notably, at 5000 threads, the throughput
for weak, strong, and adaptive consistencies are 4601 Ops/s,
2300 Ops/s, and 3911 Ops/s, respectively. These figures
demonstrate the capability of the adaptive model to achieve
intermediate throughput levels. While the adaptive process
incurs some latency due to policy management, its impact
on throughput is marginal, as evidenced by the adaptive
model consistently maintaining intermediate performance
levels between the strong and weak consistency models
throughout various thread counts.

TABLE II. Read Latency Evaluation - Experiment 1

Threads nbr Strong (us) Adaptive (us) Weak (us)

4 2796.35 5598.67 3548.36
250 265957.55 129179.44 75987.72
500 265957.55 197568.50 121580.43
750 319148.92 296352.57 189969.48
1000 471124.71 372340.29 265957.55
1250 653495.53 471124.71 410334.33
1500 638297.84 623100.16 387537.98
1750 820668.65 509118.40 410334.33
2000 896656.38 600303.81 493921.07
2250 896656.38 737081.92 607902.82
2500 919452.73 661094.19 577507.46
2750 1003039.47 759878.27 653495.53
3000 1185410.28 919452.73 516717.42
3250 1618540.96 1056230.84 592705.14
3500 1474164.18 911854.06 668692.86
3750 1588145.94 1139817.58 645896.51
4000 1694528.68 1033434.49 661094.19
4250 1679331.35 965045.43 797872.30
4500 2165653.39 1033434.49 782674.62
4750 2127659.36 1466565.17 1109422.56
5000 2325227.86 1284194.35 1071428.52

Figure 8. Read Latency evaluation- Experiment 1
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Figure 8 presents a detailed comparison of read latency
across the strong, weak, and adaptive consistency models
as the number of threads varies. For instance, at just 4
threads, the read latency for strong consistency is recorded
at 2796.35 microseconds (us), compared to 3548.36 us for
weak consistency and 5598.67 us for adaptive consistency.
As the number of threads increases, these latencies evolve
distinctively. At 1000 threads, the read latencies are sig-
nificantly different: 471124.71 us for strong consistency,
265957.55 us for weak consistency, and 372340.29 us for
adaptive consistency. This trend is maintained at higher
thread counts; for example, at 5000 threads, the read laten-
cies are 2325227.86 us for strong consistency, 1071428.52
us for weak consistency, and 1284194.35 us for adaptive
consistency. These values highlight the trade-offs inherent
in each model. While weak consistency generally offers
lower latency, suggesting faster access times, it does so
potentially at the expense of data freshness or accuracy.
On the other hand, strong consistency, with its higher
latency, ensures data integrity and consistency but at the
cost of speed. The adaptive model seeks to balance these
aspects, achieving intermediate latency levels that suggest
a compromise between data integrity and access speed.
This balance is particularly evident at higher thread counts,
where the adaptive model manages to maintain latencies
that are significantly lower than strong consistency but
slightly higher than weak consistency, showcasing its ability
to adapt based on the context and workload demands.

TABLE III. Write Latency Evaluation - Experiment 1

Threads nbr Strong(us) Adaptive(us) Weak(us)

4 750.74 698.62 529.13
250 11261.26 10510.52 8283.14
500 21771.78 17267.28 12048.22
750 29279.28 24024.04 15060.25

1000 42792.79 31531.53 25602.43
1250 54054.05 41291.28 24096.40
1500 59309.30 54054.05 37650.61
1750 73573.59 48048.04 36144.58
2000 84084.07 57807.82 44427.72
2250 76576.58 69069.08 47439.76
2500 86336.32 63813.80 52710.86
2750 91591.60 74324.32 54216.86
3000 118618.63 87087.10 49698.79
3250 155405.41 97597.59 55722.90
3500 141891.89 87087.10 60993.97
3750 154654.67 108108.11 54969.90
4000 166666.67 100600.61 64006.04
4250 162162.16 97597.59 78313.26
4500 187687.68 102852.86 78313.26
4750 202702.70 138888.90 101656.62
5000 215465.48 125375.39 103162.66

Figure 9 shows write latency comparisons across strong,
weak, and adaptive consistency models. At 4 threads,
strong consistency has a latency of 750.74 us, compared
to adaptive consistency at 698.62 us and weak consistency

Figure 9. Write Latency evaluation- Experiment 1

at 529.13 us. This pattern continues at higher thread counts;
for instance, at 5000 threads, the latencies are 215465.48
us for strong, 125375.39 us for adaptive, and 103162.66 us
for weak consistency.

These values indicate that, similar to read latency,
weak consistency offers the lowest write latency, strong
consistency the highest, and adaptive consistency a balanced
intermediate. This demonstrates the adaptive model’s ability
to modulate write latency between the speed of weak
consistency and the data integrity of strong consistency

Experiment 1 provides a comparative analysis of strong,
weak, and adaptive consistency models in terms of through-
put, read latency, and write latency. For throughput, weak
consistency consistently outperforms strong consistency,
with adaptive consistency achieving intermediate levels.
This is evidenced by higher throughput values for weak
consistency across various thread counts, indicating its
efficiency in managing data operations. In terms of latency,
weak consistency generally offers lower latency, suggesting
faster access, while strong consistency, prioritizing data
freshness, shows higher latency. Adaptive consistency suc-
cessfully balances between these two, maintaining interme-
diate latency levels.

We note that the adaptation process incurs a slight
increase in latency, stemming from the periodic review of
the policy file and the management of context variables.
However, this marginal increase does not notably impact
the overall system performance, as the results demonstrate
that the adaptive dynamic consistency achieves intermediate
levels of performance.

C. Experiment 2
This experiment is designed to demonstrate the effi-

ciency of dynamically adapting consistency levels. Initially,
the system is set to operate under weak consistency. At the
500-second mark, we adapt the policy to switch to strong
consistency. Then, at 800 seconds, the policy is adjusted
again to revert to weak consistency. These adaptations are
efficiently executed by simply editing the policy file.
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The results demonstrate the effect of dynamic adaptation
on system performance. Before the policy change, the
throughput, as illustrated in (Table IV and Figure 10),
maintains a relatively high level, averaging around 5619
ops/s between 300 to 400 seconds. However, after the
adaptation at 500 seconds (point ’a’ on the graph), the
throughput decreases significantly, dropping to 4738 ops/s
by 550 seconds. This trend continues until the second
adaptation at 800 seconds (point ’b’), where the throughput
begins to recover, evidenced by an increase to 5571 ops/s
at 850 seconds, and further to 6023 ops/s at 1000 seconds.

TABLE IV. Throughput evaluation - Experiment 2

Timeline (s) Throughput (ops/s)
100 4595
150 5595
200 5714
250 5357
300 5619
350 5619
400 5642
450 5833
500 5714
550 4738
600 4952
650 4547
700 4690
750 4714
800 4619
850 5571
900 5738
950 5095

1000 6023

Figure 10. Throughput evaluation - Experiment 2

The results illustrated in(Table V and Figure 11) shed
light on how dynamic adaptation affects read latency. As
indicated in Figure 11, prior to the policy change at 500
seconds, read latency fluctuates, with a notable peak of
603846.10 microseconds (us) at 250 seconds, but generally
stays around the range of 538461.42 us to 549999.88 us
between 300 and 450 seconds. Following the adaptation at

500 seconds (point ’a’ on the graph), there’s a noticeable in-
crease in latency, peaking at 676922.96 us by 700 seconds.
However, after the second adaptation at 800 seconds (point
’b’), the latency begins to decrease, eventually reaching sig-
nificantly lower levels such as 515384.50 us at 900 seconds
and 211538.40 us at 1000 seconds. This demonstrates the
system’s ability to revert to more efficient latency levels
following the adaptive adjustments.

TABLE V. Read Latency Evaluation - Experiment 2

Timeline (s) Read Latency (us)
100 638461.48
150 573076.81
200 523076.86
250 603846.10
300 538461.42
350 542307.69
400 549999.88
450 538461.42
500 538461.42
550 653846.04
600 642307.57
650 665384.50
700 676922.96
750 634615.38
800 665384.50
850 538461.42
900 515384.50
950 603846.10

1000 211538.40

Figure 11. Read Latency evaluation - Experiment 2

Similar to the read latency pattern, the write latency,
as illustrated in Table VI and Figure 12, also reflects the
impact of dynamic adaptation. Initially, it shows some
variation, like peaking at 584615.37 microseconds (us) at
250 seconds. Following the policy change at 500 seconds,
there’s an increase, reaching up to 639999.98 us at 700
seconds. After the second adaptation at 800 seconds, write
latency decreases, realigning with earlier levels, indicative
of the system’s efficient response to policy adjustments.
This trend mirrors the adjustments observed in read latency,
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underlining the adaptability of the system under different
consistency policies

TABLE VI. Write Latency Evaluation - Experiment 2

Timeline (s) Read Latency (us)
100 638461.48
150 573076.81
200 523076.86
250 603846.10
300 538461.42
350 542307.69
400 549999.88
450 538461.42
500 538461.42
550 653846.04
600 642307.57
650 665384.50
700 676922.96
750 634615.38
800 665384.50
850 538461.42
900 515384.50
950 603846.10

1000 211538.40

Figure 12. Write Latency evaluation - Experiment 2

The results from Experiment-2 clearly illustrate the im-
mediate impact of policy adaptation on system performance,
especially in terms of throughput and latency. Notably, the
performance changes align precisely with the moments of
adaptation at 500 seconds and 800 seconds, matching the
policy checking interval of 30 seconds. This indicates a
prompt response to policy adaptations. However, for longer
periods for checking the policy, it would be beneficial to
implement mechanisms that can detect policy changes and
report them to the decision manager. Extending our tests to
a large-scale level promises to provide interesting results.
Indeed, communications delays and disconnection rates in
the case of geo-distributed datacentres vastly exceed the
characteristics of our virtualization platform. This context
is known to lead to increase considerably latency and also
to decrease throughputs. The proposed solution would then

make the adaptation cost more negligible and allow us to
take more advantage of its mechanism.

5. Conclusion and FutureWork
Adaptive consistency models provide a flexible and

efficient tradeoff between consistency and availability by au-
tomatically switching between different consistency models
according to adaptation criteria. Through this research, we
aim to bridge the gap in existing data management strategies
for adaptive consistency by offering a solution that is flex-
ible and immediately responsive to changing requirements
about consistency in distributed storage environments.

Our dynamic adaptive consistency model proposes to
offer more flexibility and dynamicity. The model classifies
operations into consistent blocs according to consistency
requirements. This classification allows for a more granular
and efficient management of consistency levels. A static
consistent bloc uses a unique model of consistency. In
contrast, adaptive consistent blocs follow a policy of consis-
tency that adapts the used consistency model according to
the context. A policy defines alternative consistency models
to switch according to the context. The context descriptor
regroups all the criteria about the context that influence the
choice of consistency, which permits the user to express
their needs more accurately.

The proposed policy-based architecture supports the
different aspects that characterize our dynamic adaptive
model. The architecture is implemented as a middleware
above the storage system. The adaptation process requires
introducing the policy specification and the context infor-
mation to interact with the storage system and execute
operations according to the specified policy of consistency.
The solution is easily integrated with systems supporting
configurable consistency.

The experimentation part demonstrates the high flexi-
bility of the proposed solution in expressing users’ needs
through consistent blocs and context descriptors. It also
proves that the dynamic adaption of the policy is taken
into account immediately by the system. The performance
evaluation shows interesting and promising results.

Our experimental results, though promising, were lim-
ited to a virtualization platform and may not fully encap-
sulate the challenges of large-scale, geo-distributed data
centers. Future work should involve testing the solution in
these environments, where issues like higher latency and
lower throughput are significant, to provide a more com-
prehensive evaluation of its adaptability and performance.
Additionally, we plan to explore two other directions in our
future work. Firstly, we aim to improve the specification
of policies and the construction of consistent blocs using
machine learning and semantic tools. Secondly, we intend to
extend the solution to support more transactional properties
and to conduct an experimental study on a larger-scale
platform.
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