
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 16, No. 1 (Aug-24)

http://dx.doi.org/10.12785/ijcds/160178

Trajectory Tracking of a Robot Arm Using Image Sequences
Aicha Belalia1, Samira Chouraqui 2 and M’hammed Boussir 3

1,2Computer Science Department, USTO, Oran, Algeria
3Department of Physics, USTO, Oran, Algeria

Received 31 Mar. 2024, Revised 18 May 2024, Accepted 18 May 2024, Published 16 Aug. 2024

Abstract: In this research paper, in order to build trajectories, we used a robotic arm in computer vision and robotics. The combination
of two methods, the first of which is used in this work, is a deep learning method based on convolutional neural networks (CNN);
the second is Spline3, which is utilized to achieve accurate trajectory tracking. The CNN is employed to track a sequence of images
acquired by the robotic arm while moving in a 2D plane. The CNN correctly locates and identifies the object by examining the visual
data. Once the object is detected and located by the CNN, the outcome information is saved in a txt file. The next step is to generate a
trajectory using the Spline3 method and the created txt file. This trajectory has the property of minimizing oscillations and irregularities,
which ensures accurate path generation. Simulations are performed using a two-degree-of-freedom model of the SCARA arm in order
to assess the efficacy of the suggested technique. These simulations demonstrate the relationship between accurate object localization
by the CNN and trajectory tracking precision by the robotic arm. The metrics used for the evaluation of the proposed method include
mean average precision (mAP), recall, precision, cosine similarity, mean squared error (MSE), and peak signal-to-noise ratio (PSNR).
The metrics provide quantitative values of object detection accuracy by CNN and path generation similarity by Spline3.
The main aim of this study is to enable the use of this type of manipulator arm in the most complex areas, for example, to help
surgeons carry out their surgical operations in an accurate and reliable manner.

Keywords: CNN, Object detection, SCARA, Spline3, Trajectory

Abbriviation Liste
DL: Deep Learning.
mAP: mean Average Precision.
TP: True Positive.
FP: False Positive.
TN: True Negative.
FN: False Negative.
MSE: Mean Squared Error
PSNR: Peak Signal-to-Noise Ratio.
AI: Artificial Intelligence.
R-CNN: Region-based Convolutional Neural Network
YOLO: You Only Look Once.
IoU: Intersection on Union distance.
DH: Denavit and Hetenberg.
2d.o.f : two degrees of freedom.
CNN: Convolutional Neural Network.
SCARA: Selective Compliance Assembly Robot Arm.
IGM: Inverse Geometric Model.
DGM: Direct Geometric Model.
OD: Object Detection.
RR:Revolute join, Revolute join.

1. Introduction
Robotics and trajectory generation are key areas of

interest for researchers in the field of robotics. In robotic

systems, generating optimal trajectories is crucial for tasks
such as autonomous navigation and manipulation. Trajec-
tory generation involves computing the path that a robot
should follow to achieve its objectives efficiently and safely.
Trajectory planning involves determining a sequence of
successive joint angles over time to move a robot from
an initial configuration to a final configuration, enabling
the completion of a specific task [1]. In these situations,
the robots are supposed to move quickly and smoothly,
with little residual vibration and little position overshoot.
On the other hand, trajectory design typically presents a
conflict between reducing execution time and preserving
motion smoothness. [2]. Trajectory generation is the process
of computing a dynamically feasible state and control
signal that optimizes mission objectives while adhering
to specified constraints. This problem is often nonconvex,
making it challenging to find effective and reliable solutions,
particularly in autonomous vehicles [3].
A crucial component of trajectory planning involves object
detection and tracking, enabling the robot to engage with
its surroundings through the identification and manipulation
of objects.
Object detection (OD) is used to locate objects in a specific
area in a specific image, which is called object localization
technology [4]. OD can produce valuable information for

E-mail address: aicha.belalia@univ-usto.dz, samirachouraqui@univ-usto.dz, boussirmhammed@gmail.com

https:// journal.uob.edu.bh

 http://dx.doi.org/10.12785/ijcds/160178
https://journal.uob.edu.bh

1068 Aicha Belalia, et al: Trajectory Tracking of a Robot Arrm Using Image Sequences

the linguistic interpretation of pictures and videos. It can be
applied to a variety of tasks, including autonomous driving,
image classification, facial recognition, and human behavior
analysis [5]. In recent years, deep learning DL technology,
especially convolutional neural networks (CNN), has shown
great potential for improving the accuracy and robustness
of target detection algorithms.
Object detection and tracking involve analyzing images
or video frames captured by cameras mounted on robotic
manipulators. Traditional methods often rely on handcrafted
features and classifiers, which require a significant amount
of domain expertise and may not generalize well across
different environments and object types. In contrast, deep
learning approaches leverage large amounts of labeled data
to automatically learn relevant features and classifiers.
In this work, the neural solution has been used to plan the
trajectory of a SCARA manipulator arm. The robot arm is
equipped with a camera to take a series of images; these
images were processed by CNN in order to locate the object
concerned with the tracking. The results of the localization
were stored in a file. An algorithm for creating the trajectory
of a SCARA manipulator arm used this file. In this step,
the spline interpolation method was also applied in order to
obtain a better result.
The object detection and tracking by CNN used in this work
are justified by statistical measurements such as mAP, TP,
FP,TN, FN,F1 SCORE, RECALL, and also the loss value
(Loss), the average loss (Avg Loss), the mean squared error
(MSE) and the peak signal-to-noise ratio (PSNR), which
play a very important role in the evaluation of our work.
The remainder of the paper is organized as follows: the next
subsections A and B review previous research related to
the problem. Section 2 details the approach used, covering
data pre-processing, the CNN algorithm for object detec-
tion, and performance metrics for evaluating the algorithm
(subsection A). Trajectory generation for the SCARA arm
manipulator is discussed in Section 2, Subsection B. Section
3 presents the results obtained and their evaluation. Finally,
Section 4 summarizes the conclusions drawn from this
study.
Numerous studies within the field of artificial intelligence
(AI) have focused on trajectory planning and object de-
tection. The subsequent section will delve into the related
work, discussing several investigations conducted in these
domains.

A. The Generation of Trajectories
Two main benefits of articulations for roboticists and

other industrial developers are that they can be built more
quickly than the previous generation, which reduces de-
velopment time, and they move more like their real-world
counterparts [6]. The optimal trajectory generation method
proposed by [3] is based on the spline cubic interpolation
approach. The best compatible approach to generating a
smooth trajectory that passes through the points (x, y) is to
use the cubic spline (spline 3).
Cubic spline (spline 3) is a commonly used interpolation
method to generate smooth curves from a set of control

points. This method adjusts a series of cubic polynomials
between control points to create a smooth, continuous curve.
The cubic spline is well suited to represent regular and
continuous trajectories for the SCARA arm from discrete
control points [7], [8]. In [9], to reduce vibration of the
serial manipulator and increase robot efficiency, an efficient
algorithm (IWOA-PSO) was established for optimal time-
jerk path planning. In order to avoid settling into the local
optimum solution, WOA was enhanced by utilizing adaptive
weight and threshold to balance WOA exploration and
exploitation. Next, to speed up the convergence of IWOA,
the PSO method and IWOA techniques were combined. The
results showed that the suggested IWOA-PSO successfully
lessened the robot’s jerk while increasing its productivity.
In their paper [10], a model-based methodology was pro-
vided for trajectory generation for a flexible-joint space
manipulator grasping a massive object. Methodologies were
provided to generate a feed-forward motor trajectory given
a desired link-side trajectory and to generate a desired link-
side trajectory while minimizing total trajectory time subject
to dynamic constraints. Full-spatial simulation results show
the efficacy of this trajectory generation method. Zhao
and all developed a lightweight GDTP model to map the
initial/final states and the control action sequence based
on generative adversarial networks (GANs). This lifelong
learning framework was proposed to achieve effective and
high-accuracy direct trajectory planning (DTP) tasks. Sev-
eral scenarios with different characteristics were used to test
the suggested method. The experimental findings demon-
strated that the method could quickly plan very feasible
trajectories. They found that the method’s tracking errors
were 29.1% [11].
According to [12], they provided an innovative way to
quickly generate collision-free ideal trajectories for multiple
non-holonomic mobile robots in highly obstacle-filled envi-
ronments. The process began with a discrete solution found
by a graph-based multi-agent path planner and was refined
into smooth trajectories through nonlinear optimization. In
order to increase the algorithm’s scalability, they divided
the robot team into smaller groups and recommended a
prioritized trajectory optimization strategy. Under some
conditions, the decoupled optimization framework could
result in unsolvable sub-problems. The superiority and effi-
cacy of the suggested method were confirmed by hardware
experiments and simulations.
In his research, [13] explored vibration control and tra-
jectory tracking for rotary flexible joint manipulators with
parametric uncertainties. The study began with a discussion
on the dynamic modeling of a single-link flexible joint ma-
nipulator using the Euler-Lagrange equation. Following this,
a continuous and bounded jerk trajectory was designed and
implemented to achieve smooth motion between two points.
The robot and obstacles were represented by polyhedral
volumes within the workspace. The configuration space was
constructed by calculating the joint angles in contact with
these polyhedral volumes. The non-obstacle regions in the
configuration space represented the permissible areas for
robot movement.

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

Int. J. Com. Dig. Sys. 16, No. 1, 1067-1081 (Aug-24) 1069

B. Object Detection by CNN
In deep learning techniques, algorithms analyze data to

detect relevant features and then combine them for rapid
learning. To recognize objects and people based on images
obtained from videos, various deep learning techniques are
used [7]. Among deep learning methods, CNN is most
suitable for image-based search, and it achieves the best
recognition accuracy in various applications. Therefore, we
consider CNN in this study.
CNN-based OD algorithms include:

1) R-CNN
IT is an object detection architecture. R-CNN first

extracts regions of interest in the image and then uses these
regions as input data for the CNN. This region division
makes it possible to detect multiple objects from different
categories in the same image.This solution, proposed by
[14], improves the accuracy of the recognition model.

2) Faster-CNN
The most popular object detection method is faster R-

CNN. It is part of R-CNN. Fast R-CNN improves upon the
R-CNN family. [4] developed R-CNN, resulting in faster R-
CNN. A convolutional neural network (CNN) receives the
input image to obtain a property map of the objects present
in the image. Backbone is a Region Proposal Network
(RPN), which then uses this feature map and anchors to
generate region proposals. These regions are then filtered
using NMS (non-maximal deletion). By combining the
character maps and bounding boxes of connected objects
that the CNN extracted, new feature maps are created
by pooling regions of interest (ROIs). After that, a fully
connected layer processes the grouped areas to forecast
output classes and object region coordinates. The header
network is the name of this component of the Faster R-
CNN design.

3) YOLO
One of the DNN-assembled innovations based on ex-

cellent speed and accuracy execution is YOLO. YOLOv3
completes related execution much more quickly than other
identifiers [15]. YOLO, or ”You Only Look Once,” is a
deep neural network that processes an image just once;
this is in contrast to ”region proposal methods,” which are
primarily employed by R-CNN-based models. There are
nine iterations of YOLO (YOLOV1,... YOLOV9) [16].

2. ResearchMethodology
Our methodology is divided into two main parts: the first

is the object detection of the image sequences acquired by
the arm using the deep learning method CNN. The second
part is the trajectory generation using the output of the CNN
in the first part and the spline method.
Our method can therefore be represented by the following
steps:

1) Acquisition of images by the SACRA robotic arm.

2) Processing these images involves resizing them and
then running the object detection algorithm using a
convolutional neural network (CNN) for all images.

3) Extracting coordinates (x, y) and saving them in a
(.txt) file.

4) Calculating maps, F1 score, and recall for each
image.

5) Testing the map values for each image; if it is
less than 50%, then reject; otherwise, using these
coordinates (x, y).

6) Apply the DH parameters and call the spline 3
method.

7) Call the generate-Trajectory function.
8) Finally, calculate metrics (MSE, PSNR, cosine sim-

ilarity).

The following flowchart (Figure 1) displays all steps.

Figure 1. Flowchart of the used method

A. Object Detection Using CNN
There are 172 images in our database used to track the

first object and 180 images for the second object.
All the images were collected manually and do not belong
to any specific database. Out of these, 152 images were used
for training the first object detection model and 160 for the

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

1070 Aicha Belalia, et al: Trajectory Tracking of a Robot Arrm Using Image Sequences

second. The pre-trained Darknet-53 network was employed
to process the 152/160 images initially. Darknet-53 first
resizes each image to 416x416 pixels, in color (3 channels),
to extract features. This method utilizes a technique known
as anchors or bounding boxes, which frame objects within
a rectangular space.
Each image will be divided first by 32, then; by 16, and
finally by 8, resulting in images that have been divided into
a grid of cells (13x13, 52x52, 26x26). The object’s center
is located in the cell that is in charge of object detection.
We obtain for each image (13x13 + 52x52 + 26x26) * 3
= 10647 bounding boxes. The algorithm selected one box
from this group to identify our object.
Figure 2 presents the CNN architecture used in our work,
illustrating the steps involved. The size of the input and
output images can vary between each step.

Figure 2. CNN architecture

Each image is processed by a set of layers: convolution,
pooling, ReLU correction, and fully connected.

1) Convolution
Its objective is to identify whether a specific set of

characteristics (or features) is present in the input images.
To do this, convolutional filtering is employed. The basic
concept is to ”drag” a window that represents the filter
over the image, and then calculate the convolutional layer
by taking the convolutional product of the filter and each
segment of the scanned image.

2) The ReLU Correction Layer
The real nonlinear function given by ReLU(x)=max(0,x)

is represented by the symbol ReLU (Rectified Linear Units).
Therefore, any negative values received as inputs are re-
placed with zeros by the ReLU correction layer. It serves
as a mechanism for activation [17].

3) The Pooling Layer
It takes in several feature maps as input and performs

the pooling procedure, which reduces the size of the image
files without sacrificing quality. The image is divided into
square cells, with the maximum value preserved within
each cell. In practice, small square cells are often used to
minimize information loss. The most common choices are
2××2 pixels that are near each other but do not overlap, or
3××3 pixels that are near each other; but are spaced apart
by a step of 2 pixels (and so overlap).
The amount of feature maps in the output and the input is
the same, however they are significantly smaller.

4) The fully-connected Layer
Is the final layer of a neural network, converting a

vector into a new vector using linear combinations and
activation functions. It classifies images using a vector of
size N, with each element representing the probability of
the input image belonging to a class.

5) Feature Extraction
We introduced the K-means algorithm to calculate the

distance between the delimitation boxes estimated by the
algorithm and the predefined bounding box, but we replaced
the Euclidean distance it uses with the intersection over
union distance (IoU)

dist(box, centroid) = 1 − IoU(box, centroid). (1)

The closer the IoU is to one, the better the results. The
extraction of features from images will be saved in a file as
weights. Its weights will later be used for object detection
in other images.
The following list of formulas is displayed during the object
detection phase.
Confusion Matrix: Four elements are required in order to
create a confusion matrix.
TP: Based on the ground truth, the model accurately antic-
ipated and matched the label.
TN: The model is not a component of the ground truth and
does not forecast naming.
FP: The model predicts a label, but it does not correspond
to the ground truth (Type I mistake).
FN: The label is a component of the ground truth, but the
model does not forecast it. (Error type II).
Precision: A model’s capacity to recognize only the perti-
nent data points.

Precesion =
T P

T P + FP
(2)

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

Int. J. Com. Dig. Sys. 16, No. 1, 1067-1081 (Aug-24) 1071

Recall: A model’s capacity to locate every pertinent case
in a given data set.

Recall = T P/(T P + FN) (3)

mAP : It is calculated by finding the Average Precision (AP)
for each class and then the average over several classes.

mAp =
1
n

N∑
i=1

APi (4)

where n is the number of classes and APi is the average
precision of classe i
F1-score: The F1-score is defined as the harmonic average
of precision and recall, which results in the following
equation:

F1 − score =
2 × (precision × recall)

(precision + recall)
(5)

The subsequent section will make use of the findings
obtained in this step.

B. Trajectory Generation Steps
To generate the trajectory of the SCARA arm manipula-

tor, several steps involving the arm joints must be followed.

1) The SCARA 2 d.o.f Robot
A SCARA robot (Figure 3) is defined in ISO standard

8373:1994, No. 3.15.6. SCARA robots use two parallel
revolute joints to provide compliance in the horizontal
plane against vertical loads [18]. The first prototype of the
SCARA robot was built in 1978. The second one was built
in 1980 [19].
In this work, we used a SCARA manipulator arm with a
2.d.o.f.; the type of both joints is a rotary joint (revolute
joint) (RR), equipped with a camera, that works in a plane
of 2 directions. More information on how we modeled the
SCARA arm is below.

Figure 3. SCARA Arm Manipulator [20]

2) Denavit and Hetenberg Parameter
For the construction of the marks, it is necessary to

follow the following procedure:
Name the robot fields from i=0 to i = n, starting at the
robot base with i=0.
Name the joints from i = 1 to n. (1 for the first degree of
freedom and n for the last).
For i = 0 up to i = n − 1, fix the Zi axis on the articulation
i + 1.
The origin of the coordinate system R0 is any point on
the Z0 axis, so that X0 and Y0 form a direct orthonormal
coordinate system.
For i = 1.2, ..., n − 1, the origin of the coordinate system is
fixed at the intersection of the Zi axis with the perpendicular
line common to Z(i−1) and Zi. If the two axes intersect, the
origin is the point of intersection.
If, on the other hand, the axes are parallel, the origin is the
origin of the coordinate system of the articulation i + 1.
The Xi axis is the perpendicular line common to Z(i−1) and
Zi, and the Yi axis is chosen so that the coordinate system
is directly orthonormal [21]-[22]. The following figures
(Figure 4 and Figure 5) depict the structure of the SCARA
arm and the SCARA arm system. The arm’s structure was
modeled in a 2D plane, utilizing only two axes: the x-axis
(abscissa) and the y-axis (ordinate).

Figure 4. SCARA arm structure

Figure 5. SCARA arm coordinates system

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

1072 Aicha Belalia, et al: Trajectory Tracking of a Robot Arrm Using Image Sequences

The DH method principle dictates that the SCARA robot’s
structural parameters were categorized into four groups. The
torsional angle αi angle of articulation (thetai) jointlengthai,
and linkage length di make up these groups. The following
are the definitions for these parameters:

1) di is the translation in the positive direction Zi
between the X(i−1) and Xi axes.

2) The translation between the axes of Z(i−1) and Zi is
a(i−1), and it is positive along the x(i−1) direction.

3) The rotation of approximately x(i−1) counterclock-
wise between the axes of z(i−1) and zi is denoted by
α(i−1).

4) The rotation around zi counterclockwise between the
axes of xi and x(i−1) is denoted by θi.

3) Khalil’s Model
In 1986, Khalil and Kleinfinger made improvements to

the DH model due to ambiguities regarding robots with
closed or tree structures. They also proposed a method
for robots with simple open architectures. For robots with
an open structure, the following convention is proposed:
The coordinate system R j is fixed with the link j. The
axis of the articulation j is the axis z j and the axis x j is
aligned with the perpendicular common to the current axes
of the articulation j and following j + 1 [23]. With this
convention, the equation of the transformation matrix from
the coordinate system j-1 to the coordinate system j is:

T j
(j−1) = Rmat(x(j−1), α j) × Tras(x(j−1), α j)

× Rmat(z j, θ j) × Tras(z j, θ j)
(6)

Where: The angle formed by x(j−1) and x jabout the z j axis
is denoted by θi.
The distance along z j between x j and x(j−1) is denoted by
r j.
The length of x(j−1) is denoted by d j, while the angle
formed by z(j−1) and z j around x(j−1) is represented by α j.
In relation to the coordinate system j − 1, the coordinate
system transformation matrix j is as follows: [24].

T j
(i−1) =

Cθ j −S θ j 0 d j

Cα jS θ j Cα jS θ j −Sα j r jSα j
Sα jS θ j Sα jS θ j Cα j r jCα j

0 0 0 1

4) The Two dof SCARA Arm Geometric Modelled on a 2D

Plane
The configuration of the robot is determined by the

articular variables θ1 and θ2 (Figure 6). The DH parameters
of the SCARA robot (2 d.o.f) are presented in Table 1:
(With: l1 = 0.2 m and l2 = 0.3 m).

Figure 6. The SCARA arm configuration [7]

TABLE I. SCARA prm parametrs

Label ai αi di θi
1 L1 0 0 θ1
2 L2 0 0 θ2

To calculate the direct geometric model (DGM) of a
SCARA arm in a 2D plane, we followed these steps.
In our scenario, we were focusing on a 2D plane due to
the nature of convolutional neural networks (CNNs), which
are primarily designed for 2D vision (images) and do not
directly process depth information (z) from a single image.
In this case, the translation matrix is given by:

T2
0 =

 cos θ1 − sin θ2 L1 + L2 ∗ cos θ2
sin θ1 cos θ1 L2 ∗ sin θ2

0 0 1

5) Inverse Geometric Model

The problem is to calculate the joint coordinate’s θ of
the robot from the operational coordinates X. The inverse
geometric model is the inverse problem that makes it
possible to know the articular variation according to the
situation of the terminal organ, which can be represented
by the relation: [25]-[22].

θ = g(X) (7)

Where X is the vector of the operational coordinates ex-
pressed in the reference frame R0, and θ is the articular
variance.
The matrix T , 0 and n represents the position and orien-
tation, expressed in the reference frame R0, of the robot’s
terminal member.
Three methods of calculating IGM can be used [25]

1) Paul’s technique [26], which is appropriate for the
majority of industrial robots and handles each unique
instance separately.

2) Pieper’s solution [27] solves the problem for six-
degree-of-freedom robots with three prismatic joints
or three roasted joints of consecutive axes.

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

Int. J. Com. Dig. Sys. 16, No. 1, 1067-1081 (Aug-24) 1073

3) An example of the modification is provided by [28],
which modifies the Raghavan and Roth algorithm for
solving inverse kinematics. The inverse kinematics
of a KUKA KR 5 robot were illustrated. A better
approach to solving the IK for robot manipulators
with six degrees of freedom and offset wrists is sug-
gested. This approach is predicated on the Newton
iteration methodology. This algorithm requires only
4% of the comparison algorithm’s mean calculation
time for a single IK solution [29].

Figures 7 and 8 illustrate how the arm can move in both
left and right directions.

Figure 7. Arm parameters in a 2D plane, step 1

Figure 8. Arm parameters in a 2D plane, step 2

We have the following direct geometric model:

x = L1 cos(θ1) + L2 cos(θ1 + θ2) (8)

y = L1 sin(θ1) + L2 sin(θ1 + θ2) (9)

Let us complete the scheme of the direct geometric model
by using the generalized Pythagorean theorem (Figure 9).
We have the following relationships:

L2 = x2 + y2 (10)

L2 = l12 + l22 − 2l1l2 cos(α) (11)

θ = π + θ2 (12)

Figure 9. Pythagorean Theorem

Generalized Pythagorean theorem:

x2 + y2 = l12 + l22 − 2l1l2 cos(θ2) (13)

we have :
cos(π + θ) = − cos(α) (14)

When θ2 is positive (resp., negative), the robot has a low
elbow posture (resp., elbow high) (figure 10).

Figure 10. The calculates of θ1andθ2

Let us, via the spline method, calculate that, as a result, the
MGI is:

θ1 = arctg(
y(L1 + L2 cos(θ2)) − xL2 sin(θ2)

x(L1 + L2 cos(θ2))
) (15)

θ2 = arcos(
x2 + y2 + (L1)2 + (l2)2

2L1L2
) (16)

6) The Procedure Followed and Limitations for Trajectory
Generation
The coordinates for object detection obtained from the

CNN were stored in (.txt) files, which were then utilized
as input for the arm manipulator system to study the
objects. Consequently, considering the specified constraints,
we formulated the trajectory for a SCARA manipulator arm.

The constraints considered in this study are:

1) The robot’s kinematic constraints, such as accelera-
tion, speed, and maximum angular velocity, are not

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

1074 Aicha Belalia, et al: Trajectory Tracking of a Robot Arrm Using Image Sequences

considered.
2) Ignore collisions that occur on the work plane.
3) The plane in this work is divided into zones, each

containing a single point with coordinates (x, y)
representing the object’s center of gravity detected
in the image at time ti.

4) The images were sorted based on their acqui-
sition time, with images 01.png taken at time
(t1)and02.png taken at time t2, and so on.

5) There are six seconds worth of acquittals, each
lasting 300 milliseconds.

6) We have obtained 20 images, or discarded those with
a detection accuracy below 50%, resulting in only 3
images in our case for the first object , and there are
no discarded images for the second object.

7) The matrix containing time (ti) and coordinates
(xi, yi) at time (ti) is used as input for the previ-
ously created model, following articulation rules and
respecting the Direct Geometric Model (MGD) and
Inverse Geometric Model (MGI).

8) Joint 1 (for the abscissa): It controls the movement
of the arm along the x-axis.

9) Joint 2 (for ordinates): It controls the movement of
the arm along the y-axis.

10) The coordinates of the points we want to reach are
given by (x, y).

For each joint, there is a function.
Equation for articulation 1:

θ1 : θ1(t) = f1(t) (17)

Equation for articulation 2:

θ1 : θ1(t) = f1(t) (18)

Consequently, we completed the following tasks in total:

1) The first step is to create a matrix to store the (x, y)
coordinates of the regions.

2) Establish the duration needed to arrive at each point,
which corresponds to the quantity of images used for
the test.

3) The trajectory was created using the cubic-spline
interpolation method.

4) This cubic spline allows us to smoothly connect the
key points and generate a continuous trajectory. Ad-
ditionally, by adjusting the parameters of the cubic
spline, we can control the smoothness and curvature
of the trajectory to match specific requirements or
constraints.

5) Using the spline function, we obtain the cubic poly-
nomials for each joint, θ1 and θ2. For this process,
we have converted the coordinates x, y utilized for
this process to meters.

6) By inputting the vector xi, vector yi, length L1, length
L2, and time t into the function, we can obtain the
corresponding angles θ1 and θ2 at that specific time.
The function will return two vectors of the same

length, where one vector contains the values of θ1
and the second vector contains the values of θ2

7) The generate-trajectory function takes the two vec-
tors of angles θ1 and θ2 and combines them to create
a single trajectory for the arm. This final trajectory
represents the movement of the arm over time, allow-
ing us to visualize its path and analyze its motion.
Additionally, this function can be customized to
include any necessary calculations or adjustments to
optimize the arm’s performance.

3. Results And Discussion
As previously discussed, our work is divided into two

main phases. The first phase utilizes Convolutional Neural
Networks (CNNs) to recognize objects in image sequences.
In the second phase, we use the results from the object
recognition to generate a trajectory that incorporates spline
interpolation. The subsequent section will present the results
of each phase, organized according to the two steps.

A. Object Detection Output
After applying the CNNs with 2000 iterations on 152

base images for the first object (and 160 for the second),
the results of extracting feature maps are detailed below.

In this section, we were focused on explaining the results
obtained for the first object, as the results and precision were
identical for both objects. Object detection is depicted by a
rectangle enclosing the object’s centroid coordinates.

The detection results, represented as scores or weights,
were stored in backup files. For example:
(Next (mAP) calculation at 2000 iterations)
Last accuracy (mAP@0.50) = 99.98 %, best = 99.98% .
Furthermore, the individual values obtained from this de-
tection are provided as follows:
detection’s count = 223, unique truth count = 196
Mean average precision (mAP@0.50) = 0.999767, or 99.98
%.
Therefore, among 223 detection, there are 196 true detec-
tion, which gives us a percentage of the average accuracy
equal to 99.98%. Table II illustrates the matrix of positive
and negative detection. The curve of evolution of mean
average precision as a function of loss is given in the Figure
11.

TABLE II. CONFUSION MATRIX.

Positive Negative
Positive T P(196) FP(4)
Negative T N(0) FN(0)

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

Int. J. Com. Dig. Sys. 16, No. 1, 1067-1081 (Aug-24) 1075

Figure 11. Average precision versus loss curve

In our experiment, the accuracy was measured at 0.98 with
a recall of 1.00.

An inverse relationship was observed between the mean
Average Precision (mAP) value (shown in red) and the loss
(depicted in blue). As the loss value decreases, the precision
value increases until it reaches its peak at iteration 800,
achieving an accuracy of 98% with a loss of 0.1.

Following this, several tests were conducted us-
ing various images, including those from our database
or external sources. Below is an example illustrating
the results of a test performed on an external image:
../content/drive/MyDrive/yolo20222/
imagesballonsanstra jet/05.png Predictedin715.666000
milli − seconds.
ballon: 98%
The image (05.png), depicted in Figure 12, exhibits a high
detection percentage (98%) for a single object of type ”ball”
(the first tracked object).

The detection accuracy for this instance can be visually
represented directly on the tested image or displayed in text
form, as illustrated in the following figure

Figure 12. Object detection with CNN

Figure 13 displays another detection scenario where three
ball-type objects are identified. Each object is enclosed
within a rectangle, and the percentage of detection con-
fidence is indicated on each rectangle.

The object on the left shows a detection confidence of
99%. The object in the middle and the one on the right both
exhibit a detection confidence of 100%.

Figure 13. Detection of three objects with CNN

The subsequent figures display the results obtained by the
CNNs in the form of statistical metrics.

Figure 14 illustrates the true positive and false positive
detection zones. Figure 15 presents precision, recall, and
F1-score metrics.

Figure 14. Bounding-box prediction

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

1076 Aicha Belalia, et al: Trajectory Tracking of a Robot Arrm Using Image Sequences

Figure 15. Data base test result

Figure 16 showcases the mean Average Precision
(Map@0.50) along with the overall average performance
metrics.

Figure 16. AVG IOU and Map@0.5 object detection

The detection and localization of the ”ball” class in the 20
images named 01.png to 20.png have resulted in saved text
files (.txt). Each file contains the following information for
each detected ball: image name and prediction time.
Detection confidence percentage for the ball class.
Cartesian coordinates of the centroid of the detected object,
along with the width and height of the bounding box
surrounding the object.
The format of the information within each file is structured
as follows:
Ball: nn% (confidence percentage)
Where:
nn% represents the percentage confidence level for the ball
detection (higher values close to 100 indicate more accu-
rate detection). This detailed information provides precise
localization and characterization of the detected ball objects
within each image.

B. Trajectory Generation Results
The following section explains and displays the various

trajectories created in our work using different comparison
tools, along with our approach. The following figures (Fig-
ure 17 and Figure 18) illustrate the process of generating

the trajectory in two stages using the created model.

Figure 17. Extract coordinates with CNN

Figure 18. Trajectory generation using SCARA arm

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

Int. J. Com. Dig. Sys. 16, No. 1, 1067-1081 (Aug-24) 1077

The two generated trajectories tracked in this work are
presented consecutively in Figures 19 and 20.
The two figures present the two trajectories generated by the
SCARA 2.d.o. f manipulator after entering the coordinates
(xi, yi) (found previously) as well as the spline3 method.
So, Figure 19 represents the simple trajectory, and Figure
20 presents the complex trajectory.

Figure 19. The first path created by the SCARA arm

Figure 20. The second path created by the SCARA arm

Figures 21 and 22 display the real trajectories that the
monitored object made while it was moving.

Figure 21. The first real path created by the first object

Figure 22. The second real path created by the second object

C. Evaluation
For the initial trajectory analysis, we aimed to construct

the balloon’s trajectory as depicted in Figure 21. We utilized
two distinct tools to generate the trajectory from the same
set of points mentioned above, enhancing the evaluation of
our strategy. Here are the outcomes:
The first application is a robust tool designed for complex
data manipulation and advanced analysis, offering detailed
control over graphical customization. Figure 23 displays the
trajectory obtained using this tool.
The second application is a quick and straightforward
method that utilizes the provided coordinates in columns to
generate a static graph. Refer to Figure 24 for the trajectory
obtained using this approach.

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

1078 Aicha Belalia, et al: Trajectory Tracking of a Robot Arrm Using Image Sequences

Figure 23. Path created by application 1

Figure 24. Path created by application 2

To further evaluate this work, we conducted compar-
isons with other research and calculated various metrics to
assess the similarity between the trajectory generated by the
SCARA arm and the actual trajectory.
Our evaluation involved the following steps and considera-
tions:
Comparison with Existing Research: We reviewed related
literature and compared our approach with similar studies
in the fields of trajectory generation and robotics.

Metric Calculation: We computed metrics to quantify
the similarity and accuracy of the generated trajectory com-
pared to the actual trajectory. These metrics may include
measures of trajectory error, such as mean squared error
(MSE), root mean square error (RMSE), or other distance
metrics.

D. Comparison
There are limits to the computational efficiency and

viability of planned trajectories with current trajectory plan-
ning techniques. For example, in [11], a framework for

continual learning is introduced, aimed at executing high-
precision and efficient direct path planning (DTP) tasks.
Leveraging Generative Adversarial Networks (GAN), the
study develops a lightweight GDTP model to establish map-
pings between initial and final states as well as the sequence
of control actions. Through experimental comparisons with
the widely used Cubic Curve RRT* (CCRRT*) algorithm,
the results indicate that the proposed method enables the
generation of highly attainable trajectories within a short
timeframe. Notably, the tracking errors of their method, in
terms of both position and heading angle, are found to be
29.1% and 44.1% lower than those of CCRRT*. In the work
of [30], in order to solve the problem of forecasting future
vessel trajectories with a forecast horizon of several hours,
they investigated deep learning strategies using historical
AIS observations. Utilizing recurrent encoder-decoder neu-
ral networks (RNNs) trained on historical trajectory data,
they present novel sequence-to-sequence vessel trajectory
prediction models that forecast future trajectory samples
based on past observations. The proposed architecture uses
both long- and short-term memory RNNs for sequence mod-
eling, combining multiple intermediate aggregation layers
to capture spatiotemporal dependencies in sequential data,
encoding observed data and producing future predictions.
The outcomes of the experiments demonstrate the supe-
rior performance of sequence-to-sequence neural network-
based deep learning techniques for trajectory prediction
when compared to baseline strategies that rely on linear
techniques.
When comparing our method to the two alternative ap-
proaches, we observed that our method achieved a precision
of 0.98 and a similarity score of 0.993691 between the
generated trajectory and the actual trajectory. These results
demonstrate the effectiveness and reliability of our approach
to trajectory generation and analysis.

1) Difference Between Two images
The difference between the generated trajectory and the

actual trajectory for the two objects is shown consecutively
in Figures 25 and 26.
The two figures display the similarity between the two
real trajectories and those created by the arm. We notice
that there is no sufficiently significant difference between
the two trajectories, which proves the effectiveness and
precision of the method applied.

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

Int. J. Com. Dig. Sys. 16, No. 1, 1067-1081 (Aug-24) 1079

Figure 25. Difference between the real and the generated trajectory
path1

Figure 26. Difference between the real and the generated trajectory
path2

2) The Difference Between the First Real Trajectory and
The Trajectory Created by The Arm
We calculated the difference between the pixels accord-

ing to each pixel (Figure 27).
In this figure, we observe two prominent peaks in the graph,
one at pixel level 150 and another at pixel level 1100.
This suggests notable distinctions among the pixels at these
positions, potentially reflecting variations in brightness,
color, texture, or other attributes. Conversely, the remaining
pixels between 0 and 1200 exhibit values uniformly ranging
from 0 to 0.5, indicating a high degree of similarity. The
minimal difference between these pixels suggests that they
appear nearly identical.
The graphic effectively illustrates the pixel-by-pixel fluctu-
ations, reflecting the degree of object detection precision
attained. We may further improve the trajectory to guar-
antee smoother and more accurate motions by adding the
manipulator arm’s kinematic constraints.

Figure 27. Difference between the real trajectory and the trajectory
created by the arm

3) Similarity Metrics
The calculation of similarity between two images using

metrics provides a quantitative measure of how closely
the detected objects match the ground truth, allowing for
better detection optimization. In this section, we used MS E,
PS NR, and cosinesimilarity to evaluate the performance of
our detection algorithm. In order to calculate these metrics,
we followed these steps: First, we resized the two images
containing the real trajectory and the trajectory created by
the arm (image1) and (image2) at the same height and same
width.
Convert images to matrices of doubles.
Convert images to gray-scale.
Finally, we apply the following formulas:

1) The (Mean Squared Error) MSE
we named squared−di f f erence as DD, so we have

DD = (double(image1) − double(image2)) × 2 (19)

MS E = mean(squareddi f f erence(:)) (20)

Its result is 509.943256. This rating suggests that,
while the images are still quite comparable, there
are some obvious variances between them. Minor
changes in the illumination, noise, or other elements
may be the cause of the differences.

2) The Peak Signal-To-Noise Ratio Or PSNR

maxintensity = 255 (21)

psnr = 10 ∗ log10((maxintensity2)/mse). (22)

Its result is 21.055585dB, which is moreover
relatively high, indicating that the quality of image

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

1080 Aicha Belalia, et al: Trajectory Tracking of a Robot Arrm Using Image Sequences

compression or reconstruction is excellent. A high
PSNR is frequently linked to the same pictures

3) Cosine Similarity

vector1 = double(image1r(:)). (23)

vector2 = double(image2r(:)). (24)

cosine − similarity =(
dot(vector1, vector2)

(norm(vector1) × norm(vector2)

)
(25)

The result of the cosine similarity is 0.993691. The two
images are extremely similar to one another based on this
value’s proximity to one.
The figure below (Figure 28) depicts the degree of similarity
between the two graphs in relation to these three metrics.

Figure 28. Image metrics comparison based on pixels

4. Conclusion
In this research paper, we applied a method to simulate

and generate trajectories for a SCARA robotic arm with
2 degrees of freedom (2DOF). The approach involved
utilizing Convolutional Neural Networks (CNNs) to detect
tracked objects in a sequence of arm-captured images. The
CNN outputs were then used as inputs for the SCARA
robotic arm (2DOF), incorporating specific constraints and
leveraging a modified Denavit-Hartenberg model by Khalil
tailored to the SCARA arm’s kinematic structure, enabling
precise and efficient trajectory planning.

Using the previously developed arm model, trajecto-
ries were generated, and the Spline3 method was applied,
achieving an impressive accuracy of 98.99%. Evaluation
criteria encompassed Maps, F1-score, recall, precision of
detection, Mean Squared Error (MSE), Peak Signal-to-
Noise Ratio (PSNR), and cosine similarity of trajectories.

When comparing our method to alternative approaches,

our method exhibited a precision of 0.98 and a notable
similarity score of 0.993691 between the generated trajec-
tory and the actual trajectory. These results underscore the
effectiveness and reliability of our approach to trajectory
generation and analysis, highlighting its capability to pro-
duce accurate trajectories with minimal deviation from the
desired path.

The demonstrated high degree of trajectory similar-
ity showcases the method’s potential to generate precise
trajectories by accurately positioning objects using CNN-
based object detection (OD). This research offers signifi-
cant potential benefits across diverse fields, particularly in
medicine, where robots can enhance surgical procedures by
accurately tracking essential surgical objects.

It’s important to note that this study did not address
certain constraints such as speed, acceleration, or collisions,
which are essential considerations for future research and
practical applications in robotic trajectory planning

References
[1] K. Ning, T. Kulvicius, M. Tamosiunaite, and F. Wörgötter, “A

novel trajectory generation method for robot control,” Journal of
Intelligent & Robotic Systems, vol. 68, pp. 165–184, 2012.

[2] Y. Fang, J. Qi, J. Hu, W. Wang, and Y. Peng, “An approach for
jerk-continuous trajectory generation of robotic manipulators with
kinematical constraints,” Mechanism and Machine Theory, vol. 153,
p. 103957, 2020.

[3] D. Malyuta, T. P. Reynolds, M. Szmuk, T. Lew, R. Bonalli,
M. Pavone, and B. Acikmese, “Convex optimization for trajectory
generation,” 2021.

[4] M. Sushma Sri, B. Rajendra Naik, K. Jayasankar, B. Ravi, and
P. Praveen Kumar, “On the use of region convolutional neural net-
work for object detection,” in Data Engineering and Communication
Technology: Proceedings of ICDECT 2020. Springer, 2021, pp.
315–324.

[5] C. Vimala, T. Thenmozhi, M. Jagadeesh Kumar, and C. Subramani,
“Convolutional neural network-based automatic object detection on
aerial images,” in Sixth International Conference on Intelligent Com-
puting and Applications: Proceedings of ICICA 2020. Springer,
2021, pp. 363–370.

[6] Y. Anthony and G. Cameron, “Use articulation bodies to easily
prototype industrial designs with realistic motion and behavior,”
2020.

[7] Q. Agrapart and A. Batailly, “Cubic and bicubic spline interpolation
in python,” Ph.D. dissertation, École Polytechnique de Montréal,
2020.

[8] A. Abadi, “Contribution à la génération de trajectoires optimales
pour les systèmes differentiellement plats application au cas d’un
quadri-rotor,” Ph.D. dissertation, Université d’Orléans; Ecole Na-
tionale d’Ingénieurs de Sousse (Tunisie), 2020.

[9] J. Zhao, X. Zhu, and T. Song, “Serial manipulator time-jerk optimal
trajectory planning based on hybrid iwoa-pso algorithm,” IEEE
Access, vol. 10, pp. 6592–6604, 2022.

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

Int. J. Com. Dig. Sys. 16, No. 1, 1067-1081 (Aug-24) 1081

[10] D. S. Carabis and J. T. Wen, “Trajectory generation for flexible-
joint space manipulators,” Frontiers in Robotics and AI, vol. 9, p.
687595, 2022.

[11] C. Zhao, Y. Zhu, Y. Du, F. Liao, and C.-Y. Chan, “A novel
direct trajectory planning approach based on generative adversarial
networks and rapidly-exploring random tree,” IEEE Transactions
on Intelligent Transportation Systems, vol. 23, no. 10, pp. 17 910–
17 921, 2022.

[12] J. Li, M. Ran, and L. Xie, “Efficient trajectory planning for multiple
non-holonomic mobile robots via prioritized trajectory optimiza-
tion,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp.
405–412, 2021.

[13] H. Bilal, B. Yin, and A. Kumar, “jerk-bounded trajectory planning
for rotary flexible joint manipulator: an experimental approach.”
Application of soft computing, vol. 27, p. 4029–4039, 2023.

[14] V. Schülé and D. Genoud, “Détection automatique d’objets agricoles
avec du machine learning,” Master’s thesis, 2018.

[15] T. NITHISSH and P. RAMPRAKASH, “Real time multiple object
detection with yolo,” 2021.

[16] C.-Y. Wang, I.-H. Yeh, and H.-Y. M. Liao, “Yolov9: Learning what
you want to learn using programmable gradient information,” arXiv
preprint arXiv:2402.13616, 2024.

[17] K. Smeda, “Understand the architecture of cnn,” Towards Data
Science, 2019.

[18] K. Mathia, Robotics for electronics manufacturing: principles and
applications in cleanroom automation. Cambridge university press,
2010.

[19] H. Makino, “Development of the scara,” Journal of Robotics and
Mechatronics, vol. 26, no. 1, pp. 5–8, 2014.

[20] L. A. Soriano, J. d. J. Rubio, E. Orozco, D. A. Cordova, G. Ochoa,
R. Balcazar, D. R. Cruz, J. A. Meda-Campaña, A. Zacarias, and G. J.
Gutierrez, “Optimization of sliding mode control to save energy in
a scara robot,” Mathematics, vol. 9, no. 24, p. 3160, 2021.

[21] P. Corke, “Denavit-hartenberg notation for common robots,” Peter-
Corke: Brisbane, Australia, 2014.

[22] B. Bayle, J.-Y. Fourquet, F. Lamiraux, and M. Renaud, “Kinematic
control of wheeled mobile manipulators,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, vol. 2. IEEE, 2002,
pp. 1572–1577.

[23] W. Khalil and J. Kleinfinger, “A new geometric notation for open
and closed-loop robots,” in Proceedings. 1986 IEEE International
Conference on Robotics and Automation, vol. 3. IEEE, 1986, pp.
1174–1179.

[24] C. Feng, G. Gao, and Y. Cao, “Kinematic modeling and verification
for a scara robot,” in 2016 3rd International Conference on Materi-
als Engineering, Manufacturing Technology and Control. Atlantis
Press, 2016, pp. 918–921.

[25] W. Khalil and E. Dombre, “Modelisation, identification and control
of robots,” Hermes Penton Science, London, vol. 67, 2002.

[26] R. P. Paul, Robot manipulators: mathematics, programming, and

control: the computer control of robot manipulators. Richard Paul,
1981.

[27] D. L. Pieper, The kinematics of manipulators under computer
control. Stanford University, 1969.

[28] R. Kumar, A. Dan, and K. Rama Krishna, “A note on imple-
mentation of raghavan–roth solution for wrist-partitioned robots,”
in Machines, Mechanism and Robotics: Proceedings of iNaCoMM
2019. Springer, 2022, pp. 687–696.

[29] X. Zhou, Y. Xian, Y. Chen, T. Chen, L. Yang, S. Chen, and
J. Huang, “An improved inverse kinematics solution for 6-dof robot
manipulators with offset wrists,” Robotica, vol. 40, no. 7, pp. 2275–
2294, 2022.

[30] S. Capobianco, L. M. Millefiori, N. Forti, P. Braca, and P. Willett,
“Deep learning methods for vessel trajectory prediction based on
recurrent neural networks,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 57, no. 6, pp. 4329–4346, 2021.

Aicha Belalia , Bac in 2003. She obtained
her engineering diploma in computer engi-
neer (computer networks).from USTO Oran
University.in 2008 She obtained a magister
diploma in Computer science (simulation
and modeling of systems) from USTO Oran
University in 2014. PhD candidate studying
in computer science. She is currently an
assistant professor of computer science at a
university and a supervisor of L3 students.

Samira Chouraqui Pr. Samira Chouraqui
is a full professor at the computer sci-
ence department of USTO ORAN Univer-
sity, Algeria. She obtained her engineer-
ing diploma in Electrical engineering from
USTO Oran University. The MSc degree in
satellite communication from Surrey Uni-
versity in UK. The Ph.D. degree in com-
puter science from the USTO ORAN Uni-
versity. Current research interests are in the

area of computer vision, artificial intelligence and UAV. E-mail:
samirachouraqui@univ-usto.dz

M’hammed Boussir Bac, 1991. 1998
USTO state computer engineer (computer
networks). 2012 USTO a magister diploma
in physics (matter and radiation). PhD
candidate studying radiation and matter
physics.he Is employed with the vocational
training institute as a teacher. Overseeing
trainee students in IT technology. Algorithm
researcher in materials physics and radiation

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

	Introduction
	 The Generation of Trajectories
	Object Detection by CNN
	R-CNN
	Faster-CNN
	YOLO

	Research Methodology
	Object Detection Using CNN
	 Convolution
	The ReLU Correction Layer
	The Pooling Layer
	The fully-connected Layer
	Feature Extraction

	Trajectory Generation Steps
	The SCARA 2 d.o.f Robot
	Denavit and Hetenberg Parameter
	Khalil's Model
	The Two dof SCARA Arm Geometric Modelled on a 2D Plane
	Inverse Geometric Model
	The Procedure Followed and Limitations for Trajectory Generation

	Results And Discussion
	Object Detection Output
	Trajectory Generation Results
	Evaluation
	Comparison
	Difference Between Two images
	The Difference Between the First Real Trajectory and The Trajectory Created by The Arm
	Similarity Metrics

	Conclusion
	References
	Biographies
	Aicha Belalia
	Samira Chouraqui
	M’hammed Boussir

