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Abstract: Attacks against deep learning (DL) models are considered a significant security threat. However, DL especially deep
convolutional neural networks (CNN) has shown extraordinary success in a wide range of medical applications, recent studies have
recently proved that they are vulnerable to adversarial attacks. Adversarial attacks are techniques that add small, crafted perturbations to
the input images that are practically imperceptible from the original but misclassified by the network. To address these threats, in this
paper, a novel defense technique against white-box adversarial attacks based on CNN fine-tuning using the weights of the pre-trained
deep convolutional autoencoder (DCAE) called Robust Defense Model against Adversarial Attacks (RDMAA), for DL-based cancer
diagnosis is introduced. Before feeding the classifier with adversarial examples, the RDMAA model is trained where the perpetuated
input samples are reconstructed. Then, the weights of the previously trained RDMAA are used to fine-tune the CNN-based cancer
diagnosis models. The fast gradient method (FGSM) and the project gradient descent (PGD) attacks are applied against three DL-cancer
modalities (lung nodule X-ray, leukemia microscopic, and brain tumor magnetic resonance imaging (MRI)) for binary and multiclass
labels. The experiment’s results proved that under attacks, the accuracy decreased to 35% and 40% for X-rays, 36% and 66% for
microscopic, and 70% and 77% for MRI. In contrast, RDMAA exhibited substantial improvement, achieving a maximum absolute
increase of 88% and 83% for X-rays, 89% and 87% for microscopic cases, and 93% for brain MRI. The RDMAA model is compared
with another common technique (adversarial training) and outperforms it. Results show that DL-based cancer diagnoses are extremely
vulnerable to adversarial attacks, even imperceptible perturbations are enough to fool the model. The proposed model RDMAA provides
a solid foundation for developing more robust and accurate medical DL models.
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1. INTRODUCTION
Deep learning (DL) has gained popularity as a result of

a trillion-fold increase in processing power. DL models are
sophisticated that can outperform a variety of natural image
analysis tasks, including image retrieval, object recognition,
and image classification. Additionally, DL has been shown
to work best in a variety of medical image applications,
including cancer diagnostics, oncology, and radiology. This
allowed the automation of some medical processes and the
integration of DL systems in clinical settings. Therefore,
the robustness and reliability of DL models are critical
issues that must be addressed. For example, deep models
frequently make incomprehensible mistakes in noisy condi-
tions which result in serious unexpected effects [1].

Despite the higher performance of DL techniques,
the research community has discovered a serious security
problem in existing DL algorithms. According to recent
research, DL systems are subject to so-called adversary

attacks. DNNs can be fooled into producing inaccurate
predictions with high confidence by slightly altered input
instances. This has prompted safety concerns concerning
the use of deep learning models in healthcare systems.
Adversarial examples are slightly perturbated photos that
look like the originals but were purposely created to fool
previously trained models. Such attacks use a small well-
crafted perturbation into the model inputs to produce a
misclassification. The perturbations that are imperceptible
to human vision are enough to cause the model to gen-
erate a high-confidence misclassification prediction [2],[3].
Medical safety is so important in clinical practice. So,
the vulnerabilities and the security risks that come with
implementing DL algorithms have received a lot of atten-
tion. It should be considered how deep diagnostic models
are vulnerable to adversary attacks if the clinician is not
involved in the diagnostic procedure at all. As a result of
this vulnerability, additional chances for fraud may arise.
Figure 1 provides an illustration scenario of an adversarial
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Figure 1. Representation of An Adversarial Attack Such as Malware
on An Online DL-Based Medical Application

attack that can deceive a DL model into failing to identify
the tumor type by adding a small perturbation to medical
images. For instance, Diagnostic errors will aggravate the
condition of patients and, at the same time, tarnish the
credibility of healthcare organizations. Any online clinical
system that uses a machine-learning algorithm for diagnosis
could be fooled by these attacks [4]. While much of the
existing research on adversary machine learning has focused
on natural images, a complete understanding of adversary
attacks in medical images is still a work in progress. Medi-
cal images can include domain-specific properties (different
biological textures) that are different from natural photos
[5].

According to a recent industry report: 30% of all
cyberattacks on artificial intelligence (AI) systems would
use AI model theft, training data poisoning, or adversary
attacks through 2022. This is of particular concern for the
healthcare business, which is expected to experience two
to three times the average number of cyberattacks as other
industries [6]. As a result, adversarial attacks could be a
major concern in the medical field. This is due to two
major factors: financial interests and technical weaknesses.
The most common attacks are FGSM [7], PGD [8], Basic
Iterative Method (BIM) [9], L-BFGS Attack [10], Carlini
and Wagner (C&W) [11], DeepFool [12], and One Pixel
Attack [13].

The main contributions of this paper are as follows:

• Introducing a novel defense model, RDMAA, specifi-
cally designed for securing DL-based cancer diagno-
sis systems against white-box attacks. This defense
model employs fine-tuning of CNN with pre-trained
parameters from a Deep Convolutional Autoencoder
DCAE.

• Implementing parameter sharing between the convo-
lution and max-pooling layers in both the DCAE
encoder and CNN models, leading to a substantial
reduction in training computations.

• Demonstrating that the proposed model effectively
enhances prediction accuracy and model robustness
by mitigating noise introduced by perturbed samples
from prominent white-box attacks. This improvement
is particularly notable when faced with adversarial
samples.

• Evaluating the robustness of the defense technique
across three cancer modalities MRI, lung nodule (X-
ray), and Acute leukemia (microscopic) employing
both binary and multi-class classifications.

• Conducting a comparative analysis between the pro-
posed RDMAA model and the adversarial training
technique. The results indicate that RDMAA outper-
forms adversarial training, underscoring its superior-
ity in defending DL-based cancer diagnosis models
against adversarial threats.

The rest of this paper is organized as follows: A brief
literature review of related work will be discussed in Section
2. Next, the proposed model RDMAA will be discussed in
detail in section 3. Then, the experimental results will be
dis-cussed in section 4. Finally, a brief conclusion of the
proposed work and future directions will be discussed in
Section 5.

2. LITERATURE REVIEWS
While there have been many studies on adverse exam-

ples in natural images, there are far fewer in medical im-
ages. A typical scenario is a clinic that could alter medical
images to force all patients to undergo surgery. In situations
like this, algorithms must be confirmed to be accurate
and adversarial examples that may have unfavorable results
must be resolved. This section begins with a quick review
of model threats, attack strategies, and many adversarial
attacks and detections, followed by descriptions of defenses
for medical images with different modalities.

A. Model Threat
The protection of any system is evaluated in associ-

ation with the objectives and capabilities of its possible
attacks. The threat model concept captures the attacker’s
capabilities, including his or her knowledge and goals.
When assessing the adversary resilience of machine learn-
ing systems, specifically establishing the threat model under
consideration helps to clearly define the attack area against
which robustness is assessed, providing for claims that can
be refuted. The following is the threat model that was used
in this study:

Goal: It’s supposed that the attacker’s purpose is to
create a widespread misclassification, which is known as
an untargeted adverse attack. The purpose of an untargeted
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adversary is to change the entry image so that it can be
predicted as any class other than the ground truth class.
However, the objective of the directed adversary is to
change the entry so that it can be classified as a special
class.

Capabilities: It’s supposed that the capabilities of the
attacker are as follows: the attacker has only the ability
to change the input images of the victim system which is
fed directly to DL networks. The attacker can alter the input
images in a very crafty way, and imperceptible to the human
eye.

Knowledge: situations are created where the attacker is
aware of the medical data information and the victim model
network architecture. In all attack scenarios we investigated,
the attacker cannot modify the structure of the target model.

B. Attacks Strategies
Maliciously constructed inputs are used to attack a target

model in the adversarial scenario. They cause small changes
to the original inputs which can deceive the target model.
One attack strategy is to maximize the classification error
of the DNN model given a pre-trained DNN model.

1) White-box Attack
In a white-box situation, the attacker has full access to

the architecture, parameters, gradients, and other data of the
target neural network. The adversary can deliberately build
adversarial examples using the knowledge of the network.
Because exposing the architecture and parameters of the
model helps people understand the weaknesses of DNN
models explicitly and can be mathematically evaluated,
white box attacks have been intensively investigated [14].

2) Black-box Attack
The internal configuration of DNN models isn’t avail-

able to adversaries in a black box attack scenario. The
adversaries can only supply data to the models and view
their results. They often attack models by continuing to
feed samples into the box and analyze the output to exploit
the input-output relationship of the model and identify its
flaws. Black box attacks are more viable in applications
than white-box attacks, as model designers rarely open their
model parameters for proprietary reasons [15].

3) Gray Attack
In a semi-white box or gray box attack, the attacker

develops a generative model to generate examples of ad-
versaries in a white box environment. After training the
generative model, the attacker no longer needs a victim
model and can create adverse samples in a black box
situation [14],[15]

C. Existing Adversarial Attacks on Medical Images
The authors in [16] have investigated the effects of

FGSM and Jacobian-based Saliency (JSMA) attacks against
brain segmentation and classification of skin lesions. Three
pre-trained models were used (MobileNet, InceptionV3,

and InceptionV4) for classification. Additionally, three DL
segmentation models (Dense-Net, SegNet, and U-Net) were
used for segmentation. The experiments revealed that the
best robust models for classification and segmentation tasks
were InceptionV3 and DenseNet, respectively. For classi-
fication, the authors showed that the strength of a model
is proportional to its depth, but for segmentation, jump
connections and dense blocks improve the efficiency of
the model. The Structural Similarity (SSIM) ranged from
0.97 to 0.99, making the adverse samples imperceptible.
Finlayson et al. [17] applied an attack against the ResNet50
model using PGD black and white box attacks on der-
moscopy, chest radiography, and funduscopy images. In
both attacks, the accuracy of the model was drastically
reduced. Huq et al. [18] applied two white-box attacks
(PGD, and FGSM) against two pre-trained (VGG16 and
MobileNet) models for the classification of skin cancer.
They experimented to classify an image into seven cate-
gories. After attacking, the accuracy decreased significantly.
In mammographic images, the authors in [19] applied the
FGSM attack. They used the (Digital Database for Screen-
ing Mammography) DDSM, which has two classifications:
normal and malignant. While the SSIM fell below 0.2,
the accuracy dropped by as much as 30Pal et al. [20]
investigated the accuracy of COVID-19 classification based
on computerized tomography (CT) and X-rays scans. The
adversarial examples were generated using the FGSM attack
and evaluated their impact on VGG-16 and InceptionV3
models. The results indicate the vulnerability of these
models, with a reduction in accuracy of up to 63% and
90% for InceptionV3 and VGG-16, respectively. Transfer
learning (TL) and self-supervised learning (SSL) introduced
by authors in [21] were used to examine the robustness
of the biological-image analysis. MRI was used for the
cardiac segmentation dataset and Chest radiography was
used for the pneumonia detection dataset. For transfer
learning, a pre-trained ImageNet model was used. They
tested PGD and FGSM attacks, as well as VGG11 and U-
Net models. SSL outperforms TL because it learns stronger
features, based on the findings. To improve performance on
small, tagged data sets and adversary training, the authors
advocate SSL in combination with adversary training as
the default technique. Rahul et al. [22] applied the FGSM
white-box attack and the one-pixel black box against the
lung nodule classification model. In addition, three different
architectures were used to train a custom model [23].
They reported a 28 to 36% decrease in accuracy after
the FGSM attack. However, the model was significantly
more robust in the black-box attack, with a reduction of
only 2-3%. Kotia et al. [24] investigated the classification
vulnerability of brain tumors to adversarial attacks. They
applied noise-based attacks and FGSM white-box attacks.
The most successful attack was FGSM, which reduced ac-
curacy by 69%, while noise-based attacks reduced accuracy
by 34 and 24%, respectively. The influence of adversarial
attacks on retinal images was investigated by Shah et al.
[25] to identify diabetic retinopathy, they analyzed image-
based CNN and hybrid lesion-based algorithms for medical
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image analysis. To create adverse images, I-FGSM was
used. The results demonstrate that the CNN models are
relatively sensitive, while the lesion-based hybrid models
are more robust, with 45 and 0.6% accuracy reductions,
respectively. The relationship between the size of images in
datasets, control parameters, and the efficacy of adversarial
attacks was investigated by Kovalev et al. [26] White-box
attack PGD was used to create the adversarial samples.
The Inception V3 was used and two modalities for their
experiments: chest X-ray and histology for eight distinct
classification tasks. Histology images were found to be
less vulnerable than X-rays. Furthermore, the greater the
magnitude of the perturbation, the greater the success of the
attack. Lastly, they demonstrated that the success rate of the
attacks isn’t influenced by the size of the training set. Allyn
et al. [27] performed adversarial attacks on dermoscopic
imaging. They tested the test set of data set HAM10000
with DenseNet201 after perturbing it. Overall, there was a
17% drop in accuracy. Li et al. [28]suggested a thick-to-
thin deep 3D frame to address the problem of the NIH and
JHMI datasets. ResDSN F2C is the model’s name and is
based on V-Net, U-Net, and VoxResNet. However, because
FGSM and I-FGSM induce a significant drop in accuracy,
this frame is subject to adversary attack (85.83%). To
solve this problem, the authors recommended contradictory
training for this model, which only reduced accuracy by
13.11 %. Shukla, et al. [29] investigated an adversarial
attack against medical image segmentation models. Where
the Loss function backpropagated to minimizes the error
metrics. based the test performed on several popular models
using various surrogate loss functions. Through a higher
attack success rate, this attack outperforms other attacks
against medical image segmentation.

D. Existing Attack Defense techniques
Ren et al. [30]used the adversarial defense in brain

MRI segmentation to deal with small datasets. The subject
of segmentation is extremely difficult due to the small
datasets, especially in 3D MRI. However, the authors of
this study showed that adding adversarial cases to the data
can increase the robustness of the model. They used FGSM
in an anisotropic CNN cascade to create adverse samples.
Additionally, other studies used adversarial attacks during
the training process to produce more robust models overall.
Liu et al. [31] examined the effects of ad-versarial train-
ing on computed tomography nodules in the lungs. Three
3DResUNets were used in training, and data were obtained
from the LUNA and NLST cohort. They employed the PGD
attack to uncover the patterns leading to misclassification
with great confidence and then used this data to train the
network. The authors propose augmenting adversarial data
to reduce the susceptibility of nodule detection inadequately
represented nodule features and unexpected noise. Vatian et
al. [32] conducted a notable study on adversarial examples,
characterizing them as “natural” adversarial attacks. Their
experimentation involved MRI and CT scan of the brain
for lung cancer using a CNN model. The study revealed
that in advanced medical imaging systems, noise acting

as a ”natural” adversarial example could manifest itself.
To counter these attacks, three defense methods were im-
plemented. Adversarial training with JSMA and FGSM
proved to be the most effective defense, outperforming the
other two methods: layer activation function replacement
with Bounded ReLU and data augmentation with Gaussian
noise. Another study attempted to address the problem of
limited-angle tomography, which can cause problems in
CT reconstruction due to lack of data, resulting in image
misinterpretation. To address this problem, Huang et al. [33]
developed solid adversarial training. Because venom noise
is prevalent in CT scans, they used it as a disturbance in
the images for training. The trials were conducted using
the U-Net model and low-dose CT grand challenge data.
The results demonstrated that poisonous noise retraining is
effective for limited-angle reconstruction, but insufficient for
non-local adversaries. The resilience of three pre-trained
deep diagnostic models was investigated by Xu et al.
[34] Melanoma detection with IPMI2019-AttnMel, diabetic
retinopathy detection with InceptionV3, and ChestX-ray
classification with CheXNet. They used PGD and GAP
(generative adversarial perturbations) assaults to test their
theories. Both attacks significantly reduce model accuracy,
with PGD attacking with 100% accuracy. To deal with
attacks, the authors offered two defense techniques. The
first is multi-perturbation adversarial training (MPAdvT),
which involves training models with multiple perturbation
intensities and iteration stages. In the adversarial training
process, all samples are treated equally while according
to Papernot et al. [35] the perturbation of misclassified
examples is more important for model resilience, and in the
realm of natural images, minimizing techniques are more
crucial than maximization. The second defense method,
misclassification-aware adversarial training (MAAdvT) is
based on these observations. The authors added a misclas-
sification aware regularization to adversarial loss. They use
Kullback–Leibler (KL) divergence for the classifier to be
stable against misclassified adversarial examples. The pro-
posed defense methods present better results than standard
adversarial training. All samples are treated equally in the
contradictory training process, however, the authors state
that disturbance in misclassified examples is more crucial
for the robustness of the model and that minimization
strategies are more relevant than maximizing in the field
of the natural image. Many of the defensive approaches
listed above involve adversary training as a defense strategy.
Therefore, to address the aforementioned problems, this
defense model is proposed, especially for cancer image
reconstruction based on fine-tunning, in which the DCAE in
the pre-training stage is integrated with CNN. There are two
parts of our model: (1) Perturbated samples reconstruction
with DCAE model. After that, the learning weights of the
DCAE encoder are retrieved and used as initial weights for
CNN initialization in the next stage. (2) Modeling with three
different CNN architectures. Lastly, the proposed model is
compared with the adversarial training technique.
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3. THE PROPOSED MODEL RDMAA
In this section, the proposed technique for evaluating the

robustness of CNN-based cancer diagnosing models will
be introduced against two white-box adversarial attacks.
It will include the process of generating the perpetuated
adversarial image and constraint on the perpetuated image
in section (3.1), the convolutional autoencoder (section 3.2),
and also the CNN-based cancer classification models in
(section 3.3). The proposed defense model against adversary
attacks consists of two main parts. The first part of the
RDMAA model is the DCAE image reconstruction pre-
trained component and CNN is the second part as shown
in Figure 2.

DCAE: This part is responsible for pre-training the con-
volutional layer using clean and noisy (adversarial FGSM
and PGD) images to reconstruct the perpetuated images. It
also transfers the learned weights to the CNN classification
part. The DCAE architecture consists of three main com-
putational layers which are the Convolutional Layer (2D
Conv), the Max-Pooling layer, and the Upsampling Layer
(UpSampling2D).

CNN: This part uses the weights-tunning technique
based on DCAE pretrained weights of the encoding phase
to be able to predict the adversarial images correctly with
high classification accuracy. The architectures of CNN-
based models are composed of five types of layers which
are (convolutional 2D, max-pooling, Dense, Dropout, and
Flatten layer).

A. Adversarial Attacks Generation
In this paper, two of the most frequent and effective

adversarial attack techniques are used. The fast gradient
sign method (FGSM), which was first introduced in 2014,
and the projected gradient descent (PGD), which was first
introduced in 2017, are tested on three different medical
datasets. Three deep learning models for cancer image
classification are attacked using these adversarial generation
algorithms.

1) Fast gradient sign method (FGSM) Attack
Goodfellow et al. et al. [17],[36] proposed the one-step

strategy to quickly create adversarial examples. Attackers
modify the data based on gradient malfunction to maximize
loss. With just a minor perturbation, the loss can be in-
creased. Figure 3 shows an example of applying the FGSM
attack on the three medical modalities that mislead the DL
model. The adversarial perturbations are computed as the
sign gradient of the loss with respect to the input image.
The equation is as follows:

X′ Adv = X + ϵ ∗ sign(∇xL(θ, X,Y)) (1)

Where X’ Adv is the adversarial image, X is the
original input image, Y is the label, L is the loss value,
θ is the parameters, ∇x is the gradients and ϵ is the

Figure 2. The Architecture of The Proposed Model RDMAA

Figure 3. Example of FGSM Attack. 1st row displayes the original
modalities, 2nd row displays the FGSM patttern and the 3rd row
displays the FGSM attack output

parameter controlling the maximum value of perturbation
that is subtracted or added from every pixel in X. In this
technique, the model is likely to be fooled by the sample
produced in one step. FGSM generates adversarial samples
faster than the other attacks as it only requires only one
phase. As a result, FGSM meets the needs of experiments
that require a large number of adversarial instances to be
generated. Setting a high perturbation value will increase the
probability that the adversary sample will be misclassified,
but the resulting image will appear more distorted as a
result. Therefore, the experiments were tested with two
values of ϵ which are most common for medical images
where ϵ =.002 and ϵ=.005. The parameter settings in Table
2 were used to create the adversarial images in Figures 3
and 4.
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2) Projected gradient descent (PGD) Attack
Kurakin et al. [18] were the first to introduce PGD. It

is a more iterative variant of the FGSM one-step approach.

X0 = X, X Advt+1 = Clipx,ϵ(Xt + α ∗ sign(∇x ∗ L(θ, Xt,Y)))
(2)

Where t is the number of the iteration, ϵ is the per-
turbation degree, α is the step size, Clip is the function
that clips its input so that it doesn’t deviate from x by
more than ϵ. This PGD attack searches the samples with
the highest loss value. This type of adversarial is declared
as ”most adversarial”. when the intensity of the disturbance
(its norm) is limited, the sample points are more aggressive
and more likely to mislead classifiers. Finding adverse
instances is useful for identifying vulnerabilities in deep
learning models. Three experimental parameters of the PGD
attack were customized. The step size α= .002 and two
perturbation values ϵ= .002 and .005 and t =3 iterations. To
assess the robustness of AI-based cancer diagnostic models,
a new dataset as adversarial input must be generated first.
To do this, two adversarial attack techniques are applied,
namely the fast gradient method (FGSM) and the projected
gradient descent (PGD) method. For each original input
image, the FGSM and PGD techniques generate pertur-
bations by modifying the gradient of previously trained
CNN diagnostic models. All details about those attacks
are explained in the following sections. FGSM and PGD
constitute solid foundations and are well known in the
sector. FGSM is a rapid one-step method, while PGD is
an iterative approach. By testing both, you can evaluate
how well the defense model performs against a variety
of attack strategies. FGSM represents a scenario where
attackers may have limited time to generate adversarial
examples, while PGD represents a scenario where attackers
may have more computational resources to design attacks.
Evaluating against a wide range of adversarial attacks can
require a large amount of computation. Using a smaller set
of representative attacks, such as FGSM and PGD, makes
experimentation more manageable while providing valuable
insights.

B. Convolutional Autoencoders (CAE)
1) Autoencoder (AE)

is a feed-forward neural network that seeks to recreate
the input into the output under specific constraints. By first
encoding and then decoding the inputs, the AEs execute
unsupervised pre-training. The interconnections between
layers are fully connected. The units of the previous layer
are linked to the units of the next layer. The input and output
layers are the same sizes as the image. The autoencoder is
managed to learn compressed representation without loss
of information by making the output target the same as the
original image [37] .

Figure 4. Example of FGSM Attack. 1st row displayes the original
modalities, 2nd row displays the FGSM patttern and the 3rd row
displays the FGSM attack output

2) Deep Convolutional autoencoder (DCAE)
extends the basic structure of the AEs since it changes

the fully connected layers to convolution (convolutional
encoding and decoding) layers. DCAEs are better suited
for image processing than classical autoencoders because
they use the full power of convolutional neural networks to
exploit the structure of the image. In DCAEs, the weights
are shared between all input locations which helps to save
the local spatiality. DCAEs merge the unsupervised pre-
training of autoencoders with the advantages of convolu-
tional filtering in CNN. Rather than the fully connected
layers, the encoder incorporates convolutional layers, and
the decoder has deconvolutional layers, in contrast to the
structure of autoencoders. Deconvolutional filters can be
transferred copies of convolutional filters, or they can be
trained from scratch. Each deconvolutional layer must also
be preceded by a layer that falls apart [38]. The design
of a DCAE is divided into two parts: an encoding phase
to represent features or to give a compressed version of
the input, and a decoding section to reconstruct the input
from the compressed form. The convolution and maximum
pooling layers are used in the encoding phase, while the
deconvolution and up-sampling layers are used in the de-
coding section as shown in Figure 5. The shared weights are
a benefit of deep learning techniques. Autoencoders also can
quickly reconstruct noisy images. As a result, the proposed
defense model combines the benefits of DCAE and CNN for
pre-training. Then the classification models are initialized
based on fine-tuning of parameters. The encoding part of the
DCAE consists of three layers of convolution 2D and three
layers of Max pooling as shown in Figure 6. On the other
hand, the decoding part of DCAE has four convolution 2D
layers and three up sampling layers. Algorithm 1 describes
the main steps to using the DCAE model to train the
network on the medical images. Three different DCAEs
are trained to separately reconstruct the three used medical
modalities (Lung nodule, leukemia, brain tumor) simply
with the same architecture. This means that the proposed
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Figure 5. General Structure of The Deep Convolutional Autoencoder

DCAE model can be used with different types of medical
data and achieve a high reconstruction rate. Different filter
sizes were tested on the convolutional layer and finally set to
64 with a kernel size of (3 * 3). This framework produced
acceptable reconstruction accuracy and required less time
for training. In the proposed DCAE model, three different
size values are used for each type of medical data as the
input image size. Generally, the input size is equal to (height
* width * channels). For brain tumors and leukemia, the
size of input images was (64*64*3) and for lung images it
was (52*52*1). The input size was initially reduced three
times at the encoder by a scale factor of two before being
compressed. The decoder then up-scaled those potential
feature maps three times to the original size but included
16 channels. The last 16-channels would be recreated to the
same size as the three-channel input by adding three filters
to a convolutional layer on top of the decoder.

Algorithm 1 The proposed DCAE-ADVs reconstruction
model

Input: A clean and noisy medical image D.
Output: Encode (convolutional and max pooling)
weights wx,wy.
Initializing the wx,wy randomly.
Encode the medical images.
for ¡ITIR= 1: N do

Estimate the 2D convolution weights Ci.
Estimate max pooling weights Mk.
Estimate up sampling Uk.
Estimate 2D deconvolution Cdi j.
Reconstruct the noisy image with the 2D deconvolution
output.
Update the wx,wy.

end for
return wx,wy.

C. Convolutional Neural Network
The proposed scheme first applies three steps of image

preprocessing. The first is to resize the images so that they
are the same size. The brain and leukemia images were
resized to (64 * 64) while the lung images were resized to

Figure 6. The Proposed DCAE-ADVs Framework

(52 * 52). Then, Medical images are normalized. To train
and test the CNN model, each dataset is randomly divided
into three parts: training, validation, and testing as shown
in Table 1. The first six layers of the three CNN models
(convolutional and max pooling) layers were identical to
the encoder part in the DCAE. Following these layers, the
output features were flattened into a one-dimensional vector
for the three classification models. This was then followed
by two dense layers in the brain tumor Classification model.
Whereas, the lung nodule model is followed by three dense
layers. On the other hand, the flatten layer was followed
by three dense, dropout, and dense layers in the leukemia
model as shown in Figure 7. In the brain tumor classification
model, the final dense layer had three neurons for multiclass
classification (meningioma, glioma, and pituitary) tumors.
whereas, it had four neurons in leukemia to classify (Be-
nign, Early, Pre, and Pro) and only one neuron in the lung
nodule model because it performs a binary classification
(Benign and Nodule). In the proposed adversarial defense
model, the weights estimated by the encoder from the pre-
trained autoencoder (DCAE) had been reused as the initial
weights for the identical part in the CNN model. The other
layers had the weights randomly.

4. EXPERIMENTAL RESULTS
This section begins by discussing the experimental en-

vironment. Also, the evaluation metrics will be discussed
to estimate the robustness of the proposed models. Then,
all the details about the cancer datasets will be discussed.
In addition, the performance of the three deep cancer
diagnostic architectures will be estimated under two adver-
sarial attacks. Finally, a comparative analysis between the
proposed model with another famous defense technique will
be shown.

A. Experimental Environment
All the experiments in this paper were executed on the

COLAB Cloud Platform [39]. The processor runtime was
CPU since the size of data wasn’t very large. The software
used in the experiments was the Jupyter notebook. All the
experiments have been carried out using Python 3 with
many data science libraries such as Matplotlib, Scikit-Learn,
Pandas, NumPy, CV2, Keras, and TensorFlow.
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Figure 7. Proposed DL-based Cancer Diagnosing Models: a) shows
the CNN of MRI classification, b) CNN-based X-ray classification
and c) Leukemia classification framework

B. Evaluation Metrics
After the generation of the adversarial images, they are

fed into the trained CNN classification models. To obtain a
more complete assessment of the robustness of deep cancer
diagnostic models, binary and multi-class models are used
in this study. There are five evaluation metrics which are the
accuracy, Precision Pre, Recall Rec, confusion-matrix, and
F1 score ratio of the attack impact and the defense impact
to assess the robustness of the models. They are described
below [37]:

Precision =
TruePositive(T P)

TruePositive(T P) + FalsePositive(FP)
(3)

Recall =
TruePositive(T P)

TruePositive(T P) + FalseNegative(FN)
(4)

Accuracy =
T P + T N

T P + FP + T N + FN
(5)

F1 S core =
2 ∗ (2 ∗ T P)

(2 ∗ T P + FP + FN
(6)

A true positive is when the model accurately predicts the
positive class, while a true negative is when the model
accurately predicts the negative class. Conversely, a false
positive happens when the model incorrectly predicts the
positive class, and a false negative occurs when the model
inaccurately predicts the negative class.

C. Datasets Characteristics
Three publicly available cancer images datasets are used

in this paper, including (1) LUNA16 [40] with X-ray images
for lung nodule classification, (2) the Kaggle (CE-MRI) [41]
dataset with MRI high contrast-colored images, and (3) the
Acute Lymphoblastic Leukemia (ALL) [42] dataset with
microscopic images. To verify that the proposed adversary
defense model described in the previous section is generally
appropriate for the AI-based cancer classification domain.
The proposed defense model was tested using three DNN-
based medical image classifications: (1) multi-classification
of Acute leukemia from fundoscopy as (benign, pro, pre,
early) (2) Binary classifying lung nodule from chest x-rays
as (benign and nodule); and (3) multi-classification of the
brain tumor as (glioma, meningioma, pituitary) from MRI
as shown in Figure 6.

Acute Lymphoblastic Leukemia (ALL) [42]: This
dataset is used to classify and identify ALL blasts in the
most common cancer type of childhood and is publicly
available at the Kaggle website. This dataset contains 3256
PBS images from 89 patients collected in the bone marrow
laboratory of Taleqani Hospital (Tehran, Iran). The dataset
consists of two main categories benign with three subtypes
of malignant lymphoblasts leukemia (Benign, Early, Pre,
Pro) lymphoblasts. DNNs should recognize the blasts of
leukemia based on the presence of blood cell abnormalities.

LUNA16 Lung Nodule [40]: The LUNA16 is a sub-
set of LIDC-IDRI dataset. For lung nodule classification,
a subset of segmented lung nodules from LUNA16 X-ray
dataset was used. This dataset contains X-ray images. The
dataset contains 8106 images as nodules or non- nodules.
Only the annotations categorized as nodules ≥ 3 mm as the
other annotations (nodules ≤ 3 mm and non-nodules).

CE-MRI Brain Tumor [41]: The Kaggle CE-MRI brain
tumor dataset for the tumor classification task is used. The
data set contains MRI images and can be used as a training
set for academic machine learning. CE-MRI was acquired
between 2005 to 2010 from Nanfang Hospital, China. CE-
MRI dataset includes 3,064 T1-weighted contrast-weighted
images from 233 patients who had three different types of
brain tumors: glioma, meningioma, and pituitary tumor as
shown in Figure 8. A total of 64% of the X-ray image
collection has been designated for training, 16% for vali-
dation, and 20% for testing. The collection of microscopic
images has been divided into two parts: 71% for testing and
20% for training and validation. For training, validation, and
subsequent testing purposes, the MRI data set was divided
into three segments: 80%, 10%, and 10%. The number of
samples used for training and testing are listed in Table 1.

D. Results and Discussion
In this part, the verification that the proposed RMDAA

fine-tuning defense model is beneficial to improve the
robustness of the AI-based cancer models. Compared to the
non-medical DL models, the medical DL models appeared
to be much more vulnerable to adversarial attacks. Three
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TABLE I. Details Of The Three Cancer-Based Medical Datasets Splitting

Dataset Classes Train Validate Test Test

Original AdversTest
X-ray 2 5187 1297 1622 1622
MRI 3 2481 276 307 307

Microscopic 4 2343 261 652 652

Figure 8. Samples of Each Class from The Three Cancer-Based
Medical Datasets: a) X-ray lung images, (b) MRI Brain Tumor and
(c) Microscopic Leukemia.

medical diagnostic models were trained for each medical
modality. All three models have been fully trained to obtain
an accurate classification rate for each modality. Then, two
white-box attacks were performed separately against the
well-trained CNNs. The generation of the adversarial sam-
ple requires certain constraints to the perturbation value to
obtain adversarial samples that have an invisible difference
compared to the original. When comparing the minimum
perturbation size required for most attacks to be successful
in medical imaging DL models with non-medical imaging
DL models, a smaller ϵ size was given for medical attacks to
be strong. The parameters of the two attacks are determined
using the hyperparameter search method to find values
that are appropriate for the experiments depending on the
desired attack strength. We started by experimenting with
different parameter settings. For example, we started with a
range of perturbation values ϵ values since ϵ typically range
from extremely small (e.g., 0.01) for minor perturbations
to larger values for more powerful attacks. Then, different
combinations of parameters for attacks are tested. Analyze
how well our model performed against these attacks ac-
cording to common evaluation measures such as Attack
success rate, robustness, etc. Finally, the parameter values
that result in the appropriate level of adversarial success rate
are selected. The following are the specific set-tings for the
two attack types mentioned above: two perturbation values
ϵ of FGSM are tested .002 and 0.005. The PGD attack has
a step size of .002 and two perturbation values .002 and
.005 and three iterations. The generated adversarial images
are equal to the number of samples in the test dataset. Table
2 shows the parameter settings of the FGSM and PGD
algorithms.

Before using adversary attacks, the classification accura-
cies reached 95% for the MRI dataset, 90% for X-ray, and
86% for the microscopic dataset. Then, apply attacks on
the three models separately using the white-box adversarial
examples that have effectively attacked the trained CNN.
The impact of these attacks across the three datasets and the
success rate of the proposed defense models are reported
in Tables 3,4, and 5. As shown, the performance of the
models under attacks had a greater absolute decrease for
X-ray and leukemia and a moderate decrease for brain MRI
under FGSM attacks. Lung X-ray: The success rate of the
two attacks is higher in the X-ray datasets than in the brain
MRI and leukemia datasets. However, the attack parameters
used in the three datasets have the same design. This may
be the result of the difference in biological texture between
the cancer modalities. As shown in Figure 9, the success
rates (the accuracy dropped up to) are more than 55% with
FGSM and 50% with PGD attacks. On the other hand, this
dataset achieves a high defense rate compared to the MRI
dataset as shown in Table 4. The success rates are reduced
to 3% and 8% under the FGSM and PGD respectively with
other metrics as shown in Tables 3 and 6. Acute leukemia
Microscopic: As seen in Tables 4 and 7, however, acute
leukemia has a highly successful attack rate, it has the
strongest defensive impact against FGM attacks. Table 4
shows that the attack success rates reached 50% for FGSM
and 20% for PGD. While the defense model reduced the
success rate to 89% under FGSM and 87% under PGD.
This is because the proposed defensive model is based
on the DCAE image reconstruction. When comparing the
defense effects of the proposed defense models, it becomes
clear that fine-tuning can significantly enhance the defense
power of the model. Brain MRI: In contrast, the success
rate of the two attacks in this dataset is lower than in the
lung X-ray and leukemia datasets. Table 5 shows that the
biological structure of the high contrast brain tumor images
is more resistant to adversarial attacks. The success rate
under FGSM is 25% and 18% under PGD. Tables 5 and
8 show that the proposed technique has a better defense
impact against the two attacks. Of course, the success rate
of the attack is related to the accuracy rate of the target
model where the success rate decreased to 3% under both
attacks. The accuracy of each target model will be displayed
to confirm that it performs well in the classification of
the medical diagnosis. As shown in tables 6,7 and 8, the
proposed defense model achieves a very robust performance
toward these attacks. Tables 6,7 and 8 show that the test
accuracy of the PGD, and FGSM attacks dropped to a range
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TABLE II. The parameters of the two attacks

Attack Method Perturbation Values ϵ Step Size α Number of Iterations

FGSM .002,.005 - -
PGD .002,.005 .002 3

between 35% and 77% accuracy, which is much lower than
the clean set. This indicates that the attack is successful
about 50% of the time. This result demonstrates that it
is quite simple to undermine the performance of a neural
network. On the other hand, the proposed model achieved
a higher accuracy rate under the two attacks.

Adversarial training is a data augmentation defense
technique that involves adding some adversarial samples to
the original dataset. It’s a powerful technique for developing
a robust model resistant to per-instance attacks, in which
adversarial instances are injected into the dataset during
training. The original training dataset (I) and the adversarial
datasets (S) are included in the new training dataset N,
which serves as the training input of the DL models.
Assume that the adversarial dataset (S) and the original
dataset (I) have equal sizes. A simpler approach is to always
train the DL models using the adversary dataset that ensures
the highest accuracy of the model under attack for a specific
range of adversary strengths used by an adversary attack.
Multiple networks with multiple inputs for each type of DL
model are trained. For each medical dataset modality, one
network is trained using only the clean data, The other two
networks are trained using adversarial samples augmented
to the clean samples. For example, FGSM samples are
added to the clean training set to adversarial train a network
with FGSM. The training set now contains twice the number
of samples as it did at the beginning. The same process
is done with PGD adversarial training. Tables 9,10 and
11 show the accuracy of the test after the models have
been trained using FGSM, PGD samples, and clean pairs.
From Figure 10, It is observed that the network correctly
categorizes most of the adversarial samples, reaching an
accuracy similar to the clean samples. It shows a great
enhancement from 40% to 50% for X-ray images, while,
less enhancement was obtained for Microscopic and MRI
modalities ranging from 10% to 20%. This indicates that the
distribution of the original images and adversarial images
are different from the MRI and Microscopic images. Tables
9,10 and 11 compare the effectiveness of our proposed
defense model with the adversarial training standard de-
fense techniques against the two white-box attacks. The
robustness of the three cancer-based DNN classification
models was tested against FGSM and PGD attacks using
the two defense techniques. The results of classification
for the three attacked architectures were greatly im-proved
after employing the proposed fine-tuned model, as you can
see in the tables. For example, the defense accuracy for
a binary-class lung nodule classification task is 83%, and
88% for PGD and FGSM respectively, while the standard
adversary training is 80%, and 86%. The same conclusion

can be obtained with multi-class MRI classifiers for 93%,
and 93%, while adversarial training achieved 78% and 86%
respectively. one can witness that the proposed model is
significantly better than the adversarial training technique.

Also, defense is judged to be efficient if it can resist a
broad range of attacks and different parameters of attacks.
Therefore, in Figure 8, the accuracy of the classifiers in the
three medical datasets is demonstrated with and without
defenses against FGSM and PGD white-box attacks, with
various perturbations ϵ sizes, to analyze the effect of the
parameters of the two attacks in the proposed fine-tuned
CNN models. Figure 9 shows how the classifier’s accuracy
gradually drops as the value of perturbation ϵ increases
with the three medical datasets. As a result, attacks with
higher ϵ are more successful. Also, the accuracy of the
proposed defense model under the same white-box attacks
with the same perturbations values is shown in the same
graph. The classifiers are shown to be very secure and robust
against attacks with the proposed defense model, even at
high ϵ values. According to the university of our model, the
main goal of our defense strategy is to make deep neural
medical models more resilient to adversarial attacks. Several
factors determine whether a defense technique created for
a DL model can be applied to other image classification
models. These factors include the similarity of the models,
the possibility of transferability, the vulnerabilities inherent
to each model, the ability to respond to generic attack
scenarios, and more. It is essential to understand that the
proposed technique may not work in all situations. However,
it is important to note that this technique had positive results
when used with three different medicinal modalities, each
of which is distinguished by certain characteristics. These
results differ from those of other comparable models, which
were only evaluated using one type of medical evaluation.
Given the significant need for medical applications, our
study mainly focuses on advocating medical DNN models.
However, we realize that future research may be necessary
to determine whether our defense is universally applicable
to other domains and model types. We will consider up-
coming research that examines its versatility for many uses.
The results demonstrate that additional parameters affect
the effectiveness of adversarial training techniques such as
the algorithm used to create the adversarial samples. This
means that if the network model is to be resistant to all
potential attacks, the number of adversary instances required
for adversary training can be increased significantly to
account for all possible configurations. In general, it is quite
challenging to train a resilient network that guarantees a
certain level of robustness against all kinds of adversary
cases. The RDMAA defense model is extremely robust
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TABLE III. The Impact of Attacks On DL-Based X-Ray Datasets Classification and The Resistance of The Proposed Defense Model

LUNG Nodule Classifier Performance
No Defense RDMAA Enhancement Difference

No Attack 90% 91%
PGD Attack ϵ=.005,α=.02 40% 83% 43% 8%

FGSM Attack ϵ=.005, 35% 88% 53% 3%

TABLE IV. The Impact of Attacks On DL-Based Microscopic Datasets Classification And The Re-sistance Of The Proposed Defense Model

Acute Leukemia Classifier Performance
No Defense RDMAA Enhancement Difference

No Attack 86% 90%
PGD Attack ϵ=.005,α=.02 36% 87% 40% 3%

FGSM Attack ϵ=.005, 66% 89% 23% 1%

TABLE V. The impact of attacks on DL-based MRI datasets classification and the resistance of the proposed defense model

Brain Tumor Classifier Performance
No Defense RDMAA Enhancement Difference

No Attack 95% 96%
PGD Attack ϵ=.005,α=.02 77% 93% 16% 3%

FGSM Attack ϵ=.005, 70% 93% 23% 3%

TABLE VI. The Classification Performance Evaluation of the 2-Classes Lung Nodule DNN Model with No-Defense and Defense Technique

No Defense Model RDMAA

ACC P R F1 ACC P R F1

No Attack 90% 83% 86% 84% 91% 85% 82% 84%
PGD Attack ϵ=.005,α=.02 40% 50% 49% 38% 83% 72% 79% 74%

FGSM Attack ϵ=.005 35% 38% 29% 29% 88% 80% 77% 78%

TABLE VII. The Classification Performance Evaluation of The 4-Classes Acute Leukemia DNN Model With No-Defense And Defense Technique.

No Defense Model RDMAA

ACC P R F1 ACC P R F1

No Attack 86% 85% 84% 84% 90% 90% 88% 89%
PGD Attack ϵ=.005,α=.02 47% 50% 47% 47% 87% 86% 85% 85%

FGSM Attack ϵ=.005, 66% 64% 65% 66% 89% 88% 86% 87%

TABLE VIII. The Classification Performance Evaluation of The 3-Classes Brain Tumor DNN Model With No-Defense And Defense Technique.

No Defense Model RDMAA

ACC P R F1 ACC P R F1

No Attack 95% 95% 93% 93% 96% 95% 95% 95%
PGD Attack ϵ=.005,α=.02 77% 77% 79% 77% 93% 93% 93% 93%

FGSM Attack ϵ=.005, 70% 68% 65% 66% 93% 92% 93% 92%
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TABLE IX. The Results of Two Defense Techniques over X-ray Dataset Under Two White-box Attacks

Lung Nodule Accuracy Comparison
Advrs Training RDMAA

PGD Attack ϵ=.005,α=.02 80% 83%
FGSM Attack ϵ=.005, 86% 88%

TABLE X. The Results of Two Defense Techniques over Microscopic Dataset Under Two White-box Attacks

Acute Leukemia Accuracy Comparison
Advrs Training RDMAA

PGD Attack ϵ=.005,α=.02 68% 87%
FGSM Attack ϵ=.005, 78% 89%

TABLE XI. The Results of Two Defense Techniques over MRI Dataset Under Two White-box Attacks

Brain Tumor Accuracy Comparison
Advrs Training RDMAA

PGD Attack ϵ=.005,α=.02 78% 93%
FGSM Attack ϵ=.005, 86% 93%

against FGSM and PGD attacks compared to the adversary
training technique. Since the two white box at-tacks use
geometric perturbations to target the most crucial areas in
the benign samples, the proposed RDMAA model recon-
structs the antagonistic samples to their original clean shape.
Given the relatively limited research contributions in the
field of defending medical adversarial attacks compared to
natural images, and the absence of publicly available models
tailored for our three datasets, we opted for two approaches.
First, we applied a well-known public defense technique,
called adversarial training (ADT), as a foundational step.
This allowed us to make an initial comparison between
our proposed model and this widely used technique. Our
work not only addresses the current research gap but also
establishes a baseline for evaluating the performance and
potential advancements in medical adversarial defense. We
plan to explore this avenue in future work to provide a more
comprehensive assessment of the proposed defense method.
As indicated in Tables 3-8, the results of the baseline model,
without any defense mechanism, achieved accuracy rates of
91%, 86%, and 95% for the three medical modalities: X-
Ray, Microscopic, and MRI datasets, respectively. However,
when subjected to the PGD attack, the accuracy dropped
significantly to 40%, 36%, and 77% sequentially. Similarly,
when the FGSM attack was applied, it resulted in a substan-
tial decrease in accuracy to 35%, 66%, and 70%, respec-
tively. These results clearly demonstrate the vulnerability
of the baseline model to adversarial attacks, which substan-
tially degrade its performance on these medical datasets.
The proposed defense mechanism aims to mitigate these
effects and enhance the model’s robustness. The tables also
highlight the consistency of the defense model across the
three medical modalities, even when subjected to different

attack parameters. Notably, the model’s accuracy without
any defense increased by 1%, 4%, and 1% sequentially
for the three modalities: X-Ray, Microscopic, and MRI
datasets, respectively. The defense mechanism demonstrated
enhanced performance against PGD attacks, resulting in
accuracy improvements of 43%, 40%, and 16%. Similarly,
the defense model effectively countered FGSM attacks,
resulting in a 53%, 23%, and 23% increase in accuracy.
These results showcase the effectiveness of the RDMAA
defense model compared to the adversarial training (ADT)
technique as introduced in tables 9-11. The proposed model
not only enhances accuracy but also demonstrates its consis-
tency across different medical modalities. This consistency
is a valuable contribution for researchers, indicating that
the defense model is a robust solution applicable to various
medical domains. Also, the confusion matrices are plotted
to evaluate the change in prediction samples as a result of
comparing the effect of the adversarial training technique
with the proposed defense model. The true and predicted
classes are represented by the rows and columns in the
arrays, respectively as shown in Figure 10. After attacking
the systems, in the binary classification, most lung X-ray
images tended to be misclassified as nodules and vice
versa. Furthermore, the majority of MRI images of the
brain were identified as glioma for multiclass classification.
The attack affected the algorithm to mispredict the true
labels of the leukemia images, and most of the images
were classified as early blasts. As a key to success, the
suggested model reduces the impact of misclassification.
The confusion matrices for the three models showed that
the defense technique is robust against attacks, as most
of the images were correctly classified into the original
classes after the adversary attacks. However, the effect of
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Figure 9. Accuracy of FGSM and PGD Attacks Impacts and Defense
Technique on the three medical datasets: (a) Lung X-ray , (b)
Leukemia Microscopic and (c) Brain MRI

the adversarial training technique was partially limited for
the three data sets.

Data Availability Statements The datasets analyzed
during the current study are available in the [Brain
Tumor Image Dataset] repository [41]. These datasets
were gathered from the publicly available sources listed
below: [https://www.kaggle.com/datasets/denizkavi1/brain-
tumor?select=3], the [Acute Lymphoblastic Leukemia
(ALL) image dataset] repository [42] available public on:
[https://www.kaggle.com/datasets/mehradaria/leukemia],
and available in the [luna16 dataset] repository
[40]. Available online on: [https://luna16.grand-
challenge.org/Data/].
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5. Conclusions and FutureWork
Recently, the widespread use of deep learning (DL)

frameworks especially the deep convolutional neural net-
work (CNN) has received a lot of interest in a variety of
industries. The black-box nature of these models makes
them vulnerable to adversarial attacks. In automated med-
ical diagnosis, although the adversarial attacks are high
risk, it is expected that DL-based medical diagnosis will be
widely used safely and accurately. As a result, adversarial
defense techniques relevant to the medical DNN model
must be proposed. In this paper, the risks of the white-box
attacks against the DL-based medical diagnosis framework
have been investigated. The following is a list of the main
contributions to this paper: (1) A new defense model based
on the RDMAA against white-box adversary attacks for

Figure 10. Confusion Matrices For Proposed Three Medical Models
Under Attacks And Defenses

DL-based cancer diagnosis systems where the deep CNNs
are fine-tuned using the weights of the pretrained DCAE-
ADVs image reconstruction model. (2) Many experiments
have been conducted with two types of white-box adver-
sary attacks on three different cancer-based medical image
modalities datasets (X-ray, MRI, and Microscopic). (3) The
proposed defense model is compared with an-other famous
defense technique in three different experiments. The results
proved that the proposed defense model can remarkably out-
perform the other existing defense method for the medical
field. Tunning the CNN-based cancer diagnosis models with
the weights of the pre-trained DCAE-ADVs image recon-
struction encoder significantly increased the robustness of
the models. Further-more, this defense model outperforms
the adversary training defense method in terms of improving
the robustness of the DL models. As a result, the proposed
model can be used in a variety of medical modalities to
enhance the robustness of the medical diagnosis models.
One of the potential future works is to expand the scope
of RDMAA in the time-series data. That implies acquire
relevant datasets containing physiological measurements,
ECG recordings, or other appropriate time-series health data
for-mats. developing existing attack methods specifically
designed to exploit the temporal patterns and vulnerabilities
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within time-series health data. evaluating the performance
of RDMAA against these time-series attacks and compare
it to other state-of-the-art defense techniques on the same
datasets. New attack methods will be studied to demonstrate
the effectiveness of the proposed defense methods.
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