
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
60	
61	
62	
63	
64	
65	

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. #, No.# (Mon-20..)

E-mail: yasser_ismail@subr.edu

 http://journals.uob.edu.bh

High-Fidelity Machine Learning Techniques for Driver

Drowsiness Detection

Ebenezer Essel1, Abeer Abdelhamid2, Mahmoud Darwich3, Fahmi Khalifa2, Fred Lacy4, and Yasser

Ismail4

1 Department of Electrical & Computer Engineering, Louisiana State University Baton Rouge, LA, U.S.A.
2 Department of Electrical and Computer Engineering, Morgan State University, Baltimore, MD, U.S.A.
3 Department of Mathematics and Computer Science, University of Mount Union, Alliance, Ohio, U.S.A.

4 Department of Electrical Engineering, Southern University and A&M College, Baton Rouge, LA, U.S.A.

E-mail address: eessel1@lsu.edu, beroabdo345@gmail.com, darwicma@mountunion.edu, fahmi.khalifa@morgan.edu,

fred_lacy@subr.edu, yasser_ismail@subr.edu

Received ## Mon. 20##, Revised ## Mon. 20##, Accepted ## Mon. 20##, Published ## Mon. 20##

Abstract: It is devastating that daily, there is an ample number of car crashes that cause damage to automobiles, onboard passengers

get injured, and others tend to lose their lives. Road crashes are fast rising across the globe and have drawn many road safety

commissions and concerned individuals to discuss ways to reduce this menacing situation drastically. With the introduction of

artificial intelligence and technological advancement, the government and state commissions have beckoned on the various

universities and research institutions to develop methods to curb the rise of automobile crashes. Some causes of these crashes include

drunk driving and drowsiness, the latter is most prevalent as it occurs to all and sundry. Drowsiness detection can be categorized into

three main techniques; behavioral-based, vehicular-based, and physiological-based. In this research, the behavioral-based approach

was studied, with significant consideration being the cost of implementation, execution time, and accuracy. Three machine learning

(ML) classifiers were considered: Support Vector Machine (SVM), Naïve Bayes (NB), and Random Forest (RF). A dataset of 1448

images was used for training and testing these classifiers: 70% for training and 30% for testing. Random Forest classifier gave the

best accuracy of (92.41%) compared to SVM (90.34%) and Naïve Bayes (69.43%). A deep neural network (VGG16) was used to

classify drowsiness, and this gave a high accuracy of 97.20%, which outperformed the traditional machine learning models.

Keywords: Drowsiness detection, machine learning, automobile crashes, artificial intelligence

1. INTRODUCTION

Drowsiness detection is a safety feature used in cars to

help avoid crashes caused by drowsy drivers [1].

Numerous detection techniques assess driver tiredness and

warn the motorist. Detection methods can be categorized

based on behavioral, vehicular, and physiological

parameters. Vehicular and behavioral-based approaches

are non-invasive. Whereas vehicular-based techniques

consider factors like yaw angle, steering wheel behavior,

and lane-changing patterns [2], behavioral-based

techniques are centralized on the driver's actions,

including eye closeness ratio, eye blinking, head

movement, and yawning [1]. Physiological approaches

monitor the driver’s physiological conditions, such as

heartbeat, pulse rate, and electrical activity in the brain,

and are invasive or intrusive. The geometric properties of

different roads make vehicular highly unreliable [1]. The

need to purchase different sensors and devices makes

physiological-based approaches capital-demanding.

Additionally, it is invasive and frequently aggravates and

discomforts the driver. Because it is affordable [3][4] and

easy/convenient to apply [4][5], the behavioral-based

method is thus extensively employed. However, how the

data is processed, including lighting and illumination,

impacts behavioral techniques.

In a study by Chellappa et al. [6], the somatic sensor,

temperature sensor, LM-35, and photoplethysmography

(PPG) were used to measure the core body temperature

and pulse rate. This study employed the integration of

behavioral and physiological parameters to detect

drowsiness. The Viola-Jones algorithm and Haar cascade

IJCDS 1571010177

1

mailto:yasser_ismail@subr.edu
mailto:eessel1@lsu.edu
mailto:beroabdo345@gmail.com
mailto:darwicma@mountunion.edu
mailto:fahmi.khalifa@morgan.edu
mailto:fred_lacy@subr.edu
mailto:yasser_ismail@subr.edu

2 Author Name: Paper Title …

http://journals.uob.edu.bh

Data

Testing DataTraining Data

Data Preprocess

ML Classifier and

Training Process

Performance Evaluation

1. Accuracy

2. Recall

3. Precision

4. F-score

classifier were used together with the devices for

detection, with an achieved detection accuracy of 80.55%.
Awais el al. considered biological parameters such as

the heart rate, time-domain, and frequency domain
measures extracted from electroencephalogram (EEG)
and electrocardiogram (ECG) combined with the SVM
and k-strongest strengths (kSS) to detect drowsiness [7].
The overall performance of their study was 80%. A
summary of some exciting literature on behavioral and
vehicular methods is given in [1]. In particular, the study
proposed in [8], used the deep learning method and
achieved an accuracy of 83.30%. Essel's study in [1]
draws the method and main contributions from [9] and the
model’s applicability to Android devices. Deng and Wu
[10] combined the kernelized correlation filters (KCF) and
convolutional neural network (CNN) algorithm in
detection and called it DriCare with an accuracy of
93.60%. The work by N. Kumar et al. [11] designed a
system to detect real-time eye blinking using the Viola-
Jones detection and active contour method for yawning.
The experiment involved 70 male and 30 female
volunteers of different ages and facial characteristics. The
experiments were conducted at six different times: (1)
Morning (6 AM to 11 AM), (2) Afternoon (11 AM to 2
PM), (3) Critical Time 1 (2 PM to 4 PM), (4) Evening (5
PM to 8 PM), (5) Night (8 PM to Mid Night 3 AM), and
(6) Critical Time 2 (Mid Night 3 AM to 6 AM). The result
showed an accuracy of 92% for eye detection while
mouth detection achieved an accuracy of 88%.

Reddy et al. [12] researched a deep CNN for driver
drowsiness detection based on eye state. A dataset of 1200
samples from the video stream and 2850 images were
used to train, test, and validate the ML model. The Viola-
Jones algorithm was used for face and eye detection. First,
the convolution layer in CNN extracted the facial features;
then, the SoftMax layer classified images as sleepy or
non-sleepy. Two experiments were conducted, and of the
two, the first experiment was on 2,850 images (trained
1,200 images; validated 500 images; and tested 1,150
images); the second experiment was conducted on 1,200
video samples. The highest accuracy recorded from the
experiment was 96.42%. Reddy et al. [12] reiterated that
the classification of face detection techniques could be
grouped into two, that is, geometric-based techniques and
image-based techniques. The geometric extraction method
extracts shape and location-related metrics from the eyes
and eyebrows. Image-based approaches for face detection
use statistical neural networks and linear subspace
methods.

This paper is an elaborate study on the use of machine
learning techniques for driver drowsiness detection. The
focus is on comparing various ML and deep learning for
high-fidelity detection. The paper is organized as follows,
in section 2, the proposed work is elaborated. Results and
discussions are elaborated in section 3. A conclusion will
be drawn in section 4.

2. PROPOSED WORK

The research outlined in this paper integrates both
traditional machine-learning methods and deep-learning
approaches to implement a high-fidelity drowsiness
detection algorithm. A schematic of the pipeline is shown
in Fig. 1. The subsequent sections provide comprehensive
insights into the utilization of these methodologies.

Figure 1. Schematic of the proposed pipeline flow and phases.

A. Machine Learning Methods

This research presents a detection model that
leverages ML classifiers for enhanced efficiency. The
proposed model along with its implementation phases: (1)
data acquisition, (2) data preprocessing, (3) ML classifier
and learning operation, and (4) performance evaluation,
are seen in Figure 1. Each phase plays a crucial role in the
overall functionality of the system, ensuring robust
detection capabilities and rigorous performance
assessment.

1) Data Acquisition: As seen in Figure 1, the model
starts with data acquisition, and ML algorithms are
designed to work on static frames; the data was obtained
from [13], which consists of participants from different
ethnicities and genders. The data consists of individuals
whose images can be categorized under different
conditions, including persons with and without glasses,
yawning, and no yawning. Next, the data was split into
two, one for training and the other for testing.

2) Data Preprocessing: In this phase, the training

data had to be processed before passing to the classifier,

and this was done by resizing the images to 32 x 32 to

reduce processing time and use less memory. The

associated label for each image was also converted into a

binary value. The drowsy state was labeled as a binary

2

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 3

http://journals.uob.edu.bh

“zero”, whereas the non-drowsy state was labeled as a

binary “one”.

3) Machine Learning Classifier and learning

operation: After the training data has been processed, it is

ready to be used for training the classifiers. The ML

classifiers considered are that of the supervised form of

learning. The three classifiers used are SVM, NB, and RF

and their details are given below.

a) Support Vector Machine (SVM) is one of the

early ML classification methods dating to the early 1990s

and is a generalized form of the 'maximal margin

classifier'. Support Vector Machine was initially limited to

cases with linear boundaries. However, improvement has

seen its application to a wide range of datasets. SVM uses

the concept of a hyperplane, and in n-dimensional space, a

hyperplane is a flat affine subspace of dimension (n-1). In

two-dimensional (2D), the hyperplane is a line, whereas in

three-dimensional (3D), the hyperplane is a plane. In 2D,

a hyperplane is defined by (1):

 𝑎𝑥1 + 𝑏𝑥2 + 𝑐 = 0 𝑜𝑟 𝑎𝑥 + 𝑏 = 0 () + = () ()

If the position of the training point lies on this

equation, then the point is directly on the hyperplane.

However, often, the training observations lie on either

side of the hyperplane, which satisfies (2):

𝑎𝑥1 + 𝑏𝑥2 + 𝑐 < 0 𝑜𝑟 𝑎𝑥1 + 𝑏𝑥2 + 𝑐 > 0 ()

The aim is to construct a hyperplane that separates the
training sets perfectly according to their class labels. Then
test data is classified based on the side of the plane where
it lies. For example, suppose the data can be perfectly
separated using a hyperplane, then an infinite number of
such hyperplanes will exist. Thus, to construct a classifier
based upon a separating hyperplane, there must be a
reasonable way to decide from the infinite possible
separating hyperplanes. Therefore, a hyperplane, which
gives the maximum margin away from the training points,
is chosen, termed the optimal separating hyperplane, and
is done by computing the (perpendicular) distance from
each training point to a given separating hyperplane. The
smallest distance is the minimal distance of a training
point away from the hyperplane, known as the margin.
We can then classify a test observation based on which
side of the maximal margin hyperplane it lies. Support
vectors are training points closest to the hyperplane. These
support vectors determine how far the margin can be set.
In other words, they regulate the magnitude of the margin
away from the hyperplane. In cases where we do not have
a separating hyperplane, the concept of soft margin is
introduced. This concept deals with allowing some of the
training data to be on the wrong side just so the classifier
will be good at classifying other observations. This
tradeoff makes the classifier robust to different

observations and better classifies the training data. A
regularization parameter, C, a nonnegative tuning
parameter, affects this optimization problem; it defines the
limit of the margins. When C is small, narrow margins are
developed, indicating the classifier is highly fitted to the
data. Thus, having a low bias and a high variance with
few support vectors.

On the other hand, when C is large, the margin is
wider and subject to more wrong positioning. As a result,
there is less hard fitting, high bias, and low variance with
many support vectors. In non-linear class boundaries, the
feature space is enlarged using higher-order polynomial
functions of the predictors. Support vector machines have
the following benefits: they are efficient in high-
dimensional spaces, only employ a small portion of
training points (called support vectors) in the decision
function and can specify various kernel functions for the
decision function.

b) Random Forest (RF) ML method stems from

using several (aggregation) decision trees. Aggregation is

a procedure to reduce high variance by totaling the result

of several decision trees by majority vote in classification,

thereby increasing the prediction accuracy. The process

involves: making several sub-training sets, building

separate prediction models using the training sets, and

then averaging the prediction results by majority vote.

However, a slight change in the data can cause a

significant change in the final estimated tree.

Mathematically, if the results for the individual prediction

models are given by (3):

 𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), … , 𝑓𝑛(𝑥) ()

The average of these will be given by (4):

𝑓𝑎𝑣𝑔(𝑥) =
1

𝑛
∑ 𝑓𝑛𝑛

𝑛=1 (𝑥) ()

Due to the difficulty of obtaining large datasets, the
concept of bootstrapping aggregation (repeated sampling
with replacement), popularly called bagging, is utilized.
Often the number of estimators can be represented by the
parameter, n. An n value of one hundred (100) is
sufficient to achieve good performance. In random forest
classification, a good parameter to estimate the test error
is the Out-of-Bag (OoB) error. It is proven that, on
average, each bagged tree utilizes two-thirds of the
observations. The remaining one-third is not used for
fitting and is termed the Out-of-Bag observations.
Predictions can be made for each ith observation in OoB
observations, and then the majority vote is taken for
classification. Also, the OoB approach for estimating the
test error is particularly convenient when bagging on large
datasets for which cross-validation is tough. The key
advantages of decision trees include the ease of
explanation and how they closely mirror human decision-
making.

3

4 Author Name: Paper Title …

http://journals.uob.edu.bh

c) Naïve Bayes (NB)classifier utilizes three

principles, that is, the use of conditional probability,

Bayes' theorem, and feature independence assumption.

Probability is the likelihood of event occurrence and

Naïve Bayes uses the conditional probability equation

given by (5) as:

𝑃(𝐴|𝐵) =
𝑃(𝐴,𝐵)

𝑃(𝐵)
 (5)

where 𝑃(𝐴, 𝐵) is the intersection between A and B,
and P (B) is the probability of B. 𝑃(𝐴|𝐵)is referred to as
the probability of A occurring given that B has already
occurred. The relation between P (A|B) and P (B|A) can
be represented through Bayes' theorem, which is stated by
(6) as:

 𝑃(𝐵|𝐴) =
𝑃(𝐴|𝐵)∗𝑃(𝐵)

𝑃(𝐴)
 (6)

Naïve Bayes classifier relates input features to class
based on probability. Given a set of features Y = {Y1, Y2,
Y3…, Yn} and the goal is to predict the class C, then look
for C that gives the highest P (C|Y). It is difficult and
complex to run through all features for each class; thus,
the ideal approach is to resort to the following principle:
Bayes' theorem. It can be defined for this case as:

𝑃(𝐶|𝑌) =
𝑃(𝑌|𝐶) ∗ 𝑃(𝐶)

𝑃(𝑌)

()

P(Y) is the same for all classes as it does not depend
on C; it is a constant. Thus, now the focus will be to
determine the values for P (Y|C) and P(C), which can be
estimated from the data. P(C) obtained from the training
data is defined as:

𝑃(𝐶) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝐶

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 ()

For P (Y|C), we use the independence assumption that
describes how the individual features are independent. It
is given thus as:

 𝑃(𝑋1, 𝑋2, … , 𝑋𝑛|𝐶) = 𝑃(𝑋1|𝐶) ∗ 𝑃(𝑋2|𝐶) ∗ … ∗ 𝑃(𝑋𝑛|𝐶) ()

The advantages of this classifier include: it is fast and
straightforward to implement; it scales well; that is, it
does not need several parameters, and the feature
probability can be calculated in parallel since they are
independent.

4) Performance evaluation: In assessing the

performance of machine learning models, several key

metrics are commonly employed, including accuracy,

recall, precision, and F-score, as seen in Figure 1.

Accuracy measures the overall correctness of the model's

predictions, representing the proportion of correctly

classified instances. Recall, also known as sensitivity,

quantifies the model's ability to correctly identify all

relevant instances within a dataset. Precision, on the other

hand, assesses the model's accuracy in correctly

identifying relevant instances among all instances

classified as positive. The F-score, which combines

precision and recall into a single metric, provides a

balanced assessment of the model's performance,

particularly useful when dealing with imbalanced datasets.

Together, these metrics offer valuable insights into the

effectiveness and reliability of machine learning

algorithms in various applications. All these parameters

will be elaborated in detail in the simulation results

section.

B. Deep Learning Model

Recent years have seen a shift from the traditional
method to applying a deep neural network for image
classification. Often, the classifiers mentioned above
become limited when you have a large data set. The
volume of data being produced recently is growing
exponentially. Also, with the advent of faster processing
units, CNN has become the norm of the day. Deep
learning is a machine learning form involving designing
CNN models capable of learning diverse, intricate
abstractions or representations of a given data and using
that information to make qualitative and quantitative
predictions. In other words, deep learning is pivotal and
often employed in computer vision since convolutional
neural networks can independently generate patterns/
features in the training data. Although large datasets are
being produced in different fields, often, there is little data
available for image classification models typically having
data ranging from a few hundred to a few thousand. While
it is possible to use this limited data to train content from
scratch, often, one cannot achieve optimum accuracy.
Deep learning aims to optimize results and reduce
execution time, computational complexity, and
implementation cost. Several algorithms have been
developed to reduce cost, but accuracy is a key
consideration for image classification. Generally, the
accuracy of a neural network is affected by the following:
(1) the number of training samples, (2) overfitting, that is,
the network has specialized well in learning the given data
but does poorly in generalizing to other unseen data (3)
regularization (methods used to minimize the loss
function to improve accuracy) – data augmentation and
dropout are regularization methods used to correct
overfitting, and (4) model parameters (that is, the number
of filters per convolution layer, and the number of layers
in the network). It is important to know that neural
networks are computationally expensive and utilize ample
memory space; thus, most networks need a high-speed
graphics processing unit (GPU) or tensor processing unit
(TPU) for execution. This problem has been addressed
with the introduction of transfer learning, where models
that have their parameters already trained are made
available for other classification problems. This was done

4

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 5

http://journals.uob.edu.bh

because some of these models were trained using multi-
parallel high-performance processors over several days,
weeks, or months and these constraints are not available
to most users. Figure 2 represents the steps of training the
neural network model and evaluating its performance.

Figure 2. General Flowchart for Classification.

A. Data

The first step as can be seen in Figure 2 is the
collection of data. Images were taken from the ‘Yawning
Detection Dataset’ [13]. These individuals were from
different ethnicities, including Caucasian, Asian, African,
and Middle Eastern. The data was very small, so there
was the need to use data augmentation to generate more
data. After that, the data was divided into three for
training, another for validation, and the last for testing in
the percent ratio; 70% for training, 15% for validation,
and 15% for testing.

B. Data Preprocessing

The next step in Figure 2 is to process the data before
training the network. Data preprocessing involves reading
the image files, decoding the image content to RGB grids
of pixels, converting the pixels into floating-point tensors,
and finally rescaling the pixel values (between 0 and 255)
to [0,1] interval because, preferably, neural networks use
small input values. Keras package offers utilities to handle
these steps of preprocessing. The package has the
ImageDataGenerator utility, which sets up Python
generators that automatically turn image files into batches
of preprocessed tensors. Data augmentation generates
more samples from existing training samples by
augmenting the data through different transformations.
The aim is to expose the model to varying training data,

thus making it robust and likely to generalize well on new
data. This is also done to avoid the issue of overfitting
which occurs when we have too few samples to learn
from. Several transformations were considered, and some
images produced were under the following: (1) channel
shift, (2) zoom-in of 0.2, (3) a height shift of 0.2, (4) a
rotation of 45°, (5) width shift of 0.2, (6) a horizontal flip,
and (7) changing the shear angle to 45°. In the end, the
total images available totaled 13,032. The training set had
4554 drowsy and 4567 non-drowsy images; the validation
set had 976 drowsy and 979 non-drowsy images; the test
set had 977 drowsy and 979 non-drowsy images.

C. Neural Network

Following the second block is the neural network and
our study used VGG16 architecture developed by Karen
Simonyan and Andrew Zisserman [15]. The network is
easy to implement and applicable to many image
classification problems, making it a widely used CNN
architecture. Figure 3 shows the architecture of the
VGG16 network. The network can be partitioned in two:
(1) convolutional base trained on ImageNet – a series of
pooling and convolutional layers, and (2) classifier base –
depending on the number of classes. Generally, the
network consists of 16 main layers (13 convolutional
layers and 3 dense layers). A pre-trained model was used,
a saved network previously trained on a large dataset
(ImageNet) because the total weights to be trained for a
VGG16 model is about 15 million parameters (this is
computationally expensive). In addition, it requires about
2-4 GPUs to train over several days or weeks. Thus,
transfer learning was introduced where it is possible to use
the trained weights on different classification problems
without having to retrain again but only to modify the
classifier base to suit the number of classes required for
the problem at hand.

The convolutional base is used since the
representation or patterns learned in that stage were
largely generic (colors, visual edges, and textures) and
more reusable. We transferred the learned parameters
from the convolution base onto our datasets. However, the
patterns learned by the classifier base are more specific to
the set of classes in which the model was trained, so we
had to train our dense base on top to suit the binary
classification. Thus, our remodeled CNN consists of 13
convolution layers and 2 dense layers. The number of
filters in convolution layers increases (multiples of 64) as
we go deeper into the network (from 64 to 512 filters).
Each convolutional layer in the network is a 3 x 3 grid but
has varying filters. It is expected that the filters will
increase as we go deeper into the network because the
level of abstraction (representation) and the number of
features to extract increases. Also, generality reduces as
the depth of the convolutional layers increases. This
network applied the rectified linear unit (ReLU) activation
with Maxpooling on the convolved outputs. Three main
activations normally applied to the hidden layers are

5

6 Author Name: Paper Title …

http://journals.uob.edu.bh

sigmoid, hyperbolic tangent (tanh), and ReLU. Sigmoid
and hyperbolic tangent activations have the vanishing
gradient problem during backpropagation of errors which
is corrected in ReLU and overall, ReLU gives the best
model accuracy. After the last convolution, the output is
flattened into a single stretch of neurons called the dense
layer. For the fully connected layers, we have the first
dense layer with 256 neurons and the second dense layer
with 2 neurons. In the output layer, three activations are
considered; we have the linear, the sigmoid, and the
SoftMax. Sigmoid or SoftMax can be used for
classification problems. However, in this study, SoftMax
activation (a mathematical function that converts a vector
of numbers into a vector of probabilities) was applied as it
gave the best accuracy.

Figure 3. VGG16 Architecture.

VGG16 model comes prepackaged with Keras. The
input image size was 224x224 pixels. We used the fine-
tuning method and the steps involved adding the custom
classifier base on top of the convolutional base; freezing
the base network; training the part added, unfreezing some
layers in the base network, and jointly training both these
layers and the classifier. The weights are computed for
only the convolutional layers. Also, after every
convolution operation, the output image takes the depth of
the filter convolved with. For instance, in the first
convolutional layer, after the input image of dimension
224 x 224 x 3 is convolved with the filter of dimension 3
x 3 x 64, the resulting image dimension becomes 224
x224 x 64, where 64 is the number of filters used. Max-
pooling layers have no parameters/weights. Max-pooling
is a way to extract the maximum value representing a
section of the output shape, usually defined by the number
of strides. As stated, this layer does not compute any
weights but reduces the output shape's dimension.

There are parameter specifications required to train the
classifier base. This is done to increase the accuracy of
prediction. The parameters include the cost function, the
type of optimizer, and the learning rate. The cost function
is the penalty when the predicted label deviates from the
expected label. The focus is on the number of times when
the model makes wrong class predictions, and so there is
an inverse relation between the number of predictions and
the cost, that is, the higher the number of correct
predictions, then the lower the cost of the penalty, and

vice versa. The cost function helps to update the weights
of the network. There are many loss functions which
include the mean squared error (MSE), mean absolute
error (MAE), and mean squared logarithmic error
(MSLE). However, there are cost functions for binary
classifications which include the binary cross-entropy, and
the hinge loss, and the former is the default cost function.

Machine learning optimizers help to adjust the weights
of a neural network to minimize cost. Therefore, it
significantly affects getting a good or a badly trained
network. As time passed, gradient descent algorithms
were used often. However, a major challenge was rightly
setting the learning rate for training which is overcome in
adaptive optimizers although some programs allow
manual adjustment of the learning rate. Some examples of
adaptive optimizers include Adaptive Gradient (Adagrad),
Adaptive Delta (Adadelta), Root Mean Squared
propagation (RMSprop), and Adaptive Moment
Estimation (Adam) optimizers. We chose Adam because
it combines the advantages of both the Adagrad and the
Adadelta. Table II shows the parameter values used in
training the classifier base.

TABLE I. PARAMETERS FOR TRAINING CLASSIFIER BASE.

Parameter Choice

Loss function Binary crossentropy

Optimizer Adam

Learning rate 2e-6

D. Performance Evaluation

After the entire models are trained, the final step as
seen in Figures 1 and 2 is to evaluate the performance.
Now, the test data is passed through the models. Again,
different performance metrics have been developed to
analyze results. For the traditional classifiers, the metrics
include accuracy, recall, precision, and F-score.

Accuracy stands out as a prominent performance
metric in machine learning, particularly in scenarios with
unbiased class distribution. It gauges the classifier's
capability to assess, scrutinize, and discern relationships,
patterns, and variations among the features defining a
dataset. The accuracy measure heavily relies on the input
data and the classifier's adeptness in leveraging learned
features to enhance predictions for unseen data.
Mathematically, accuracy is represented as (10) in the
following equation:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑇𝑃+TN

∑ 𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (10)

Where TP is true positive, TN is true negative, FP is
false positive, and FN is false negative. TP refers to the
number of images with an expected drowsy label and
correctly predicted with a drowsy label. TN also refers to
the number of images with an expected non-drowsy label

6

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 7

http://journals.uob.edu.bh

and correctly predicted with a non-drowsy label.
However, FP refers to the number of images assigned a
drowsy label rather than the correct expected non-drowsy
label. Also, FN refers to the number of images assigned a
non-drowsy label rather than the correct expected drowsy
label.

In machine learning, recall measures how correctly the
model predicted or found correct positive responses (i.e.,
TP) against the total number of expected correct
responses. It is mathematically expressed by (11) as:

𝑅𝑒𝑐𝑎𝑙𝑙 =
∑ 𝑇𝑃

∑ 𝑇𝑃+𝐹𝑁
 (11)

Precision measures how the model found correct

positive responses (TP) to the total number of positive
responses. It is mathematically expressed by (12) as

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑ 𝑇𝑃

∑ 𝑇𝑃+𝐹𝑃
 (12)

F–score is the weighted average of precision and
recall. For even class distribution, accuracy is an ideal
performance measure, while an F-score is the best
measure of a system's performance for uneven class
distribution. F-score is also another measure of a test's
accuracy given mathematically as:

 𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (13)

According to [14], accuracy and sensitivity are the
main measures. Sensitivity describes cases where
drowsiness is present, and this is a significant
consideration as the driver ought to be notified when in a
drowsy state. However, to evaluate performance, there is
the need to obtain the confusion matrix; this is a square
matrix diagram with information on the various correct
and incorrect classifications made by the classifiers. The
performance of the neural networks is evaluated based on
the loss and accuracy.

3. RESULTS AND DISCUSSION

A learning curve exhibits an estimator's validation and
training scores across different counts of training samples.
It serves as a tool to assess the potential benefits of
additional training data and to gauge whether the
estimator is prone to bias or variance errors. Each
estimator has benefits and disadvantages. Bias and
variance can be used to break down the generalization
error. An estimator's bias is represented by its average
error across many training sets. An estimator's variance
reveals how responsive it is to various training sets.
Ideally, a dataset is grouped into three: training dataset,
validation dataset, and testing dataset. Training takes
place on the training set, followed by evaluation on the
validation set. When it appears that the experiment has
been successful, a final evaluation of the test set may be
conducted. Nevertheless, splitting the available data into
three sets significantly reduces the number of samples

available for model training. The outcomes may fluctuate
based on the randomization of the (train, validation) set
pairs.

Cross-validation (CV) is a technique that can be used
to solve this issue. When doing a CV, the validation set is
no longer required, but a test set should still be kept aside
for final assessment. Therefore, the training set is divided
into k smaller sets in the fundamental strategy, known as a
k-fold CV. For each of the k "folds," the procedure is as
follows as seen in figure 4:

• A model is trained using k-1 of the folds as
training data.

• The resulting model is validated on the remaining
part of the data (that is, used as a test set to
compute performance).

Figure 4. K-fold cross validation.

The performance indicator provided by k-fold cross-
validation is derived from the average of results obtained
during the loop iterations. Despite its potential
computational expense, this method efficiently utilizes the
available data without excessive wastage (unlike the fixed
random validation set), which proves advantageous
especially when dealing with limited samples.

Figure 5 shows the learning curves for the tested
classifiers. For the NB classifier, the training score
declined as the number of samples increased while the
cross-validation score was approximately constant. With
increasing training set size, the validation score and
training score for the naïve Bayes algorithm converge to a
pretty low number. Therefore, adding more training data
is probably not going to help much. For the SVM
classifier, the training score was constant, with an
accuracy score of 100, while the CV score increased with
an increase in the number of training examples. In other
words, the SVM's training score is significantly higher
than its validation score for small amounts of data.
Increased generalization will probably result from adding
additional training data. For the RF classifier, the training
score stayed constant as well, with an accuracy score of
100, while the cross-validation score increased with an
increase in the number of training examples. This means
that with small amounts of data, the RF’s training score is

7

8 Author Name: Paper Title …

http://journals.uob.edu.bh

substantially higher than its validation score. More
training samples will almost certainly result in more
generalization.

Figure 5. Learning curves for the tested classifiers.

Scalability describes how the model can learn, that is,
the rate it can fit the model to a training data size. Often
the goal is to have a model that can learn fast without
consuming much memory, irrespective of the training data
size. Figure 6 shows the scalability of the classifiers, a
plot of the training examples against the fit_times. Naïve
Bayes took less time fitting the model to different training
sample sizes (0 - 80 milliseconds), followed by SVM (0 –
2.4 seconds). On the other hand, it took a time from (25
milliseconds – 2 seconds) for RF to fit all the training
samples into the model.

Figure 6. Scalability of the tested classifiers.

Figure 7 shows the performance of the three models, a
plot of the test score against the “fit_times”. For NB, the
accuracy score increases as the fit time increases. For
SVM, the accuracy score increases as fit_times increases.
Similarly, the accuracy score for RF increases as the fit
time increases.

Figures 8, 9, and 10 are a graphical view of the
confusion matrix for SVM, Random Forest, and Naïve
Bayes. In the algorithm, the drowsy class was represented
as binary zero, whiles the non-drowsy class was

represented as binary one. The binary representation on
the left side represents the predicted label and that at the
bottom represents the actual label. A total of 435 samples
were used for testing each classifier. The positive sample
represents images with drowsy labels, while the negative
represents images with non-drowsy labels.

For the SVM classifier, 193 images were predicted as

True Positives, 200 as True Negatives, 29 as False

Positives, and 13 as False Negatives. Using the Random

Forest classifier, True Positives were 182, 220 predicted

True Negatives; False positives and Negatives were 27

and 6, respectively. Next, the Naïve Bayes classifier had

the number of True Positives, True Negatives, False

Positives, and False Negatives to be 93, 209, 116, and 17,

respectively.

Figure 7. Performance of all three classifiers.

Figure 8. Confusion matrix for SVM.

8

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 9

http://journals.uob.edu.bh

Figure 9. Confusion matrix for Random Forest.

Figure 10. Confusion matrix for Naive Bayes.

Table II shows the performance after testing the three
classifiers and from the table, Random Forest recorded the
highest accuracy (92.41), followed by SVM (90.34) and
Naïve Bayes classifier (69.43). In this research, accuracy
is a good measure of performance because an even class
distribution was used. However, the F-score, a similar and
relevant performance metric, was considered for
additional justification of results. The results also show
RF having the highest F1-score (93.02) and the lowest
(75.86) by Naïve Bayes. NB had the lowest accuracy, and
a plausible reason is that the independence assumption
may not always hold as there are no model interactions
between the features. As a result, it can limit classification
power. it is seen that Naïve Bayes has the lowest precision
(64.31), while SVM and RF have the closest precision.
This means that given 100 test images, SVM correctly
predicted approximately 89 and RF approximately 87
with drowsy labels.

TABLE II. PARAMETERS FOR TRAINING CLASSIFIER BASE.

Classifier Accuracy Precision Recall F-score

RF 92.41 89.07 97.35 93.02

SVM 90.34 87.34 93.89 90.50

NB 69.43 64.31 92.48 75.86

Next, we look at the neural network performance
shown in Figure 11. The figure is the plot of accuracy

against the number of epochs with a standard batch size of
32. It is observed that the validation accuracy plot closely
follows the training accuracy, which shows that the
network is well-trained and can generalize well. The
training accuracy rises from 0.52 to a final accuracy of
1.0, while the training loss reduces from 0.6319 to 0.0024,
respectively.

Figure 11. Plot for training and validation accuracy (200 epochs).

Figure 12 plots the training and validation loss against
the number of epochs. Generally, training and validation
loss is expected to decline for a good network model as
the network learns from the data. The training and
validation loss is close, which is evidence of a good,
trained network.

Figure 12. Plot for training and validation loss (200 epochs).

After training and validating the neural network, the
network is tested with the test data. The confusion matrix
for the neural network is shown in Figure 13. The left
binary representation is the predicted label whereas that at
the bottom represents the actual labels. Binary zero (0)
represents a drowsy label while binary one (1) represents
non-drowsy labels. The network correctly predicted the
actual labels for drowsy images (1250) and incorrectly

9

10 Author Name: Paper Title …

http://journals.uob.edu.bh

predicted (70) of the non-drowsy images as drowsy. A
total of 1180 non-drowsy images were predicted correctly.
In summary, a total of 2500 images were tested on the
network and the confusion matrix is also shown in Table
III.

Figure 13. Confusion matrix for the neural network.

TABLE III. CONFUSION MATRIX FOR THE VGG NETWORK.

Total = 2500 Actual State

Drowsy

1250

Not drowsy

1250

P
r
e
d

ic
te

d

S
ta

te

Drowsy

1320
1250 70

Not drowsy

1180
0 1180

The accuracy, precision, recall, and F-score are
computed for this network and summarized in Table IV.
The accuracy achieved for the test was 97.20. The model
correctly predicted all drowsy cases, which is very
important in detection. Deep neural networks have
outperformed the three traditional machine learning
methods, making it the most preferred model for image
classification.

TABLE IV. PERFORMANCE OF VGG16 NETWORK.

Classifier Accuracy Recall Precision F-score

VGG16 97.20 100 94.70 97.28

4. CONCLUSION AND FUTURE WORK

This research uses three traditional machine learning
classifiers and a deep neural network for drowsiness
detection. In previous literature, the EAR and MOR
values were recorded from images and used as input for
the classifiers. However, in this study, the usage of image
pixels as classifier input values was considered, which
provided good accuracy. The former heavily depends on
the recorded values being accurate. The image pixel
method is novel and gives a good result as the geometry
of the face determines the input pixel values. Again, the

neural network is effective in accurately classifying
drowsiness with a very high accuracy. The deep neural
network outperformed all traditional methods with an
accuracy of 97. All methods are non-invasive and cost-
effective. These algorithms can be integrated into
automobile dashboards for easy detection. In the future,
the number of image data can be increased for testing the
models. In the future, other state-of-the-art networks can
be considered, and comparisons made while considering
the trade-off between the accuracy, computational
complexity, time of execution, and implementation cost.

ACKNOWLEDGMENT

The authors acknowledge the support of the Louisiana
Transportation Research Center in supporting the work
performed in this paper through LTRC Project Number
22-2TIRE. The authors would also like to thank the
support of Southern University and A&M College and
Morgan State University for the tremendous support
provided to finalize this work.

REFERENCES

[1] E. Essel, F. Lacy, W. Elmedany, F. Albalooshi and Y. Ismail
“Driver Drowsiness Detection Using Fixed and Dynamic
Thresholding” in 2022 International Conference on Data
Analytics for Business and Industry (ICDABI), Bahrain, Oct.
2022, pp. 591-596.

[2] M. Ramzan, H. U. Khan, S. M. Awan, A. Ismail, M. Ilyas and A.
Mahmood, "A Survey on State-of-the-Art Drowsiness Detection
Techniques," in IEEE Access, vol. 7, pp. 61904-61919, 2019, doi:
10.1109/ACCESS.2019.2914373.

[3] S. Mehta, P. Mishra, A. J. Bhatt, and P. Agarwal, “AD3S:
Advanced Driver Drowsiness Detection System using Machine
Learning,” in 2019 Fifth International Conference on Image
Information Processing (ICIIP), Shimla, India, Nov. 2019, pp.
108–113, doi: 10.1109/ICIIP47207.2019.8985844.

[4] W. Kong, L. Zhou, Y. Wang, J. Zhang, J. Liu, and S. Gao, “A
system of driving fatigue detection based on machine vision and
its application on smart device,” Journal of Sensors, vol. 2015,
2015, doi: 10.1155/2015/548602.

[5] R. Jabbar, M. Shinoy, M. Kharbeche, K. Al-Khalifa, M. Krichen,
and K. Barkaoui, “Driver Drowsiness Detection Model Using
Convolutional Neural Networks Techniques for Android
Application,” in 2020 IEEE International Conference on
Informatics, IoT, and Enabling Technologies (ICIoT), Doha,
Qatar, Feb. 2020, pp. 237–242, doi:
10.1109/ICIoT48696.2020.9089484.

[6] Y. Chellappa, N. N. Joshi, and V. Bharadwaj, ``Driver fatigue
detection system,'' in Proc. IEEE Int. Conf. Signal Image Process.
(ICSIP), Aug. 2016, pp. 655_660.

[7] M. Awais, N. Badruddin, and M. Drieberg, ``A hybrid approach to
detect driver drowsiness utilizing physiological signals to improve
system performance and wearability,'' Sensors, vol. 17, no. 9, p.
1991, Aug. 2017.

[8] R. Jabbar, M. Shinoy, M. Kharbeche, K. Al-Khalifa, M. Krichen,
and K. Barkaoui, “Driver Drowsiness Detection Model Using
Convolutional Neural Networks Techniques for Android
Application,” in 2020 IEEE International Conference on
Informatics, IoT, and Enabling Technologies (ICIoT), Doha,
Qatar, Feb. 2020, pp. 237–242, doi:
10.1109/ICIoT48696.2020.9089484.

[9] R. Manoharan and S. Chandrakala, “Android OpenCV based
effective driver fatigue and distraction monitoring system,” in

10

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 11

http://journals.uob.edu.bh

2015 International Conference on Computing and
Communications Technologies (ICCCT), Chennai, India, Feb.
2015, pp. 262–266, doi: 10.1109/ICCCT2.2015.7292757.

[10] W. Deng and R. Wu, “Real-Time Driver-Drowsiness Detection
System Using Facial Features,” IEEE Access, vol. 7, pp. 118727–
118738, 2019, doi: 10.1109/ACCESS.2019.2936663.

[11] N. Kumar and N. C. Barwar, “Analysis of Real-Time Driver
Fatigue Detection Based on Eye and Yawning,” Int. J. Comput.
Sci. Inf. Technol., vol. 5, no. 6, pp. 7821–7826, 2014.

[12] U. S. Reddy, V. Rami, R. Chirra, S. Reddy Uyyala, V. Krishna,
and K. Kolli, “Deep CNN: A Machine Learning Approach for
Driver Drowsiness Detection Based on Eye State,” 2020, doi:
10.18280/ria.330609.

[13] S. Abtahi, M. Omidyeganeh, S. Shirmohammadi, and B. Hariri,
“YawDD: A Yawning Detection Dataset”, Proc. ACM
Multimedia Systems, Singapore, March 19 -21 2014, pp. 24-28.
DOI: 10.1145/2557642.2563678.

[14] I. Gupta, N. Garg, A. Aggarwal, N. Nepalia, and B. Verma, “Real-
Time Driver’s Drowsiness Monitoring Based on Dynamically
Varying Threshold,” in 2018 Eleventh International Conference
on Contemporary Computing (IC3), Noida, Aug. 2018, pp. 1–6,
doi: 10.1109/IC3.2018.8530651.

[15] K. Simonyan and A. Zisserman. (2014). ‘‘Very deep
convolutional networks for large-scale image recognition.’’
[Online]. Available: https://arxiv.org/abs/1409.1556

[16] Willson Meli, Fred Lacy, and Yasser Ismail “Video-Based
Automated Pedestrians Counting Algorithms for Smart Cities”
International Journal of Computing and Digital Systems (IJCDS),
2020.

[17] Y.Ismail, M. Hammad, M. Darwichand, and W. Elmedany
“Homeland Security Video Surveillance System Utilizing the
Internet of Things (IoT) for Smart Cities” IET Computers &
Digital Technique journal, Volume 15, Issue 4, Pages: 241-319,
04 April 2021.

11

https://arxiv.org/abs/1409.1556

