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Abstract: This paper presents an empirical study on advanced Deep Neural Network (DNN) models, with a focus on identifying
potential baseline models for efficient deployment in resource-constrained environments (RCE). The systematic evaluation encompasses
ten state-of-the-art pre-trained DNN models: ResNet50, InceptionResNetV2, InceptionV3, MobileNet, MobileNetV2, EfficientNetB0,
EfficientNetB1, EfficientNetB2, DenseNet121, and Xception, within the context of an RCE setting. Evaluation criteria, such as parameters
(indicating model complexity), storage space (reflecting storage requirements), CPU usage time (for real-time applications), and accuracy
(reflecting prediction truth), are considered through systematic experimental procedures. The results highlight MobileNet’s excellent
trade-off between accuracy and resource requirements, especially in terms of CPU and storage consumption, in experimental scenarios
where image predictions are performed on an RCE device. Utilizing the identified baseline model, a new model, GRM-MobileNet,
was developed by implementing compound scaling and global average pooling techniques. GRM-MobileNet exhibits a substantial
reduction of 23.81% in parameters compared to MobileNet, leading to a model size that is 23.88% smaller. Moreover, GRM-MobileNet
demonstrates a significant improvement in accuracy, achieving a remarkable gain of 28.12% over MobileNet. Although the enhancement
in inference time for GRM-MobileNet compared to MobileNet is modest at 1.66%, the overall improvements underscore the effectiveness
of the employed strategies in enhancing the model’s performance. A future study will examine other model optimization strategies,
including factorization and pruning, which ultimately lead to faster inference without compromising accuracy, in an effort to improve
the efficiency of the GRM-MobileNet model and its inference time.
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1. INTRODUCTION
Deep neural networks (DNNs) have gained widespread

adoption across diverse domains, showcasing superior per-
formance in applications such as autonomous vehicles [1],
[2], healthcare [3], [4], [5], agriculture [6], [7], [8], security
[9], [10], and sports [11]. Particularly notable is their pro-
ficiency in image classification within the computer vision
discipline [8], [12], [13], [14]. However, deploying DNN
models on devices, while promising higher accuracy, intro-
duces challenges related to resource requirements, specifi-
cally in terms of memory and CPU utilization [15], [16].
These challenges become particularly pronounced when im-
plementing DNN models in devices with limited resources,
often denoted as resource-constrained environments (RCE).

RCEs are computing environments or systems with

limited resources, such as memory, processor power, stor-
age capacity, and energy sources. These environments are
characterized by their inability to perform complex com-
putations or handle large amounts of data, as opposed to
more durable computing configurations such as desktop
computers or servers. RCEs are frequently seen in real-time
applications, especially in devices like mobile and Internet
of Things (IoT) products, which usually have constrained
hardware. A list of common RCE devices operating in this
resource-constrained setting is given in the article [17],
which is given below in Table I, where CPU frequencies
range from 1.2 GHz to 2.84 GHz and RAM capacities range
from 1 GB to 8 GB.

The significance of adapting DNNs for use in RCEs
is underscored by the rapid growth of the IoT and the

E-mail address: mraafi@gmail.com, mdgapar@msu.edu.my, alik@msu.edu.my https:// journal.uob.edu.bh

http://dx.doi.org/10.12785/ijcds/160184
https://journal.uob.edu.bh


1148 Raafi Careem, et al.: Baseline model for deep neural networks in RCE

increasing demand for mobile devices [7], [18], [19], [20].
Deploying DNNs on RCE devices, given their limitations,
necessitates carefully considering a number of issues, such
as increased model size and computational complexity [21],
[22]. Furthermore, optimization strategies are essential to
minimize model size and resource consumption without
sacrificing accuracy, addressing the inherent constraints of
RCE devices.

The rising popularity of RCEs can be attributed to the
IoT and the widespread use of smart devices, leading to
an increased demand for the integration of DNNs in these
settings [22], [23], [24]. Onboard implementation, the direct
deployment of DNNs on RCE devices, has several benefits,
including real-time image classification, reduced latency,
lower bandwidth consumption, and strengthened privacy, as
well as security measures [2]. Rapid data processing made
possible by onboard DNNs in RCEs speeds up decision-
making in a variety of fields, such as autonomous cars,
smart homes, transportation, healthcare, and agriculture. As
such, it is now more important than ever to deploy DNNs
on RCEs in an efficient and effective manner.

This article’s main goal is to employ a well-defined ex-
perimental technique to systematically evaluate benchmark
pre-trained DNN models in an RCE scenario. Based on the
discovered DNN model, the article will then design a new
efficiency-focused DNN model that is specifically fitted to
these settings. The outcomes of this study will function as
a guide for the creation of productive image classification
applications, promising top performance in real-world sce-
narios where resource constraints are frequently present.

The reminder of this article is structured as follows:
In Section 2, related literature in this field is reviewed.
In Section 3, the employed methodology—which includes
evaluation metrics and datasets as well as the experimental
process for determining the baseline model and creating
the new DNN model (GRM-MobileNet) are described. In
Section 4, the created GRM-MobileNet is assessed for
efficacy and performance by comparing its results with
those of benchmark DNN models. In the last section,
Section 5 summarizes the article’s findings, acknowledges
its limitations, and outlines directions for future works.

2. related works
A number of studies have looked into methods for

developing lightweight models alongside their very deep
counterparts in light of the difficulties in implementing
DNN models in RCE, especially given their size and pro-
cessing requirements [25], [26]. This simplification of very
deep models is achieved through optimization and com-
pression techniques [26]. For example, depthwise separable
convolution methods in the optimization paradigm utilized
by Chollet [27], namely depthwise convolution as well as
pointwise convolution to use less computer power to train
and run larger complex models. However, it is important to
recognize that using depthwise convolution techniques in
DNN models results in lower prediction accuracy when the

model is being inferred [28]. In order to improve accuracy,
Tan and Le [29] proposed the compound scaling technique,
which simultaneously increases a neural network’s depth,
width, and resolution. This is another important tactic. Al-
though using compound scaling has the potential to increase
accuracy, there are additional needs in terms of memory
utilization, CPU usage, and computational resources. In
compression techniques, removing unimportant weights and
links from a DNN is called pruning [30], [31] to reduce
the size of networks and lower inference costs for DNN
models. Pruning the DNN model has advantages, but it
can also increase complexity and cause accuracy loss when
training a model. An alternative method involves quantizing
the network, which involves reducing the number of bits in
floating-point values that indicate activations and weights.
To improve image classification accuracy, Yang et al. [32]
used activation quantization and weights. However, using
fewer bits for weights could result in a loss of accuracy,
which would affect the accuracy of neural networks. Knowl-
edge distillation is another method, as used in [33], [34],
which is moving knowledge from a large, complicated DNN
(teacher network) model to a smaller, more straightforward
DNN (student network). Although distillation has increased
accuracy [35], there is a chance that information will be
lost in the transfer, and training the huge model will cost
in terms of computation. An alternative approach is apply-
ing transfer learning (TL) [2], [36], which utilizes model
weights from previously trained models. By using feature
representations that a pre-trained model has learned, TL
eliminates the requirement to train an entirely new model
from scratch. This results in decreased training time and a
reduction in generalization error when pre-trained models
are incorporated into a new model [2]. In the TL method,
the weights of previously trained models can be used to
initial the weights for the new model, facilitating a more
effective training process. Consequently, the TL approach
deliberately employs a relevant pre-trained DNN model as
a fundamental starting point to build a unique model that
is suited to the particular needs of a particular application.

Currently, several pre-trained DNN models exist that
have the potential as baseline models to develop new models
utilizing the TL approach, such as MobileNet [28], [37],
MobileNetV2 [38], [39], EfficientNetB0, EfficientNetB1,
EfficientNetB2 [29], [40] DenseNet121 [41], Xception [42],
InceptionV3 [43], ResNet50 [44], and InceptionResNetV2
[45]. Each of these models offers its own set of advantages
and limitations.

Identifying the most suitable pre-trained model to serve
as a baseline for developing an efficiency-focused model in
RCEs is crucial. Recent studies, such as Mana et al. [37],
conducted an empirical study using chest X-ray images
to identify the best model among eight benchmark pre-
trained models: VGG16, ResNet50, DenseNet121, Xcep-
tion, ResNet152V2, EfficientNet, DenseNet201, and Mo-
bileNet. Similarly, another study [46] compared lightweight
DNNs, including DenseNet121, EfficientNet, MobileNetV2,
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TABLE I. Typical resource-constraint environment with their specifications depicted from [17]

Device Name CPU Model CPU Power (GHz) Memory (GB)

Raspberry Pi 4B Broadcom BCM2711 1.5 2-8
NVIDIA Jetson Nano NVIDIA Carmel ARMv8.2 1.43 4

Google Coral Dev Board NXP i.MX 8M 1.5 1-4
Google Pixel Qualcomm Snapdragon 821 2.15 4
iPhone XR Apple A12 Bionic 2.49 3

Google Pixel 3 Qualcomm Snapdragon 845 2.5 4
Google Pixel 2 Qualcomm Snapdragon 835 2.35 4
Google Pixel 4 Qualcomm Snapdragon 855 2.84 6
Xiaomi Mi 10 Qualcomm Snapdragon 865 2.84 8
Samsung S10 Exynos 9820 2.73 8

Huawei P30 Pro Kirin 980 2.6 8
Sony Xperia ZL Quad Core 1.5 2

940MX Core Speed 1.2 4

MobileNetV3, ShuffleNetV2, etc., for tomato leaf disease
identification tasks. Both studies evaluated the models using
accuracy, precision, recall, and F1-score. However, they
primarily focused on accuracy for comparing models’ per-
formances, overlooking important elements like the number
of parameters, model size, and inference time, which are
critical for deploying models in RCE scenarios.

A notable research gap exists, as there is a lack of
experimental studies evaluating these models within the
context of RCE scenarios. This article attempts to fill this
gap by conducting a systematic evaluation of the potential
pre-trained DNN models in an RCE context, utilizing a
well-defined experimental methodology. It also aims to
create a novel DNN model that is efficient and specifically
intended for use in these situations.

3. research method
The research methodology of this paper comprises

two phases. The first phase focuses on identifying the
most suitable baseline model for developing an efficiency-
focused DNN model tailored for RCE settings. This phase
involves evaluating various existing models to determine
their suitability based on factors such as performance and
computational efficiency (evaluation metrics) to resource
limitations.

In the second phase, once the baseline model is iden-
tified, the research progresses to design and develop the
new DNN model. This phase entails leveraging the chosen
baseline model as a foundation and implementing a DNN
model to enhance its efficiency for RCE scenarios. The
development process includes incorporating techniques such
as compound scaling and global average pooling to improve
the model’s performance while ensuring its compatibil-
ity with RCE settings. Additionally, the newly developed
model undergoes validation to assess its effectiveness and
performance against the given evaluation metrics, thereby
ensuring its suitability for real-world deployment in RCE
scenarios.

A. Evaluation metrics
The assessment matrices covered in this paper are es-

sential resources for understanding the complex aspects of
DNN model performance in resource-constrained settings.
These matrices include important elements such as param-
eters that indicate the complexity of the models, storage
space that indicates the amount of storage needed, CPU
utilization time for real-time applications, and accuracy that
measures how accurate the models are [17], [20], [22], [26],
[47], [48]. Every criterion is carefully investigated using
methodical experimental techniques, offering a comprehen-
sive view of the strengths and trade-offs displayed by several
pre-trained DNN models.

1) Parameters
In a DNN, parameters are the weights and biases that are

learned by the model during training. They establish how
the model is put together and how it converts input data
into predictions. In general, models with higher parameter
counts are more complex. Gaining knowledge of parameter
numbers helps one understand how sophisticated the model
architecture is and how much computing it requires. Models
with fewer parameters may be favored in contexts with
limited resources since they need less computing power.

2) Storage space
The memory needed to hold the complete DNN

model—including its architecture, parameters, and any ex-
tra data—is referred to as storage space. Models with
lower storage footprints are required in resource-constrained
contexts due to limited storage capacity. Determining the
efficacy of implementing a model in settings with limited
memory resources requires analyzing storage requirements.

3) CPU Usage Time
CPU use time is important for applications that need

real-time responsiveness since it shows how long a DNN
model needs to analyze and predict an input. Models that
require real-time decision-making and have shorter CPU
usage durations are favored in cases where resources are
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limited. Analyzing this criterion provides light on how ef-
fective the model is in real-world, time-sensitive situations.

4) Accuracy
A DNN model’s accuracy is a performance metric that

assesses how accurate its predictions are. It shows the
proportion of accurately anticipated cases to all instances.
One key measure of a model’s ability to correctly clas-
sify input data is its accuracy. Higher accuracy in image
classification duties indicates that the model can generate
accurate predictions. While accuracy is important, it must be
weighed against other factors in order to balance resource
efficiency with predictive performance.

B. Datasets
This study employed two sets of images from the larger

and widely recognized ImageNet1K dataset [49]. First, the
research used a selection of 10 randomly selected images
from the ImageNet1K testing dataset to conduct the empir-
ical investigation to determine the best-performing baseline
model. To provide a thorough assessment of the models’
performance, these pictures depict a variety of items. The
selected images encompass a variety of categories, specif-
ically: goldfish, centipede, Persian cat, zebra, ambulance,
analog clock, balloon, car wheel, bell pepper, and cup. Each
of these images is shown in Figure 1a.

This diverse selection of images is designed to test
the models’ ability to accurately classify a wide range
of objects, providing insights into their generalization ca-
pabilities. By including images from different categories,
the study aims to simulate real-world conditions where
models must identify and classify various objects accurately.
The choice of these particular categories ensures that the
empirical study covers a broad spectrum of object types,
from animals and vehicles to everyday items, thus making
the evaluation robust and comprehensive.

In this work, a new dataset called ImageNet10 was
constructed in order to shorten the training time and enable
the quick construction and validation of new models. The
ImageNet10 dataset is a carefully created as a subset of the
ImageNet1K dataset. Images from ten different categories,
each depicting a range of items, are included in this subset.
As seen in Figure 2, the categories covered include balloon,
goldfish, panda, parrot, shark, cock, dog, lion, horse, and
airplane.

The ImageNet10 dataset consists of 11,000 images in
total. The dataset is split into three sections to enable
effective model training and evaluation: 7,700 photos, or
70% of the total, are set aside for training, 1,650 (15%)
images for validation, and 1,650 (15%) images for testing.
This distribution ensures a comprehensive approach to
model training and performance evaluation, allowing for
fine-tuning and validation during the development process,
as well as an unbiased assessment of the model’s gener-
alization capabilities on unseen data. By employing this

dataset, the study aims to streamline the development cycle
and enhance the efficiency of the model training process.

C. Experimental Procedure
1) Baseline Model

An empirical analysis of the DNN models was con-
ducted through an experiment involving the identified mod-
els to assess their performance through suitable evalua-
tion metrics. The objective was to determine the most
suitable baseline model for deploying DNNs in an RCE
scenario. The experimental environment was implemented
using Python 3.8.18, Tensor Flow 2.3.0, NumPy 1.18.5,
Matplotlib 3.4.3, and Pandas 1.2.4 within the Keras 2.4.0
framework. The RCE environment used in the experiment
contained an Intel 1.86 GHz X4 central processing unit
(CPU) and 4 GB of random-access memory (RAM).

The experimental method, depicted in Figure 3, followed
a systematic procedure. Initially, ten DNN models were
sequentially deployed into a predefined RCE scenario. Each
of the ten images selected from 1(a) was individually
presented to every deployed model, as illustrated in Figure
3. Subsequent to the image input, predictions generated
by each model were observed and the recorded for both
accuracy and inference time (Figure 1(b)). This process,
from deployment to observation, was repeated for each of
the ten DNN models, ensuring a consistent evaluation across
the identical set of images. Following the experimental
phase, recorded accuracy and prediction time data were
methodically organized into Tables II and III respectively.
While Table II presented accuracy values, Table III outlined
inference times for each model across all images. These
recorded accuracy values and inference times were then
used to compute mean accuracy (MAcc) and mean inference
time (MTime), respectively.

MAcc provided an average measure of prediction accu-
racy for each of the ten models, as depicted in Table II.
Simultaneously, mean time represented an average measure
of prediction time for each model, as detailed in Table III.
In Tables II, MAcc for each DNN model is calculated as
the simple average of recorded accuracy values across all
images (N=10), using the formula (1) [50], [51]:

MAcc =
1
N

N∑
i=1

Acci (1)

where, N is total number of images and Acci represents
the accuracy value for the ith image. Similarly, in Table III,
MTime is determined as the simple average of recorded time
values for each model across all images (N=10) predictions,
using the formula (2) [49]:

MTime =
1
N

N∑
i=1

Timei (2)

where, N is the total number of images and Timei represents
the time value for the ith image.
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Figure 1. Set of images used for the experiment: (a) Images randomly selected from the ImageNet1K testing dataset; (b) Examples of predicted
images from a model, with predicted labels displayed above each image along with their corresponding accuracy.

Figure 2. Images of ImageNet10 dataset
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Figure 3. Overview of the experimental setup

The empirical analysis of the selected DNN models
included two other crucial measures in addition to accuracy
and inference time to provide a more thorough knowl-
edge of their performance attributes. These metrics include
the number of parameters in million (M), indicating the
model’s complexity and depth; and the size of the model in
megabytes (MB), reflecting its storage requirements. Table
VII presents the systematic documentation on observations
pertaining to these many criteria, which adds significant
value to the assessment as a whole. The interpretation of
the data in this table is presented in detail in Section 4 of
this article.

2) New Model (GRM- MobileNet)
The identified baseline model, MobileNet, which

was chosen for its promising performance in resource-
constrained contexts, served as the foundation for the de-
velopment of the new model, called as GRM-MobileNet.
Leveraging MobileNet as the base model, the design process
incorporated RCE optimization techniques recommended
by authors in [17], [26], [29], [40] namely compound
scaling and global average pooling (GAP). These techniques
aim to enhance the model’s efficiency and adaptability
to resource-constrained settings, as used in EfficientNetB1
[29]. By integrating these optimization strategies into the
MobileNet architecture, GRM-MobileNet is tailored to meet
the specific requirements of efficiency-focused image clas-
sification applications in RCE settings.

Compound scaling is an optimization technique that
adjusts the network depth, width, and resolution of a DNN
architecture to modify its size and complexity. Balancing the
values of these factors can lead to enhanced classification
efficiency [26], [29]. This technique involves varying the
depth and resolution values within specific ranges, typically
from 0.0 to 1.6, to find the optimal configuration for
evaluation metrics such as parameters, model size, accuracy,
and prediction time. Through empirical experimentation,
researchers seek to identify the most suitable combination
of depth and resolution values that maximize performance
across these metrics. The findings from the experiments
indicate that there exists an optimal model configuration
with a width value of 1.0 and a resolution value of 1.2,

demonstrating the effectiveness of compound scaling in
optimizing DNN architectures for various performance cri-
teria. The identified values were utilized to design the new
model, GRM-MobileNet. A part of the architecture of the
model is depicted in graphical format in Figure 4 and in
tabulated format in Table IV.

The designed GRM-MobileNet underwent training and
experimentation using the ImageNet10 dataset. The training
process utilized an Intel i7-3770 CPU @ 3.5GHz (8 CPUs)
with 12 GB of RAM, providing the computational resources
necessary for model training and evaluation. Table V shows
the classification report for the testing dataset, indicating a
73% prediction accuracy for the ImageNet10 dataset. The
detailed interpretation of the table is presented in Section
4.

The trained GRM-MobileNet model underwent a com-
parative analysis with five benchmark models, namely Mo-
bileNet, MobileNetV2, EfficientNetB0, EfficientNetB1, and
ResNet50, to evaluate its performance. Accordingly, these
models, along with GRM-MobileNet, were deployed on
an RCE device equipped with a CPU operating at 1.86
GHz and 4 GB of RAM. The experimentation involved
testing the models using the ImageNet10 testing dataset.
The given evaluation metrics, including parameter numbers,
model size, accuracy, and inference time, were recorded for
each model. The results of this comparative analysis are
presented in Table VI. This table illustrates that the GRM-
MobileNet offers the highest accuracy, lowest model size,
and parameter numbers with moderated inference time.

4. RESULT AND DISCUSSION
This section presents the experimental results of this

study. In Section A, the comparison results of benchmark
DNN models are discussed to identify the most suitable
benchmark model for developing a new efficiency-focused
DNN model tailored for RCE settings. Section B focuses
on evaluating the newly developed DNN model, GRM-
MobileNet. This evaluation assesses the performance and
effectiveness of GRM-MobileNet against predefined crite-
ria, including metrics such as accuracy, model size, and
inference time. The goal is to ensure that GRM-MobileNet
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TABLE II. Recorded prediction accuracy of ten DNN models for ten images

DNN Models Goldfish Centipede Cat Zebra Ambulance Balloon Wheel Clock BP Cup MAcc
%

MobileNetV2 89.68 93.49 75.32 96.42 85.42 67.51 88.54 68.83 92.37 61.82 81.94
MobileNet 100.00 100.00 97.07 99.99 98.85 100.00 99.95 94.08 99.93 86.57 97.64
EfficientNetB0 92.28 67.15 82.50 88.14 97.43 90.15 88.17 44.16 96.20 59.72 80.59
EfficientNetB1 89.07 88.10 93.35 91.57 96.19 91.03 90.85 40.62 94.23 54.61 82.96
DenseNet121 98.04 100.00 93.43 99.94 99.48 99.52 94.32 48.42 99.95 55.41 88.85
EfficientNetB2 84.21 82.49 89.88 88.73 89.77 91.31 84.40 54.62 89.19 47.48 80.21
Xception 86.94 90.00 90.68 85.64 98.02 80.80 91.82 49.78 88.06 57.08 81.88
InceptionV3 99.08 97.37 88.36 90.87 94.18 95.18 93.88 87.33 94.71 75.25 91.62
ResNet50 94.64 100.00 99.26 99.98 99.64 99.98 99.60 88.15 98.05 82.84 96.21
Inception-Res-

NetV2 91.64 94.15 92.28 93.17 94.86 93.43 89.17 82.08 91.93 78.12 90.08

TABLE III. Recorded inference time (s) for the prediction of ten images by ten DNN models

DNN Models Goldfish Centipede Cat Zebra Ambulance Balloon Wheel Clock BP Cup MTime
(s)

MobileNetV2 5.75 5.16 5.17 5.36 5.96 6.00 5.79 5.92 5.59 5.51 5.62
MobileNet 3.70 4.07 3.71 3.91 3.55 3.64 4.01 4.38 3.95 3.84 3.88
EfficientNetB0 9.27 8.49 8.06 8.50 7.84 8.44 9.72 8.25 9.56 7.94 8.61
EfficientNetB1 13.18 14.26 14.06 14.29 16.00 14.59 13.71 14.69 13.20 14.06 14.20
DenseNet121 15.90 14.25 14.15 14.23 14.80 12.50 11.97 12.16 11.88 13.39 13.52
EfficientNetB2 14.35 11.89 11.50 12.20 11.50 11.72 12.00 11.53 12.11 12.15 12.10
Xception 10.49 12.71 11.24 11.33 10.88 10.78 10.99 10.63 10.52 11.39 11.10
InceptionV3 11.75 10.92 10.81 11.10 11.10 12.51 11.88 11.39 12.10 11.33 11.49
ResNet50 8.73 7.82 8.18 7.75 8.82 7.98 8.00 7.98 7.84 7.75 8.09
Inception-Res-

NetV2 26.43 26.72 27.17 27.00 26.88 27.11 25.80 26.08 26.32 26.41 26.59

TABLE IV. A part of GRM-MobileNet architecture

No. Layer name Input shape Output shape Parammeter No.

1 input 1 [(None , 268, 268, 3)] [(None , 268, 268, 3)] 0
2 conv1 pad (None, 268, 268, 3) (None, 269, 269, 3) 0
3 conv1 (None, 269, 269, 3) (None, 134, 134, 32) 864
4 conv1 bn (None, 134, 134, 32) (None, 134, 134, 32) 128
5 conv1 relu (None, 134, 134, 32) (None, 134, 134, 32) 0

*** *** *** *** ***
*** *** *** *** ***
83 conv dw 13 bn (None, 8, 8, 1024) (None, 8, 8, 1024) 4096
84 conv dw 13 relu (None, 8, 8, 1024) (None, 8, 8, 1024) 0
85 conv pw 13 (None, 8, 8, 1024) (None, 8, 8, 1024) 1048576
86 conv pw 13 bn (None, 8, 8, 1024) (None, 8, 8, 1024) 4096
87 conv pw 13 relu (None, 8, 8, 1024) (None, 8, 8, 1024) 0
88 global average pooling2d (None, 8, 8, 1024) (None, 1024) 0
89 dense (None, 1024) (None, 10) 10250
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Figure 4. A part of GRM-MobileNet architecture

TABLE V. Classification report of the GRM- MobileNet

Images precision recall f1-score support

aeroplane 0.92 0.5 0.65 165
balloon 0.65 0.53 0.58 165
cock 0.87 0.67 0.76 165
dog 0.74 0.76 0.75 165
goldfish 0.59 0.96 0.73 165
horse 0.61 0.88 0.72 165
lion 0.75 0.76 0.75 165
panda 0.69 0.92 0.79 165
parrot 0.91 0.59 0.71 165
shark 0.97 0.76 0.85 165

accuracy 0.73 1650
macro avg 0.77 0.73 0.73 1650
weighted avg 0.77 0.73 0.73 1650
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TABLE VI. Comparison of GRM-MobileNet with benchmark DNN models with four evaluation matrices

DNN
Models

Parameters
(M)

Model Size
(MB)

Accuracy
(%)

Time for
inference

step
(ms)

MobileNet 4.2 49.0 45.09 437.6
MobileNetV2 3.5 41.1 30.18 276.4
EfficientNetB0 5.3 61.8 10.00 407.3
EfficientNetB1 7.9 91.0 11.33 585.5

ResNet50 25.6 294.0 35.27 3097.6
GRM-MobileNet 3.2 37.3 73.21 430.3

meets the requirements for deployment in real-world RCE
scenarios.

A. Baseline Model
The outcomes of the experimentation involving various

DNN models are documented in Table VII, offering a
thorough overview of their performance based on essential
evaluation metrics. Figure 5 visually represents a compar-
ative analysis of these DNN models. The metrics used
for comparison encompass the number of parameters in
millions (m), storage requirements in megabytes (MB),
memory utilization during prediction, prediction time in
seconds (s), and prediction accuracy. This comparative
approach allows for the extraction of valuable insights into
the distinctive characteristics of each model.

MobileNetV2 and MobileNet stand out for their simplic-
ity and efficiency, boasting the lowest number of parameters
(3.5 m and 4.3 m) and the smallest storage footprint (13.9
MB and 16.4 MB). These models are particularly suitable
for applications where computational resources are limited
(RCE). On the other end of the spectrum, InceptionRes-
NetV2 exhibits a complex architecture with the highest
number of parameters (55.9 m) and requires the most
storage (215 MB). While offering high accuracy, it may be
less practical for deployment in resource-constrained sce-
narios (see Figure 5(a) and 5(b)). MobileNet, with a mean
inference time of 3.9 s, emerges as the fastest model in our
evaluation, making it well-suited for real-time applications.
In contrast, InceptionResNetV2 demonstrates the longest
mean inference time (26.6 s), suggesting slower processing
(see Figure 5(c)). DenseNet121 and ResNet50 showcase
the highest mean accuracy (88.9% and 96.2%, respectively)
(see Figure 5(d)), underscoring their excellence in image
classification. However, it’s important to note that these
models come with a higher computational cost and storage
demand (see Figure 5(a) and 5(b)).

EfficientNetB0 and EfficientNetB1 strike a balance be-
tween accuracy and efficiency, demonstrating moderate val-
ues in both metrics. These models showcase a trade-off
between resource utilization and prediction accuracy. On
the other hand, EfficientNetB0 demonstrates a compromise,
with the lowest mean accuracy (80.6%), highlighting the

importance of considering trade-offs when selecting models
for RCE. EfficientNetB1, distinguished by its heightened
model complexity, adeptly achieves a balanced synthesis
of computational efficiency and model accuracy. Its pa-
rameters, storage requirements, and inference time, con-
sidered collectively, position it as a versatile and well-
rounded option for applications in settings where resource
constraints necessitate efficiency without sacrificing predic-
tive accuracy. Despite previous comprehensive study [17]
suggesting EfficientNetB1 as a preferable base model for
DNN development in RCE scenarios, the results of the
current empirical study advocate MobileNet as a more
suitable candidate (see Figure 5(e)).

Furthermore, MobileNet, despite its modest computa-
tional requirements, stands out for providing fast inference
times and achieving high mean accuracy. This combina-
tion of efficiency and commendable predictive performance
makes MobileNet a reliable and adaptable choice for devel-
oping new DNN models within resource-constrained con-
texts. The model’s ability to deliver efficient results with-
out compromising accuracy makes it particularly valuable
for scenarios where computational resources are limited,
showcasing its versatility and suitability for a variety of
applications.

B. New Model (GRM-MobileNet)
The classification report in Table V provides valuable

insights into the performance of the GRM-MobileNet model
across different classes. In this table, the precision metric
measures the accuracy of positive predictions for each
class. For instance, the precision for ”aeroplane” indicates
that out of all the images predicted as “aeroplane”, 92%
were correctly classified. The recall matrix, also known as
sensitivity, measures the ability of the model to correctly
identify instances of a class. For example, the recall for
”goldfish” suggests that the model correctly identified 96%
of all goldfish images in the dataset. The F1-score is the
harmonic mean of precision and recall, providing a balanced
measure of a model’s performance. It takes into account
both false positives and false negatives. For instance, the
F1-score for ”parrot” is 0.71, indicating a relatively good
balance between precision and recall for this class. The
overall accuracy of the model is 73%, meaning that 73%
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TABLE VII. Comparison of DNN models with four evaluation matrices

DNN Models Parameters (M) Model Size (MB) Mean Time (ms) Accuracy (%)

MobileNetV2 3.5 13.9 5.6 81.9
MobileNet 4.3 16.4 3.9 97.6

EfficientNetB0 5.3 20.9 8.6 80.6
EfficientNetB1 7.9 30.8 14.2 83.0
DenseNet121 8.1 31.8 13.5 88.9

EfficientNetB2 9.2 35.8 12.1 80.2
Xception 22.9 87.7 11.1 81.9

InceptionV3 23.9 91.8 11.5 91.6
ResNet50 25.6 98.2 8.1 96.2

InceptionResNetV2 55.9 215 26.6 90.1

Figure 5. Bar charts comparing evaluation metrics across ten DNN models: (a) compares the number of parameters in millions for each model; (b)
compares the storage requirements of each model in megabytes; (c) illustrates the differences in inference time between models; (d) displays the
accuracy differences in image prediction for each model; (e) provides an overall comparison of the four metrics across the ten models.
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of all predictions made by the model were correct. This
classification report demonstrates that the GRM-MobileNet
model achieves reasonably good performance across various
classes.

Table VI and Figure 6(a, b and d) illustrate that while
MobileNetV2 exhibits a lower number of parameters (3.5
M) and model size (41.1 MB), its accuracy (30.18%) is rel-
atively lower compared to other models. On the other hand,
both EfficientNetB0 and EfficientNetB1 demonstrate higher
parameter counts and model sizes, resulting in lower accu-
racies compared to other models. Despite having the highest
number of parameters (25.6 M) and model size (294.0
MB), ResNet50 achieves only moderate accuracy (35.27%).
Conversely, GRM-MobileNet, the proposed model, presents
a relatively lower number of parameters (3.2 M) and model
size (37.3 MB) in comparison to other models, while
achieving the highest accuracy (73.21%). Furthermore, its
inference time (430.3 ms) is comparable to other models,
indicating efficient performance (Figure 6(c)). Thus, based
on the information provided in Table VI and Figure 6, the
GRM-MobileNet model stands out as it outperforms the
benchmark models in terms of accuracy while maintaining
a relatively smaller model size and inference time, rendering
it a promising choice for resource-constrained scenarios.

5. Conclusions and FutureWork
This paper began with an empirical study of various

DNN models in an RCE that revealed valuable insights into
their performance attributes. Among the models evaluated,
MobileNet emerges as the most suitable candidate for the
development of a new DNN model in RCE scenarios.
This determination is based on a holistic assessment of
MobileNet’s characteristics, showcasing a favorable combi-
nation of key metrics. MobileNet exhibits a relatively low
number of parameters (3.5 million), indicating a manage-
able level of model complexity and depth. Furthermore,
the model demands a compact storage requirement of 13.9
megabytes, making it efficient in terms of resource utiliza-
tion. Notably, MobileNet achieves a fast mean inference
time of 3.9 seconds, enhancing its suitability for real-time
applications in RCE. The model’s commendable mean accu-
racy of 97.6% further solidifies its position as a promising
choice for effective deployment. MobileNet, in summary,
provides balanced performance in terms of parameters,
storage, inference time, and accuracy, making it an ideal
platform for creating effective DNN models that tackle the
problems caused by resource constraints in real-world ap-
plications. This work brings substantial value to the field of
deploying DNN models in resource-constrained conditions.
When selecting baseline models for image classification
applications specifically designed for RCE devices, it lays
the foundation for decision-making. Accordingly, in the
second phase of this paper, utilizing the identified baseline
model, a new model, GRM-MobileNet was designed and
created by applying compound scaling and global average
pooling techniques. The GRM-MobileNet was trained and
experimented with using ImageNet10 dataset, which is a

TABLE VIII. Improvement of GRM-MobileNet compare with base-
line model, MobileNet

DNN
Models

Para
-meters

(M)

Model
Size

(MB)

Acc
(%)

Inference
Time
(ms)

MobileNet 4.2 49.0 45.09 437.6
GRM-MobileNet 3.2 37.3 73.21 430.3
Improvement (%) 23.81 23.88 28.12 1.66

subset of the ImageNet1K dataset with 10 image categories.
The constructed model, GRM-MobileNet, has the highest
accuracy (73.21%) despite having comparatively fewer pa-
rameters (3.2 M) and a smaller model size (37.3 MB) than
the other benchmark models above. Table VIII shows the
percentage improvement of the GRM-MobileNet model,
which was developed from the MobileNet baseline model.

This table (VIII) presents a comparison between Mo-
bileNet and GRM-MobileNet models across various evalu-
ation metrics. GRM-MobileNet demonstrates improvements
across all parameters compared to MobileNet. Specifically,
there is a 23.81% reduction in parameters, leading to
a smaller model size by 23.88%. Additionally, GRM-
MobileNet achieves a significant improvement in accu-
racy, with a 28.12% increase compared to MobileNet.
Despite these enhancements, the improvement in inference
time is marginal, with only a 1.66% decrease observed
for GRM-MobileNet compared to MobileNet. In general,
GRM-MobileNet showcases notable advancements over
MobileNet, particularly in terms of model efficiency and
predictive performance for the RCE settings.

Despite the promising results obtained in this study, sev-
eral limitations should be acknowledged. Firstly, we utilized
only 10 benchmark models to compare and identify the
baseline model for developing the GRM-MobileNet model.
While these models are well-established in the literature,
numerous other benchmark models were not included in
this study. Future research will expand the scope of model
comparison by incorporating a broader range of benchmark
models and evaluating them using comprehensive metrics
to ensure a more robust selection of the baseline model.

Secondly, the development of the GRM-MobileNet
model was based on a dataset comprising only 10 categories
of images. This limited scope may not fully capture the
model’s potential performance across a wider variety of
image classifications. In future work, we aim to utilize
the ImageNet1K dataset, which contains 1000 categories of
images, to train and evaluate the model. This will provide
a more extensive evaluation of the model’s capabilities
and generalizability. Expanding the dataset will allow us
to better assess the model’s performance in diverse and
complex image classification tasks, thereby enhancing the
reliability and applicability of the GRM-MobileNet model
in real-world scenarios.
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Figure 6. Bar charts comparing evaluation metrics between GRM-MobileNet and five benchmark DNN models: (a) compares the number of
parameters in millions for each model; (b) compares the storage requirements of each model in megabytes; (c) illustrates the differences in
inference time between models; (d) displays the accuracy differences in image prediction for each model.

Thirdly, the comparative study of the current GRM-
MobileNet model shows that the inference time is only
marginally reduced (1.66%). To address this, future work
will employ model optimization strategies such as fac-
torization and pruning to increase the GRM-MobileNet
model’s efficiency by reducing its inference time. Factor-
ization approaches will decompose the model’s parameters
into more efficient representations, thereby reducing the
computational load during inference. Pruning will system-
atically remove unnecessary or insignificant weights and
connections from the neural network, thereby reducing the
model’s size without compromising its functionality. These
modifications aim to enhance the speed and responsiveness

of GRM-MobileNet, making it more suitable for real-time
applications.

The goal of these developments is to satisfy the require-
ments of efficiency-driven image classification applications
intended for deployment on RCE devices, which often
have constrained memory and processing capacity. With
these methods in place, the GRM-MobileNet model will
be more capable of providing high-performance image
classification while meeting the demanding requirements
of RCE environments, ensuring practical usefulness and
effectiveness in real-world situations. By addressing these
limitations in future research, we aim to develop a more
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comprehensive and efficient DNN model that is capable
of meeting the diverse demands of RCE based image
classification applications.
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