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Abstract: It is devastating that daily, there is an ample number of car crashes that cause damage to automobiles, onboard passengers 

get injured, and others tend to lose their lives. Road crashes are fast rising across the globe and have drawn many road safety 

commissions and concerned individuals to discuss ways to reduce this menacing situation drastically. With the introduction of 

artificial intelligence and technological advancement, the government and state commissions have beckoned on the various 

universities and research institutions to develop methods to curb the rise of automobile crashes. Some causes of these crashes include 

drunk driving and drowsiness, the latter is most prevalent as it occurs to all and sundry. Drowsiness detection can be categorized into 

three main techniques; behavioral-based, vehicular-based, and physiological-based. In this research, the behavioral-based approach 

was studied, with significant consideration being the cost of implementation, execution time, and accuracy. Three machine learning 

(ML) classifiers were considered: Support Vector Machine (SVM), Naïve Bayes (NB), and Random Forest (RF). A dataset of 1448 

images was used for training and testing these classifiers: 70% for training and 30% for testing. Random Forest classifier gave the 

best accuracy of (92.41%) compared to SVM (90.34%) and Naïve Bayes (69.43%). A deep neural network (VGG16) was used to 

classify drowsiness, and this gave a high accuracy of 97.20%, which outperformed the traditional machine learning models. 

 

Keywords: Drowsiness detection, machine learning, automobile crashes, artificial intelligence 

1. INTRODUCTION  

Drowsiness detection is a safety feature used in cars to 

help avoid crashes caused by drowsy drivers [1]. 

Numerous detection techniques assess driver tiredness and 

warn the motorist. Detection methods can be categorized 

based on behavioral, vehicular, and physiological 

parameters. Vehicular and behavioral-based approaches 

are non-invasive. Whereas vehicular-based techniques 

consider factors like yaw angle, steering wheel behavior, 

and lane-changing patterns [2], behavioral-based 

techniques are centralized on the driver's actions, 

including eye closeness ratio, eye blinking, head 

movement, and yawning [1]. Physiological approaches 

monitor the driver’s physiological conditions, such as 

heartbeat, pulse rate, and electrical activity in the brain, 

and are invasive or intrusive. The geometric properties of 

different roads make vehicular highly unreliable [1]. The 

need to purchase different sensors and devices makes 

physiological-based approaches capital-demanding. 

Additionally, it is invasive and frequently aggravates and 

discomforts the driver. Because it is affordable [3][4] and 

easy/convenient to apply [4][5], the behavioral-based 

method is thus extensively employed. However, how the 

data is processed, including lighting and illumination, 

impacts behavioral techniques. 

In a study by Chellappa et al. [6], the somatic sensor, 

temperature sensor, LM-35, and photoplethysmography 

(PPG) were used to measure the core body temperature 

and pulse rate. This study employed the integration of 

behavioral and physiological parameters to detect 

drowsiness. The Viola-Jones algorithm and Haar cascade 
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classifier were used together with the devices for 

detection, with an achieved detection accuracy of 80.55%. 
Awais el al. considered biological parameters such as 

the heart rate, time-domain, and frequency domain 
measures extracted from electroencephalogram (EEG) 
and electrocardiogram (ECG) combined with the SVM 
and k-strongest strengths (kSS) to detect drowsiness [7]. 
The overall performance of their study was 80%. A 
summary of some exciting literature on behavioral and 
vehicular methods is given in [1]. In particular, the study 
proposed in [8], used the deep learning method and 
achieved an accuracy of 83.30%. Essel's study in [1] 
draws the method and main contributions from [9] and the 
model’s applicability to Android devices. Deng and Wu 
[10] combined the kernelized correlation filters (KCF) and 
convolutional neural network (CNN) algorithm in 
detection and called it DriCare with an accuracy of 
93.60%. The work by N. Kumar et al. [11] designed a 
system to detect real-time eye blinking using the Viola-
Jones detection and active contour method for yawning. 
The experiment involved 70 male and 30 female 
volunteers of different ages and facial characteristics. The 
experiments were conducted at six different times: (1) 
Morning (6 AM to 11 AM), (2) Afternoon (11 AM to 2 
PM), (3) Critical Time 1 (2 PM to 4 PM), (4) Evening (5 
PM to 8 PM), (5) Night (8 PM to Mid Night 3 AM), and 
(6) Critical Time 2 (Mid Night 3 AM to 6 AM). The result 
showed an accuracy of 92% for eye detection while 
mouth detection achieved an accuracy of 88%. 

Reddy et al. [12] researched a deep CNN for driver 
drowsiness detection based on eye state. A dataset of 1200 
samples from the video stream and 2850 images were 
used to train, test, and validate the ML model. The Viola-
Jones algorithm was used for face and eye detection. First, 
the convolution layer in CNN extracted the facial features; 
then, the SoftMax layer classified images as sleepy or 
non-sleepy. Two experiments were conducted, and of the 
two, the first experiment was on 2,850 images (trained 
1,200 images; validated 500 images; and tested 1,150 
images); the second experiment was conducted on 1,200 
video samples. The highest accuracy recorded from the 
experiment was 96.42%. Reddy et al. [12] reiterated that 
the classification of face detection techniques could be 
grouped into two, that is, geometric-based techniques and 
image-based techniques. The geometric extraction method 
extracts shape and location-related metrics from the eyes 
and eyebrows. Image-based approaches for face detection 
use statistical neural networks and linear subspace 
methods.  

This paper is an elaborate study on the use of machine 
learning techniques for driver drowsiness detection. The 
focus is on comparing various ML and deep learning for 
high-fidelity detection. The paper is organized as follows, 
in section 2, the proposed work is elaborated. Results and 
discussions are elaborated in section 3. A conclusion will 
be drawn in section 4. 

2. PROPOSED WORK 

The research outlined in this paper integrates both 
traditional machine-learning methods and deep-learning 
approaches to implement a high-fidelity drowsiness 
detection algorithm. A schematic of the pipeline is shown 
in Fig. 1. The subsequent sections provide comprehensive 
insights into the utilization of these methodologies. 

Figure 1.  Schematic of the proposed pipeline flow and  phases. 

A. Machine Learning Methods 

This research presents a detection model that 
leverages ML classifiers for enhanced efficiency. The 
proposed model along with its implementation phases: (1) 
data acquisition, (2) data preprocessing, (3) ML classifier 
and learning operation, and (4) performance evaluation, 
are seen in Figure 1. Each phase plays a crucial role in the 
overall functionality of the system, ensuring robust 
detection capabilities and rigorous performance 
assessment. 

1) Data Acquisition: As seen in Figure 1, the model 
starts with data acquisition, and ML algorithms are 
designed to work on static frames; the data was obtained 
from [13], which consists of participants from different 
ethnicities and genders. The data consists of individuals 
whose images can be categorized under different 
conditions, including persons with and without glasses, 
yawning, and no yawning. Next, the data was split into 
two, one for training and the other for testing. 

2) Data Preprocessing: In this phase, the training 

data had to be processed before passing to the classifier, 

and this was done by resizing the images to 32 x 32 to 

reduce processing time and use less memory. The 

associated label for each image was also converted into a 

binary value. The drowsy state was labeled as a binary 
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“zero”, whereas the non-drowsy state was labeled as a 

binary “one”. 

3) Machine Learning Classifier and learning 

operation: After the training data has been processed, it is 

ready to be used for training the classifiers. The ML 

classifiers considered are that of the supervised form of 

learning. The three classifiers used are SVM, NB, and RF 

and their details are given below. 

a) Support Vector Machine (SVM) is one of the 

early ML classification methods dating to the early 1990s 

and is a generalized form of the 'maximal margin 

classifier'. Support Vector Machine was initially limited to 

cases with linear boundaries. However, improvement has 

seen its application to a wide range of datasets. SVM uses 

the concept of a hyperplane, and in n-dimensional space, a 

hyperplane is a flat affine subspace of dimension (n-1). In 

two-dimensional (2D), the hyperplane is a line, whereas in 

three-dimensional (3D), the hyperplane is a plane. In 2D, 

a hyperplane is defined by (1): 

 𝑎𝑥1 + 𝑏𝑥2 + 𝑐 = 0 𝑜𝑟  𝑎𝑥 + 𝑏 = 0 ()    +   =  () () 

If the position of the training point lies on this 

equation, then the point is directly on the hyperplane. 

However, often, the training observations lie on either 

side of the hyperplane, which satisfies (2): 

𝑎𝑥1 + 𝑏𝑥2 + 𝑐 < 0 𝑜𝑟 𝑎𝑥1 + 𝑏𝑥2 + 𝑐 > 0 () 

The aim is to construct a hyperplane that separates the 
training sets perfectly according to their class labels. Then 
test data is classified based on the side of the plane where 
it lies. For example, suppose the data can be perfectly 
separated using a hyperplane, then an infinite number of 
such hyperplanes will exist. Thus, to construct a classifier 
based upon a separating hyperplane, there must be a 
reasonable way to decide from the infinite possible 
separating hyperplanes. Therefore, a hyperplane, which 
gives the maximum margin away from the training points, 
is chosen, termed the optimal separating hyperplane, and 
is done by computing the (perpendicular) distance from 
each training point to a given separating hyperplane. The 
smallest distance is the minimal distance of a training 
point away from the hyperplane, known as the margin. 
We can then classify a test observation based on which 
side of the maximal margin hyperplane it lies. Support 
vectors are training points closest to the hyperplane. These 
support vectors determine how far the margin can be set. 
In other words, they regulate the magnitude of the margin 
away from the hyperplane. In cases where we do not have 
a separating hyperplane, the concept of soft margin is 
introduced. This concept deals with allowing some of the 
training data to be on the wrong side just so the classifier 
will be good at classifying other observations. This 
tradeoff makes the classifier robust to different 

observations and better classifies the training data. A 
regularization parameter, C, a nonnegative tuning 
parameter, affects this optimization problem; it defines the 
limit of the margins. When C is small, narrow margins are 
developed, indicating the classifier is highly fitted to the 
data. Thus, having a low bias and a high variance with 
few support vectors. 

On the other hand, when C is large, the margin is 
wider and subject to more wrong positioning. As a result, 
there is less hard fitting, high bias, and low variance with 
many support vectors. In non-linear class boundaries, the 
feature space is enlarged using higher-order polynomial 
functions of the predictors. Support vector machines have 
the following benefits: they are efficient in high-
dimensional spaces, only employ a small portion of 
training points (called support vectors) in the decision 
function and can specify various kernel functions for the 
decision function. 

b) Random Forest (RF) ML method stems from 

using several (aggregation) decision trees. Aggregation is 

a procedure to reduce high variance by totaling the result 

of several decision trees by majority vote in classification, 

thereby increasing the prediction accuracy. The process 

involves: making several sub-training sets, building 

separate prediction models using the training sets, and 

then averaging the prediction results by majority vote. 

However, a slight change in the data can cause a 

significant change in the final estimated tree. 

Mathematically, if the results for the individual prediction 

models are given by (3):  

      𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), … , 𝑓𝑛(𝑥)                  () 

The average of these will be given by (4): 

𝑓𝑎𝑣𝑔(𝑥) =
1

𝑛
∑ 𝑓𝑛𝑛

𝑛=1 (𝑥)                  () 

Due to the difficulty of obtaining large datasets, the 
concept of bootstrapping aggregation (repeated sampling 
with replacement), popularly called bagging, is utilized. 
Often the number of estimators can be represented by the 
parameter, n. An n value of one hundred (100) is 
sufficient to achieve good performance. In random forest 
classification, a good parameter to estimate the test error 
is the Out-of-Bag (OoB) error. It is proven that, on 
average, each bagged tree utilizes two-thirds of the 
observations. The remaining one-third is not used for 
fitting and is termed the Out-of-Bag observations. 
Predictions can be made for each ith observation in OoB 
observations, and then the majority vote is taken for 
classification. Also, the OoB approach for estimating the 
test error is particularly convenient when bagging on large 
datasets for which cross-validation is tough. The key 
advantages of decision trees include the ease of 
explanation and how they closely mirror human decision-
making. 

3



 

 

4       Author Name:  Paper Title …   
 

 
http://journals.uob.edu.bh 

 

c) Naïve Bayes (NB)classifier utilizes three 

principles, that is, the use of conditional probability, 

Bayes' theorem, and feature independence assumption. 

Probability is the likelihood of event occurrence and 

Naïve Bayes uses the conditional probability equation 

given by (5) as: 

𝑃(𝐴|𝐵) =
𝑃(𝐴,𝐵)

𝑃(𝐵)
                               (5)  

where 𝑃(𝐴, 𝐵) is the intersection between A and B, 
and P (B) is the probability of B. 𝑃(𝐴|𝐵)is referred to as 
the probability of A occurring given that B has already 
occurred. The relation between P (A|B) and P (B|A) can 
be represented through Bayes' theorem, which is stated by 
(6) as: 

 

 𝑃(𝐵|𝐴) =
𝑃(𝐴|𝐵)∗𝑃(𝐵)

𝑃(𝐴)
                    (6)  

Naïve Bayes classifier relates input features to class 
based on probability. Given a set of features Y = {Y1, Y2, 
Y3…, Yn} and the goal is to predict the class C, then look 
for C that gives the highest P (C|Y). It is difficult and 
complex to run through all features for each class; thus, 
the ideal approach is to resort to the following principle: 
Bayes' theorem. It can be defined for this case as: 

𝑃(𝐶|𝑌) =
𝑃(𝑌|𝐶) ∗ 𝑃(𝐶)

𝑃(𝑌)
 

() 

P(Y) is the same for all classes as it does not depend 
on C; it is a constant. Thus, now the focus will be to 
determine the values for P (Y|C) and P(C), which can be 
estimated from the data. P(C) obtained from the training 
data is defined as: 

𝑃(𝐶) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝐶

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 () 

For P (Y|C), we use the independence assumption that 
describes how the individual features are independent. It 
is given thus as: 

           𝑃(𝑋1, 𝑋2, … , 𝑋𝑛|𝐶) = 𝑃(𝑋1|𝐶) ∗ 𝑃(𝑋2|𝐶) ∗ … ∗ 𝑃(𝑋𝑛|𝐶)  () 

The advantages of this classifier include: it is fast and 
straightforward to implement; it scales well; that is, it 
does not need several parameters, and the feature 
probability can be calculated in parallel since they are 
independent. 

4) Performance evaluation: In assessing the 

performance of machine learning models, several key 

metrics are commonly employed, including accuracy, 

recall, precision, and F-score, as seen in Figure 1. 

Accuracy measures the overall correctness of the model's 

predictions, representing the proportion of correctly 

classified instances. Recall, also known as sensitivity, 

quantifies the model's ability to correctly identify all 

relevant instances within a dataset. Precision, on the other 

hand, assesses the model's accuracy in correctly 

identifying relevant instances among all instances 

classified as positive. The F-score, which combines 

precision and recall into a single metric, provides a 

balanced assessment of the model's performance, 

particularly useful when dealing with imbalanced datasets. 

Together, these metrics offer valuable insights into the 

effectiveness and reliability of machine learning 

algorithms in various applications. All these parameters 

will be elaborated in detail in the simulation results 

section. 

B. Deep Learning Model 

Recent years have seen a shift from the traditional 
method to applying a deep neural network for image 
classification. Often, the classifiers mentioned above 
become limited when you have a large data set. The 
volume of data being produced recently is growing 
exponentially. Also, with the advent of faster processing 
units, CNN has become the norm of the day. Deep 
learning is a machine learning form involving designing 
CNN models capable of learning diverse, intricate 
abstractions or representations of a given data and using 
that information to make qualitative and quantitative 
predictions. In other words, deep learning is pivotal and 
often employed in computer vision since convolutional 
neural networks can independently generate patterns/ 
features in the training data. Although large datasets are 
being produced in different fields, often, there is little data 
available for image classification models typically having 
data ranging from a few hundred to a few thousand. While 
it is possible to use this limited data to train content from 
scratch, often, one cannot achieve optimum accuracy. 
Deep learning aims to optimize results and reduce 
execution time, computational complexity, and 
implementation cost. Several algorithms have been 
developed to reduce cost, but accuracy is a key 
consideration for image classification. Generally, the 
accuracy of a neural network is affected by the following: 
(1) the number of training samples, (2) overfitting, that is, 
the network has specialized well in learning the given data 
but does poorly in generalizing to other unseen data (3) 
regularization (methods used to minimize the loss 
function to improve accuracy) – data augmentation and 
dropout are regularization methods used to correct 
overfitting, and (4) model parameters (that is, the number 
of filters per convolution layer, and the number of layers 
in the network). It is important to know that neural 
networks are computationally expensive and utilize ample 
memory space; thus, most networks need a high-speed 
graphics processing unit (GPU) or tensor processing unit 
(TPU) for execution. This problem has been addressed 
with the introduction of transfer learning, where models 
that have their parameters already trained are made 
available for other classification problems. This was done 
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because some of these models were trained using multi-
parallel high-performance processors over several days, 
weeks, or months and these constraints are not available 
to most users. Figure 2 represents the steps of training the 
neural network model and evaluating its performance. 

Figure 2.  General Flowchart for Classification. 

A. Data 

The first step as can be seen in Figure 2 is the 
collection of data. Images were taken from the ‘Yawning 
Detection Dataset’ [13]. These individuals were from 
different ethnicities, including Caucasian, Asian, African, 
and Middle Eastern. The data was very small, so there 
was the need to use data augmentation to generate more 
data. After that, the data was divided into three for 
training, another for validation, and the last for testing in 
the percent ratio; 70% for training, 15% for validation, 
and 15% for testing. 

B. Data Preprocessing 

The next step in Figure 2 is to process the data before 
training the network. Data preprocessing involves reading 
the image files, decoding the image content to RGB grids 
of pixels, converting the pixels into floating-point tensors, 
and finally rescaling the pixel values (between 0 and 255) 
to [0,1] interval because, preferably, neural networks use 
small input values. Keras package offers utilities to handle 
these steps of preprocessing. The package has the 
ImageDataGenerator utility, which sets up Python 
generators that automatically turn image files into batches 
of preprocessed tensors. Data augmentation generates 
more samples from existing training samples by 
augmenting the data through different transformations. 
The aim is to expose the model to varying training data, 

thus making it robust and likely to generalize well on new 
data. This is also done to avoid the issue of overfitting 
which occurs when we have too few samples to learn 
from. Several transformations were considered, and some 
images produced were under the following: (1) channel 
shift, (2) zoom-in of 0.2, (3) a height shift of 0.2, (4) a 
rotation of 45°, (5) width shift of 0.2, (6) a horizontal flip, 
and (7) changing the shear angle to 45°. In the end, the 
total images available totaled 13,032. The training set had 
4554 drowsy and 4567 non-drowsy images; the validation 
set had 976 drowsy and 979 non-drowsy images; the test 
set had 977 drowsy and 979 non-drowsy images. 

C. Neural Network 

Following the second block is the neural network and 
our study used VGG16 architecture developed by Karen 
Simonyan and Andrew Zisserman [15]. The network is 
easy to implement and applicable to many image 
classification problems, making it a widely used CNN 
architecture. Figure 3 shows the architecture of the 
VGG16 network. The network can be partitioned in two: 
(1) convolutional base trained on ImageNet – a series of 
pooling and convolutional layers, and (2) classifier base – 
depending on the number of classes. Generally, the 
network consists of 16 main layers (13 convolutional 
layers and 3 dense layers). A pre-trained model was used, 
a saved network previously trained on a large dataset 
(ImageNet) because the total weights to be trained for a 
VGG16 model is about 15 million parameters (this is 
computationally expensive). In addition, it requires about 
2-4 GPUs to train over several days or weeks. Thus, 
transfer learning was introduced where it is possible to use 
the trained weights on different classification problems 
without having to retrain again but only to modify the 
classifier base to suit the number of classes required for 
the problem at hand. 

The convolutional base is used since the 
representation or patterns learned in that stage were 
largely generic (colors, visual edges, and textures) and 
more reusable. We transferred the learned parameters 
from the convolution base onto our datasets. However, the 
patterns learned by the classifier base are more specific to 
the set of classes in which the model was trained, so we 
had to train our dense base on top to suit the binary 
classification. Thus, our remodeled CNN consists of 13 
convolution layers and 2 dense layers. The number of 
filters in convolution layers increases (multiples of 64) as 
we go deeper into the network (from 64 to 512 filters). 
Each convolutional layer in the network is a 3 x 3 grid but 
has varying filters. It is expected that the filters will 
increase as we go deeper into the network because the 
level of abstraction (representation) and the number of 
features to extract increases. Also, generality reduces as 
the depth of the convolutional layers increases.  This 
network applied the rectified linear unit (ReLU) activation 
with Maxpooling on the convolved outputs. Three main 
activations normally applied to the hidden layers are 
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sigmoid, hyperbolic tangent (tanh), and ReLU. Sigmoid 
and hyperbolic tangent activations have the vanishing 
gradient problem during backpropagation of errors which 
is corrected in ReLU and overall, ReLU gives the best 
model accuracy. After the last convolution, the output is 
flattened into a single stretch of neurons called the dense 
layer. For the fully connected layers, we have the first 
dense layer with 256 neurons and the second dense layer 
with 2 neurons. In the output layer, three activations are 
considered; we have the linear, the sigmoid, and the 
SoftMax. Sigmoid or SoftMax can be used for 
classification problems. However, in this study, SoftMax 
activation (a mathematical function that converts a vector 
of numbers into a vector of probabilities) was applied as it 
gave the best accuracy. 

Figure 3.  VGG16 Architecture. 

VGG16 model comes prepackaged with Keras. The 
input image size was 224x224 pixels. We used the fine-
tuning method and the steps involved adding the custom 
classifier base on top of the convolutional base; freezing 
the base network; training the part added, unfreezing some 
layers in the base network, and jointly training both these 
layers and the classifier. The weights are computed for 
only the convolutional layers. Also, after every 
convolution operation, the output image takes the depth of 
the filter convolved with. For instance, in the first 
convolutional layer, after the input image of dimension 
224 x 224 x 3 is convolved with the filter of dimension 3 
x 3 x 64, the resulting image dimension becomes 224 
x224 x 64, where 64 is the number of filters used. Max-
pooling layers have no parameters/weights. Max-pooling 
is a way to extract the maximum value representing a 
section of the output shape, usually defined by the number 
of strides. As stated, this layer does not compute any 
weights but reduces the output shape's dimension.  

There are parameter specifications required to train the 
classifier base. This is done to increase the accuracy of 
prediction. The parameters include the cost function, the 
type of optimizer, and the learning rate. The cost function 
is the penalty when the predicted label deviates from the 
expected label. The focus is on the number of times when 
the model makes wrong class predictions, and so there is 
an inverse relation between the number of predictions and 
the cost, that is, the higher the number of correct 
predictions, then the lower the cost of the penalty, and 

vice versa. The cost function helps to update the weights 
of the network. There are many loss functions which 
include the mean squared error (MSE), mean absolute 
error (MAE), and mean squared logarithmic error 
(MSLE). However, there are cost functions for binary 
classifications which include the binary cross-entropy, and 
the hinge loss, and the former is the default cost function. 

Machine learning optimizers help to adjust the weights 
of a neural network to minimize cost. Therefore, it 
significantly affects getting a good or a badly trained 
network. As time passed, gradient descent algorithms 
were used often. However, a major challenge was rightly 
setting the learning rate for training which is overcome in 
adaptive optimizers although some programs allow 
manual adjustment of the learning rate. Some examples of 
adaptive optimizers include Adaptive Gradient (Adagrad), 
Adaptive Delta (Adadelta), Root Mean Squared 
propagation (RMSprop), and Adaptive Moment 
Estimation (Adam) optimizers. We chose Adam because 
it combines the advantages of both the Adagrad and the 
Adadelta. Table II shows the parameter values used in 
training the classifier base. 

TABLE I.  PARAMETERS FOR TRAINING CLASSIFIER BASE. 

Parameter Choice 

Loss function Binary crossentropy 

Optimizer Adam 

Learning rate 2e-6 

 

D. Performance Evaluation 

After the entire models are trained, the final step as 
seen in Figures 1 and 2 is to evaluate the performance. 
Now, the test data is passed through the models. Again, 
different performance metrics have been developed to 
analyze results. For the traditional classifiers, the metrics 
include accuracy, recall, precision, and F-score.  

Accuracy stands out as a prominent performance 
metric in machine learning, particularly in scenarios with 
unbiased class distribution. It gauges the classifier's 
capability to assess, scrutinize, and discern relationships, 
patterns, and variations among the features defining a 
dataset. The accuracy measure heavily relies on the input 
data and the classifier's adeptness in leveraging learned 
features to enhance predictions for unseen data. 
Mathematically, accuracy is represented as (10) in the 
following equation: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑ 𝑇𝑃+TN

∑ 𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
           (10) 

Where TP is true positive, TN is true negative, FP is 
false positive, and FN is false negative.  TP refers to the 
number of images with an expected drowsy label and 
correctly predicted with a drowsy label. TN also refers to 
the number of images with an expected non-drowsy label 
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and correctly predicted with a non-drowsy label. 
However, FP refers to the number of images assigned a 
drowsy label rather than the correct expected non-drowsy 
label. Also, FN refers to the number of images assigned a 
non-drowsy label rather than the correct expected drowsy 
label. 

In machine learning, recall measures how correctly the 
model predicted or found correct positive responses (i.e., 
TP) against the total number of expected correct 
responses. It is mathematically expressed by (11) as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
∑ 𝑇𝑃

∑ 𝑇𝑃+𝐹𝑁
                          (11) 

 
Precision measures how the model found correct 

positive responses (TP) to the total number of positive 
responses. It is mathematically expressed by (12) as 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
∑ 𝑇𝑃

∑ 𝑇𝑃+𝐹𝑃
                     (12) 

F–score is the weighted average of precision and 
recall. For even class distribution, accuracy is an ideal 
performance measure, while an F-score is the best 
measure of a system's performance for uneven class 
distribution. F-score is also another measure of a test's 
accuracy given mathematically as: 

              𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
            (13) 

According to [14], accuracy and sensitivity are the 
main measures. Sensitivity describes cases where 
drowsiness is present, and this is a significant 
consideration as the driver ought to be notified when in a 
drowsy state. However, to evaluate performance, there is 
the need to obtain the confusion matrix; this is a square 
matrix diagram with information on the various correct 
and incorrect classifications made by the classifiers. The 
performance of the neural networks is evaluated based on 
the loss and accuracy. 

3. RESULTS AND DISCUSSION 

A learning curve exhibits an estimator's validation and 
training scores across different counts of training samples. 
It serves as a tool to assess the potential benefits of 
additional training data and to gauge whether the 
estimator is prone to bias or variance errors. Each 
estimator has benefits and disadvantages. Bias and 
variance can be used to break down the generalization 
error. An estimator's bias is represented by its average 
error across many training sets. An estimator's variance 
reveals how responsive it is to various training sets. 
Ideally, a dataset is grouped into three: training dataset, 
validation dataset, and testing dataset. Training takes 
place on the training set, followed by evaluation on the 
validation set. When it appears that the experiment has 
been successful, a final evaluation of the test set may be 
conducted. Nevertheless, splitting the available data into 
three sets significantly reduces the number of samples 

available for model training. The outcomes may fluctuate 
based on the randomization of the (train, validation) set 
pairs. 

Cross-validation (CV) is a technique that can be used 
to solve this issue. When doing a CV, the validation set is 
no longer required, but a test set should still be kept aside 
for final assessment. Therefore, the training set is divided 
into k smaller sets in the fundamental strategy, known as a 
k-fold CV. For each of the k "folds," the procedure is as 
follows as seen in figure 4: 

• A model is trained using k-1 of the folds as 
training data. 

• The resulting model is validated on the remaining 
part of the data (that is, used as a test set to 
compute performance). 

Figure 4.  K-fold cross validation. 

The performance indicator provided by k-fold cross-
validation is derived from the average of results obtained 
during the loop iterations. Despite its potential 
computational expense, this method efficiently utilizes the 
available data without excessive wastage (unlike the fixed 
random validation set), which proves advantageous 
especially when dealing with limited samples. 

Figure 5 shows the learning curves for the tested 
classifiers. For the NB classifier, the training score 
declined as the number of samples increased while the 
cross-validation score was approximately constant. With 
increasing training set size, the validation score and 
training score for the naïve Bayes algorithm converge to a 
pretty low number. Therefore, adding more training data 
is probably not going to help much. For the SVM 
classifier, the training score was constant, with an 
accuracy score of 100, while the CV score increased with 
an increase in the number of training examples. In other 
words, the SVM's training score is significantly higher 
than its validation score for small amounts of data. 
Increased generalization will probably result from adding 
additional training data. For the RF classifier, the training 
score stayed constant as well, with an accuracy score of 
100, while the cross-validation score increased with an 
increase in the number of training examples. This means 
that with small amounts of data, the RF’s training score is 
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substantially higher than its validation score. More 
training samples will almost certainly result in more 
generalization. 

Figure 5.  Learning curves for the tested classifiers. 

Scalability describes how the model can learn, that is, 
the rate it can fit the model to a training data size. Often 
the goal is to have a model that can learn fast without 
consuming much memory, irrespective of the training data 
size. Figure 6 shows the scalability of the classifiers, a 
plot of the training examples against the fit_times. Naïve 
Bayes took less time fitting the model to different training 
sample sizes (0 - 80 milliseconds), followed by SVM (0 – 
2.4 seconds). On the other hand, it took a time from (25 
milliseconds – 2 seconds) for RF to fit all the training 
samples into the model.  

Figure 6.  Scalability of the tested classifiers. 

Figure 7 shows the performance of the three models, a 
plot of the test score against the “fit_times”. For NB, the 
accuracy score increases as the fit time increases. For 
SVM, the accuracy score increases as fit_times increases. 
Similarly, the accuracy score for RF increases as the fit 
time increases.  

Figures 8, 9, and 10 are a graphical view of the 
confusion matrix for SVM, Random Forest, and Naïve 
Bayes. In the algorithm, the drowsy class was represented 
as binary zero, whiles the non-drowsy class was 

represented as binary one. The binary representation on 
the left side represents the predicted label and that at the 
bottom represents the actual label. A total of 435 samples 
were used for testing each classifier. The positive sample 
represents images with drowsy labels, while the negative 
represents images with non-drowsy labels.  

For the SVM classifier, 193 images were predicted as 

True Positives, 200 as True Negatives, 29 as False 

Positives, and 13 as False Negatives. Using the Random 

Forest classifier, True Positives were 182, 220 predicted 

True Negatives; False positives and Negatives were 27 

and 6, respectively. Next, the Naïve Bayes classifier had 

the number of True Positives, True Negatives, False 

Positives, and False Negatives to be 93, 209, 116, and 17, 

respectively. 

Figure 7.  Performance of all three classifiers. 

 

Figure 8.  Confusion matrix for SVM. 
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Figure 9.  Confusion matrix for Random Forest. 

Figure 10.  Confusion matrix for Naive Bayes. 

Table II shows the performance after testing the three 
classifiers and from the table, Random Forest recorded the 
highest accuracy (92.41), followed by SVM (90.34) and 
Naïve Bayes classifier (69.43). In this research, accuracy 
is a good measure of performance because an even class 
distribution was used. However, the F-score, a similar and 
relevant performance metric, was considered for 
additional justification of results. The results also show 
RF having the highest F1-score (93.02) and the lowest 
(75.86) by Naïve Bayes. NB had the lowest accuracy, and 
a plausible reason is that the independence assumption 
may not always hold as there are no model interactions 
between the features. As a result, it can limit classification 
power. it is seen that Naïve Bayes has the lowest precision 
(64.31), while SVM and RF have the closest precision. 
This means that given 100 test images, SVM correctly 
predicted approximately 89 and RF approximately 87 
with drowsy labels. 

TABLE II.  PARAMETERS FOR TRAINING CLASSIFIER BASE. 

Classifier Accuracy Precision Recall F-score 

RF 92.41 89.07 97.35 93.02 

SVM 90.34 87.34 93.89 90.50 

NB 69.43 64.31 92.48 75.86 

 

Next, we look at the neural network performance 
shown in Figure 11. The figure is the plot of accuracy 

against the number of epochs with a standard batch size of 
32. It is observed that the validation accuracy plot closely 
follows the training accuracy, which shows that the 
network is well-trained and can generalize well. The 
training accuracy rises from 0.52 to a final accuracy of 
1.0, while the training loss reduces from 0.6319 to 0.0024, 
respectively. 

 

Figure 11.  Plot for training and validation accuracy (200 epochs). 

Figure 12 plots the training and validation loss against 
the number of epochs. Generally, training and validation 
loss is expected to decline for a good network model as 
the network learns from the data. The training and 
validation loss is close, which is evidence of a good, 
trained network. 

Figure 12.  Plot for training and validation loss (200 epochs). 

After training and validating the neural network, the 
network is tested with the test data. The confusion matrix 
for the neural network is shown in Figure 13. The left 
binary representation is the predicted label whereas that at 
the bottom represents the actual labels. Binary zero (0) 
represents a drowsy label while binary one (1) represents 
non-drowsy labels. The network correctly predicted the 
actual labels for drowsy images (1250) and incorrectly 

 

 

9



 

 

10       Author Name:  Paper Title …   
 

 
http://journals.uob.edu.bh 

 

predicted (70) of the non-drowsy images as drowsy. A 
total of 1180 non-drowsy images were predicted correctly. 
In summary, a total of 2500 images were tested on the 
network and the confusion matrix is also shown in Table 
III. 

 

Figure 13.  Confusion matrix for the neural network. 

TABLE III.  CONFUSION MATRIX FOR THE VGG NETWORK. 

Total = 2500 Actual State 

Drowsy 

1250 

Not drowsy 

1250 

P
r
e
d

ic
te

d
 

S
ta

te
 

Drowsy 

1320 
1250 70 

Not drowsy 

1180 
0 1180 

 

The accuracy, precision, recall, and F-score are 
computed for this network and summarized in Table IV. 
The accuracy achieved for the test was 97.20. The model 
correctly predicted all drowsy cases, which is very 
important in detection. Deep neural networks have 
outperformed the three traditional machine learning 
methods, making it the most preferred model for image 
classification.  

TABLE IV.  PERFORMANCE OF VGG16 NETWORK. 

Classifier Accuracy Recall Precision F-score 

VGG16 97.20 100 94.70 97.28 

4. CONCLUSION AND FUTURE WORK 

This research uses three traditional machine learning 
classifiers and a deep neural network for drowsiness 
detection. In previous literature, the EAR and MOR 
values were recorded from images and used as input for 
the classifiers. However, in this study, the usage of image 
pixels as classifier input values was considered, which 
provided good accuracy. The former heavily depends on 
the recorded values being accurate. The image pixel 
method is novel and gives a good result as the geometry 
of the face determines the input pixel values. Again, the 

neural network is effective in accurately classifying 
drowsiness with a very high accuracy. The deep neural 
network outperformed all traditional methods with an 
accuracy of 97. All methods are non-invasive and cost-
effective. These algorithms can be integrated into 
automobile dashboards for easy detection. In the future, 
the number of image data can be increased for testing the 
models.  In the future, other state-of-the-art networks can 
be considered, and comparisons made while considering 
the trade-off between the accuracy, computational 
complexity, time of execution, and implementation cost. 
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