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Abstract: Various document types (financial, commercial, judicial) necessitate signatures for authentication. With the advancements
of technology and the increasing number of documents, traditional signature verification methods encounter challenges in facing
tasks related to verifying images, such as signature verification. This idea is further reinforced by the growing migration of
transactions to digital platforms. To that end, the fields of Machine learning (ML) and Deep Learning (DL) offer promising
solutions. This study combines Convolutional Neural Network (CNN) algorithms, such as Visual Geometry Group (VGG) and
Residual Network (ResNet) or VGG16 and ResNet-50 specifically, for image embedding alongside ML classifiers such as Support
Vector Machine (SVM), Artificial Neural Network (ANN), Random Forest, and Extreme Gradient Boosting (XGBoost). While
the aforementioned solutions are usually enough, real life scenarios tend to differ in environment and conditions. This problem
leads to difficulty and accidents in the verification process, causing the users to redo the process or even end it prematurely.
To alleviate the issue, this study employs optimization methods such as hyperparameter tuning via Grid Search and triplet loss
optimization to enhance model performance. By leveraging the strengths of CNNs, Machine Learning classifiers, and optimization
techniques, this research aims to improve the accuracy and efficiency of signature verification processes while addressing real-world
challenges and ensuring the trustworthiness of electronic transactions and legal documents. Evaluation is conducted using the
ICDAR-2011 and BHSig-260 datasets. Results indicate that triplet loss optimization significantly improves the performance of
the VGG16 embedding model for SVM classification, notably elevating the Area Under the ROC Curve (AUC) from 0.970 to 0.991.
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1. Introduction
In today’s digital world, the need for strong and

secure handwritten signature verification methods is more
important than ever. Since every person has a distinctive
signature that is mostly used for personal identification
and the authentication of significant papers or legal trans-
actions [1]. As online electronic transactions and digital
documents become more prevalent, there’s a growing de-
mand for advanced ways to verify signatures. Traditional
methods face challenges in accurately confirming signa-
ture authenticity, leading to a shift towards utilizing the
latest technologies as a solution. The integration of deep
learning and machine learning techniques into signature
verification processes presents a promising solution to
address the limitations of conventional approaches. Lever-
aging the capabilities of computer vision in conjunction
with these advanced technologies holds the potential to
drastically improve the accuracy, adaptability, and overall
efficiency of signature verification.

Every day throughout the world, a great number of
vital financial, commercial, and legal papers are signed,
so validating signatures has become a critical issue that

demands attention [2]. For the financial aspect of this
issue, financial transactions increasingly migrate to digital
platforms, the banking industry, in particular, faces the
challenge of securing electronic signatures against sophis-
ticated forgery attempts. The implementation and applica-
tion of robust signature verification systems is imperative
to safeguard the integrity of financial transactions, prevent
identity theft, and ensure the trustworthiness of electronic
documents. Furthermore, the real-world applications of
this research extend beyond the banking sector. Govern-
ment agencies, legal institutions, and various industries
dealing with sensitive information can benefit from an
advanced signature verification system. The proposed
methodology aims to offer a versatile solution applicable
across diverse domains where signature verification is a
critical component of security protocols.

Recent advancements in deep learning have demon-
strated significant breakthroughs in various computer
vision tasks. Cutting-edge models, such as the VGG-
16 architecture, showcase remarkable advancements for
visual recognition tasks. VGG-16 is a robust model that
consists of 16 convolution layers and is fully connected,
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which is usually used to recognize and classify images
[3]. Not to mention, it has been pre-trained using the
ImageNet dataset, which makes the model good for im-
age classification tasks. With that in mind, incorporating
VGG-16 into authentic signature verification tasks may
potentially enhance the accuracy and efficiency of the
verification process.

Furthermore, notable research efforts by Manish Baj-
pai [4] and Xamxidin et al [5] have contributed to the ex-
ploration of signature verification methodologies. Bajpai’s
research focuses on leveraging the VGGNet model for
feature extraction in handwritten signature authentication.
On the other hand, Xamxidin et al. propose an Improved
Inverse Discriminative Network (IDN) to enhance sig-
nature verification accuracy. Leveraging the strengths of
these methodologies presents an opportunity for further
advancement in signature verification tasks. Specifically,
utilizing methods like triplet loss optimization reduces
input requirements, while employing deeper models like
VGG-16 could extract more meaningful information from
input images.

Therefore, to improve checking and verifying sig-
natures, this study uses various methods to thoroughly
assess how the combination of image embedding meth-
ods, such as VGG-16 and ResNet-50, triplet loss opti-
mization, and different deep learning embedding models
alongside machine learning classifiers perform on the task
of signature verification, such as Support vector machine
(SVM), Random Forest (RF), Artificial Neural Network
(ANN), and XGBoost (XGB). These methods are selected
precisely to give an overview of the performance of
the combination of the deep learning embedding models
and machine learning classifiers. The main workflow /
architecture of this work can be seen in Figure 1.

In Section 2, we review relevant literature and pre-
vious works related to signature verification methodolo-
gies, discussing their strengths and limitations. Section
3 presents the theoretical background and methodologies
employed in our research, including deep learning em-
bedding models, machine learning classifiers, and opti-
mization techniques such as triplet loss. In Section 4, we
propose our novel methodology, which integrates various
image embedding methods, optimization techniques, and
machine learning classifiers to enhance signature verifi-
cation accuracy. Section 5 details the experimental setup,
including dataset selection, model training parameters,
and evaluation metrics. In Section 6, we present the
results of our experiments and provide a comprehensive
discussion of the findings, including insights into the
performance of different methods and techniques. Finally,
Section 7 concludes the paper by summarizing the key
findings, highlighting contributions, and outlining poten-
tial avenues for future research in signature verification.

2. RelatedWorks
The process of handwritten signature verification has

gone through drastic changes with the integration of
deep learning algorithms. In the pursuit of enhancing
accuracy and reliability, researchers have delved into the
world of machine learning, particularly the utilization of
deep learning techniques. This literature review section

explores some research papers, each contributing distinct
methodologies and insights to the overarching theme
of authentic signature verification through deep learning
algorithms.

Engin et al [6] addresses the challenge of offline sig-
nature verification in real-world scenarios, particularly fo-
cusing on a banking context where customers’ transaction
request documents with occluded signatures are compared
to their clean reference signatures. Unlike controlled
datasets used in previous research, real-world signatures
can include various occlusions such as stamps, seals,
ruling lines, and signature boxes, leading to high intra-
class variations. The proposed methodology comprises
two main components, a stamp cleaning method based
on CycleGAN and a signature representation method
based on Convolutional Neural Networks (CNNs). The
experiment results indicate a 76.8% accuracy when em-
ploying VGG-16 for signature representation along with
the CycleGAN-based cleaning method, which is better
compared to the 75

Poddar et al [7] introduces a novel method for signa-
ture recognition and forgery detection while considering
the challenges associated with signature verification due
to the variability introduced by individual writing styles
and environmental factors. The proposed approach em-
ploys Convolutional Neural Networks (CNNs) and the
Crest-Trough algorithm for signature verification while
employing the Harris Algorithm and the Surf Algorithm
for forgery detection. In the experimental results, the
proposed signature recognition system achieves a high
accuracy of 94% and an accuracy range of 85-89

Lu et al [8] introduces a methodology for handwriting
identification that integrates both dynamic and static fea-
tures to enhance the accuracy of signature identification,
particularly in the context of forged signatures. The
study establishes a Chinese signature forged handwriting
database, which contains 44 signatures from different
signers, collected from a dot matrix digital pen tool.
The data collection involves offline images and online
data, capturing information such as X and Y coordinate
points, pressure, timestamp, and pen up-down marks.
For classification, the study employs machine learning
algorithms, such as Support Vector Machine (SVM), and
deep learning algorithms, such as Convolutional Neural
Network (CNN). The best results for the proposed method
are 92.2% and 94.4% for SVM and CNN respectively.

A research paper by Manish Bajpai [4] focused on
enhancing the accuracy of handwritten signature authen-
tication using the VGGNet model, specifically for feature
extraction, along with hyperparameter tuning. The final
experiment, which produced the best result, reached a
testing accuracy of 95% for detecting genuine and forged
handwritten signatures. The conclusion from the experi-
ment’s result emphasizes the critical role of hyperparam-
eter optimization and highlights that a faster learning rate
does not necessarily enhance efficiency.

Borse et al [9] aims to implement a handwritten
signature verification model using machine learning and
deep learning to distinguish between genuine and forged
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Figure 1. Overall System Architecture

signatures in order to ensure normalizing signature images
for accurate comparisons and improving the accuracy of
detecting correct signatures by utilizing deep learning
models and multiple machine learning models such as
Multilayer Perceptron (MLP), Support Vector Machine
(SVM), and Random Forest (RF) models. The MLP
model outperformed SVM and RF models, achieving an
accuracy of 95.4%. The MLP model’s effectiveness and
robustness suggest its potential in various applications,
particularly in government offices where handwritten sig-
natures play a crucial role in approval and authentication
processes.

Melhaoui and Benchaou [10] fixates on the chal-
lenges and methodologies associated with offline signa-
ture recognition systems due to its complexity compared
to the online mode. The study utilizes a proprietary signa-
ture database, containing 240 signatures from 12 individ-
uals. Feature extraction methods, including Histogram of
Oriented Gradients (HOG), Profile Projection (PP), and
Loci, are discussed. Classification methods, specifically
FMMC and K Nearest Neighbors (KNN), are employed
for evaluating the recognition system performance. The
proposed system, through combining HOG features and
FMMC classification, achieves a recognition rate of 96

Xamxidin et al [5], conducted the study on a different
approach and a much broader multilingual dataset to
test its effectiveness in signature diversity. The paper
introduces an Improved Inverse Discriminative Network
(IDN) to enhance the identification of genuine and false
signatures to address the challenges in said task, such
as sparse signature information, language diversity, and
the arbitrary nature of signature styles. The experiments
conducted on this research paper involves testing the
proposed method on various datasets, including Chinese,
Uyghur, Bengali, and Hindi signatures. The conclusion
that is reached based on the results of the experiments
emphasizes that the proposed IDN model effectively im-
proves the accuracy of signature verification for single and
mixed languages with an ACC of 92.40% using a Chinese
dataset, an ACC of 92.96% using a Uyghur dataset, and an
ACC of 96.33% using a dataset mixed with both Chinese
and Uyghur languages.

A paper by Muhtar et al [2] centers on the critical
task of handwritten signature verification, emphasizing
its significance in authenticating crucial financial, com-
mercial, and judicial documents globally. The experi-
mental methodology employs the ResNet18 network and
introduces the Convolutional Block Attention Module
(CBAM) to improve the model. The proposed method,

FC-ResNet, optimizes the ResNet18 structure for size
while introducing CBAM in the residual block to better
learn correlations between different feature channels and
spatial positions. The study reports an accuracy rate
of 96.21% on the CEDAR dataset and 96.41% on the
Uyghur language dataset, demonstrating the method’s
effectiveness for signature data with few samples and
its ability to accurately identify signature samples across
languages.

In addition, Lopes et al [11] conducts signature ver-
ification using a modified version of the AlexNet deep
learning model implemented through TensorFlow. This
model is designed to recognize and verify individual
signatures, marking potential forgeries for further manual
verification. In the binary classification model test, mul-
tilayer perceptron (MLP) serves as a binary classifier for
signature/non-signature test data, achieving an accuracy
of 98.4% and an F1 score of 98.3% on test data. However,
this model only confirms the presence or absence of a
signature without verifying its authenticity. The paper
concludes by underlining the importance of handwritten
signatures in attendance verification. It suggests that the
proposed methods, including the MLP classifier and CNN
model, offer a reliable solution for automating signature
verification.

Aljrami et al [12] address the critical task of sig-
nature verification and forgery detection, distinguishing
between static (offline) and dynamic (online) methods.
The significance of handwritten signatures as a widely
accepted personal attribute for identity verification in
various sectors is highlighted. The paper introduces the
use of Deep Convolutional Neural Networks (CNNs)
for both writer-independent feature learning and writer-
dependent classification. The proposed methodology con-
siders handwritten signatures as behavioral biometrics,
acknowledging the changes in an individual’s signature
over time. The authors demonstrate the effectiveness of
their approach by showcasing accuracy and loss plots for
different dataset split ratios. The model achieves its high-
est accuracy rate of 99.7% on the validation dataset with
an 8:2 dataset split, suggesting its efficacy in signature
verification.

In summary, the exploration of various methodolo-
gies in handwritten signature verification through deep
learning algorithms has revealed significant advancements
in the field. The discussed papers contribute diverse
approaches, each addressing specific challenges and in-
troducing innovative techniques. Engin et al. emphasize
the complexity of real-world scenarios, achieving a com-
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mendable accuracy of 76.8% by combining CycleGAN
and VGG-16. Poddar et al. present a novel method achiev-
ing 94% accuracy for signature recognition and 85-89%
for forgery detection. Lu et al.’s integration of dynamic
and static features yields promising results of 92.2%
and 94.4% for SVM and CNN, respectively. Notably,
Aljrami et al. showcase the highest accuracy of 99.7%,
emphasizing the significance of dynamic methods and
considering signatures as behavioral biometrics. While
each method demonstrates strengths, the choice of the
most effective approach may depend on specific use cases
and dataset characteristics. Overall, this review highlights
the evolving trends in deep learning-based signature
verification, with a continued emphasis on addressing
real-world challenges and improving accuracy in various
contexts.

3. Theories andMethods
A. VGG16

In the realm of computer vision, around mid-2010s,
some convolutional networks were able to achieve high
accuracy on ILSVRC classification and localisation tasks.
Not only that, they are also tested against other image
recognition datasets and were able to achieve excellent
performance [13]. These convolutional networks were
later known as VGGNet, a family of convolutional net-
works. VGGNet introduced a novel architecture character-
ized by its depth and capability to extract intricate features
from images.

One of the members of VGGNet, VGG16, stands out
as an excellent candidate for image recognition tasks. In
the training process, VGG16 receives fixed-size 224x224
RGB images. The architecture consists of a stack of
convolutional layers while primarily utilizing 3x3 filters
for capturing directional information. Aside from that,
1x1 convolutional filters are employed in one of the
configurations as linear transformations of input channels.
The fixed convolutional stride of 1 pixel and spatial
padding ensure that the spatial resolution is preserved af-
ter convolution. Through five max pooling layers, spatial
pooling is introduced, each operating over a 2x2 pixel
window with a stride of 2.

Following the convolutional layers, VGG16 employs
three Fully-Connected (FC) layers with the channels of
4096, 4096, and 1000 respectively. The final layer, which
exists after the FC layers, employs a soft-max activation
to convert the raw output into probability between the
values of 0 and 1. It is also important to note that all
hidden layers incorporate the rectification non-linearity
(ReLu) which enhances the network’s capability to learn
intricate features.

To summarize, the VGGNet algorithm is capable of
extracting features well [14], hence could be beneficial for
image embedding in handwritten signature verification. In
this case study, the signature images act as inputs to the
network, and the deep layers of VGG-16 capture intricate
patterns and features inherent in genuine signatures.

B. ResNet-50
Due to the difficulty of training deep neural networks.

A residual learning framework was made to ease the

training process and to overcome the degradation problem
in learning. The residual learning framework, known as
ResNet, presented a novel framework for residual learning
[15].

ResNet architectures are widely known for their use
of residual blocks, which include skip connections to
facilitate the flow of information through the network.
One of the popular variants of the ResNet architecture
is ResNet-50. This particular version of the architecture
consists of 50 layers. A residual block consists of three
layers, the first layer of the block reduces dimensionality
with a 1x1 kernel, the second employs a 3x3 kernel, while
the third layer restores the original dimensionality. This
design alleviates the vanishing gradient problem which
enables the training of exceptionally deep networks.

Following the residual blocks, Global Average Pool-
ing (GAP) is employed. This produces a compact 1x1
feature map. Afterwards, an FC layer with 1000 nodes
is employed. The final layer utilizes a softmax activation
function, converting the raw output scores into a proba-
bility distribution over the classes.

In summary, ResNet-50 serves as a testament to the
benefits of residual learning, facilitating the training of
exceptionally deep neural networks while maintaining
interpretability. In this case study, the signature images
act as inputs to the network and ResNet-50 obtains the
intricate patterns and features from the images.

C. Triplet Loss
To further improve the embedding models, an addi-

tional method, called triplet loss, was introduced. Origi-
nally, this method was made to improve face recognition
tasks by enforcing a margin between each pair of faces
from one person to all other faces. This allows the faces of
one identity to stay near each other, while still enforcing
the distance to other identities [16]. The steps to the
triplet loss method are triplet selection, obtaining the
embeddings through convolutional neural networks, and
utilizing the loss function.

In this case study, triplet loss is utilized in order to
enhance the discernment between genuine and forged sig-
natures. This metric optimizes the arrangement of embed-
dings in the feature space. In the context of handwritten
signature verification, triplet loss ensures that the distance
between embeddings of genuine signatures is minimized,
while the distance between genuine and forged signature
embeddings is maximized. This addition may potentially
improve the model’s ability to create compact clusters for
genuine signatures and increase separation from forged
signatures.

D. Signature Verification Methods
In this section, we introduce the machine learning

models proposed as classifiers for the task of handwritten
signature verification using advanced deep learning tech-
niques. The primary objective is to establish robust and
accurate verification methods capable of distinguishing
between genuine and forged signatures. Each classifier
utilized deep learning architectures such as VGG-16 and
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ResNet-50, and triplet loss for enhanced feature extrac-
tion. The following subsections delve deeper into each
proposed classifier, illustrating their beneficial attributes
and contributions to the overall signature verification
framework.

1) Support Vector Machine (SVM):
Support Vector Machine (SVM) is a machine learn-

ing algorithm that has shown a good learning ability
and generalization ability in classification, regression and
forecasting [17]. This algorithm operates by finding an
optimal hyperplane in a high-dimensional space that
effectively separates data points belonging to different
classes. In the field of handwritten signature verification,
SVM could play a pivotal role in distinguishing between
genuine and forged signatures. The algorithm could be
integrated with advanced techniques such as VGG-16
image embedding and triplet loss to enhance the accuracy
and reliability of the signature verification process.

SVM is particularly fitting for handwritten signature
verification due to a couple noticeable attributes. First of
all, the basic idea of SVM is to translate the input vector
into a high-dimensional space by nonlinear transforma-
tion, and then create the best classification surface in said
space [18], causing it to be effective in high-dimensional
spaces and suited for situations such as where signature
data is transformed into complex feature vectors using
methods like VGG-16 and ResNet-50. Moreover, SVM
is resilient to overfitting, which is essential for dealing
with limited training data in signature verification tasks.
Furthermore, its ability to handle non-linear decision
boundaries through kernel functions provides flexibility
in capturing intricate relationships within signature data.
In closing, Vapnik and Cortes first proposed the support
vector machine (SVM) for binary classification in 1995
[19]. Since signature verification is inherently a binary
classification problem which is distinguishing between
genuine and forged signatures, SVM’s natural binary
nature aligns well with the task at hand.

In conclusion, the integration of SVM with triplet
loss optimized VGG-16 and ResNet-50 image embedding
for handwritten signature verification capitalizes on the
strengths of each component, resulting in a robust and
accurate system for authenticating signatures across var-
ious applications and industries.

2) Artificial Neural Network (ANN):
Artificial Neural Network (ANN) is an algorithm

that resembles or mimics the biological human brain
functions to accomplish a given task [20]. Comprising
interconnected nodes or artificial neurons organized into
layers, ANNs are designed to learn and recognize com-
plex patterns within data. These networks consist of input,
hidden, and output layers, with weighted connections
between neurons. During training, the network adjusts
these weights to optimize its ability to capture intricate
relationships, enabling ANNs to excel in tasks like pattern
recognition, classification, and decision-making [21].

The operation of an ANN involves a feedforward and
backward propagation process. During feedforward, input
data is processed through the network, and the output

is computed based on weighted sums and activation
functions. The calculated output is then compared to
the desired output, and the network’s error is computed.
Backward propagation entails adjusting the weights in
the direction opposite to the error gradient, a process
repeated iteratively until the network converges to a state
of accurate predictions [22].

The characteristics and features of ANN are shown
to be a fitting algorithm for handwritten signature veri-
fication. Beginning with how handwritten signatures ex-
hibit intricate and unique patterns, and ANNs, with their
ability to capture complex non-linear relationships, are
well-suited for recognizing and learning these patterns
[23]. Furthermore, ANN has proven its adaptability to
high-dimensional feature spaces. In handwritten signature
verification, features extracted from signature images,
such as those obtained from deep learning architectures
like VGG-16, often result in high-dimensional spaces.
ANNs can effectively operate in these spaces, providing a
suitable framework for processing and learning from the
intricate details present in signature images [13]. Lastly,
the diversity in signature styles demands a model that can
dynamically adapt to different characteristics. ANNs, by
learning and adjusting weights during training, can adapt
to various signature styles, enhancing the model’s ability
to accurately verify signatures across a range of writing
styles [24].

Artificial Neural Networks, as a fitting algorithm for
handwritten signature verification, bring essential capa-
bilities such as handling complex patterns, adaptability
to high-dimensional feature spaces, learning from limited
data, and dynamic adaptation to diverse signature styles.
These inherent characteristics make ANNs a powerful
tool for accurately distinguishing between genuine and
forged signatures in various applications, providing a
robust and versatile solution for signature verification
tasks.

3) Random Forest:
Random Forest is an ensemble learning algorithm

that excels in both classification and regression tasks. In
fact, they are considered to be one of the most accurate
general-purpose learning techniques available [25]. The
algorithm constructs multiple decision trees during the
training phase, with each tree trained on a random sub-
set of the training data and features. This introduction
of diversity and randomness is crucial in preventing
overfitting, contributing to the model’s robustness and
adaptability. In classification tasks, the final prediction is
determined by aggregating the predictions of individual
trees through a voting mechanism, while in regression
tasks, the predictions are averaged.

The construction of a Random Forest involves the
creation of numerous decision trees, each independently
trained on a subset of the training data and features. The
process, known as bagging (Bootstrap Aggregating), en-
sures that each tree is unique, contributing its predictions
to the overall ensemble. . In order to grow these ensem-
bles, often random vectors are generated that govern the
growth of each tree in the ensemble [26]. The ensemble
approach enhances the model’s predictive accuracy and
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generalization to new data, making Random Forest a
powerful tool for various machine learning problems.

In the context of handwritten signature verification,
where signature images are often transformed into high-
dimensional feature spaces, Random Forest has the po-
tential and beneficial characteristics to be effective. Tech-
niques like VGG-16 and ResNet-50 image extraction
generate complex feature representations, and Random
Forest’s ability to handle such intricacies is essential in
distinguishing between genuine and forged signatures.

The ensemble learning nature of Random Forest is
particularly beneficial in signature verification. By com-
bining predictions from multiple decision trees, the model
captures the nuanced patterns and variations present in
different signatures, leading to enhanced accuracy in the
verification process. Random Forest is known for its ver-
satility and this approach has proved its high accuracy and
superiority with imbalanced datasets [27]. Since hand-
written signatures exhibit diverse styles, Random Forest’s
ability to handle this variability makes it adaptable to
the inherent complexities of signature verification. The
ensemble of trees allows the model to learn and general-
ize across different signature characteristics, providing a
versatile solution.

Random Forest emerges as a fitting algorithm for
handwritten signature verification due to its robustness,
accuracy, and adaptability to high-dimensional feature
spaces. The ensemble learning approach, combined with
the algorithm’s ability to handle diverse and complex
data, positions Random Forest as a reliable solution for
distinguishing between genuine and forged signatures in
various applications.

4) Extreme Gradient Boosting (XGBoost):
In closing, this study also includes XGBoost, short

for Extreme Gradient Boosting, is a powerful machine
learning algorithm that belongs to the family of gradi-
ent boosting methods. Developed to address limitations
of traditional gradient boosting techniques, XGBoost is
renowned for its efficiency, speed, and high predictive
accuracy. It leverages an ensemble of weak learners,
typically decision trees, to iteratively optimize a cost func-
tion, enhancing its ability to model complex relationships
within data [28].

XGBoost combines the strengths of boosting algo-
rithms and regularization techniques to improve model
performance. During training, weak learners are added
sequentially, each correcting the errors of its predecessors.
The use of decision trees as base learners, coupled with
regularization terms in the objective function, prevents
overfitting and enhances the model’s generalization ability
[29]. Additionally, XGBoost incorporates features like
parallel processing, handling missing values, and incor-
porating user-defined loss functions, making it a versatile
and customizable algorithm [30].

XGBoost possesses certain characteristics and fea-
tures that make it susceptible to handwritten signature
verification. Beginning with how XGBoost handles high-
dimensional feature space. In handwritten signature ver-

ification, feature extraction methods often result in high-
dimensional spaces. XGBoost is well-suited to operate
in these spaces, efficiently handling the intricate and
complex features extracted from signature images [31].
In addition, XGBoost’s optimized gradient boosting al-
gorithm enhances accuracy by iteratively improving the
model’s predictive performance. This iterative nature is
particularly beneficial when learning and capturing the
subtle nuances present in handwritten signatures [28].
Since handwritten signature data may contain noise and
variations. XGBoost’s resilience to noisy data ensures that
the model can discern genuine signatures from forged
ones, even in the presence of irregularities [32]. Finally,
XGBoost’s adaptability to diverse data types allows it to
effectively handle the varying signature styles encoun-
tered in handwritten signature verification tasks, making
it a fitting choice for applications where different writing
styles must be accommodated [33].

XGBoost emerges as a fitting algorithm for handwrit-
ten signature verification due to its ability to handle high-
dimensional feature spaces, optimized gradient boosting
for improved accuracy, robustness to noisy data, and
adaptability to diverse signature styles. The algorithm’s
efficiency, speed, and customizability contribute to its
suitability for real-world applications, making it a valu-
able tool for accurately distinguishing between genuine
and forged signatures.

4. PROPOSED METHODS
A. Dataset

The dataset used in this case study consists of two sig-
nature datasets taken from kaggle. They are the ICDAR-
2011 signature dataset and BHSig260-Bengali signature
dataset. The dataset contains 64 and 100 individuals
respectively. Each of these individual’s signatures produce
multiple images which are divided into two groupings
which are genuine signatures and forged signatures. An
individual in the ICDAR-2011 dataset contains an average
of 14 genuine signatures and 12 forged signatures while
an individual in the BHSig260-Bengali dataset contains
an average of 24 genuine signatures and 30 forged sig-
natures. The ICDAR-2011 dataset was chosen because it
was used in a competition while the BHSig260-Bengali
dataset was chosen to compare the proposed method’s
capability against a larger dataset. The samples of these
datasets can be seen in Figure 2.

B. Preprocessing
In this experiment, the images are resized to a uniform

size so that they can fit inside the embedding models.
The size of the images, which were in the range of 200
by 200 to 400 by 400, are shrunken down to 64 by 64.
In addition, The dataset is split to a ratio of 60/20/20
with stratification for training, validation, and testing data
respectively. This split is chosen to balance between
having enough data for training the models effectively
while also ensuring robust evaluation and validation of the
models’ performance. The largest portion of the dataset
is allocated for training the models. A majority of the
data is needed for training to ensure that the models can
learn meaningful patterns and representations from the
data. With more data for training, the models have a

https:// journal.uob.edu.bh

https://journal.uob.edu.bh


Int. J. Com. Dig. Sys. 16, No.1, 265-277 (Jul-24) 271

Figure 2. ICDAR-2011 and BHSig260-Bengali Dataset Visualization

TABLE I. Evolution of test-bed clusters

Dataset Train Validation Test

ICDAR 857 images 391 images 41 images
BENGALI 3200 images 1100 images 1100 images

better chance of generalizing well to unseen examples
and avoiding overfitting. A 60% allocation provides a
substantial amount of data for training while leaving
enough for validation and testing. A smaller portion of
the dataset is set aside for validation. This portion is
used during the training process to monitor the model’s
performance and adjust hyperparameters accordingly. The
validation set helps in tuning the model’s parameters to
improve its performance without introducing bias from
the testing data. A 20% allocation is sufficient for vali-
dation purposes while still allowing for effective model
tuning. The remaining portion of the dataset is reserved
for testing the trained models. This independent dataset is
crucial for evaluating the final performance of the models
and assessing their generalization capabilities on unseen
data. By keeping a separate testing set, it ensures that
the evaluation metrics are reliable and not influenced by
the training or validation process. Allocating 20% of the
data for testing provides a substantial sample size for
robust evaluation. Overall, the 60/20/20 split strikes a
balance between effective training, validation, and testing
of the models, ensuring that they can learn meaningful
patterns from the data, generalize well to new examples,
and provide reliable performance metrics. Additionally,
the use of stratification ensures that each class or category
within the dataset is represented proportionally across the
training, validation, and testing sets, reducing the risk
of bias in the evaluation process. The following split is
executed to each type of sample for a single instance.
Lastly, the final data count of this research can be seen
in Table I.

C. Feature Extraction for Image Embedding
This study utilizes the strength of Convolutional Neu-

ral Network, specifically the VGG-16 and ResNet-50
models, to extract features from signature images for veri-
fication purposes. These models take the signature images
dataset as inputs and the pre-trained VGG-16 and ResNet-
50 models will then obtain the necessary information
such as simple edges and textures or even patterns and
structures. This information can be obtained by finding
the Red, Green, and Blue (RGB) values associated with
the signature images.

The VGG-16 and ResNet-50 models in this experi-
ment are obtained from the Keras library. These models
were pre-trained using the ImageNet dataset and further
trained by the signature training dataset. In addition, the
layers after the last convolutional layer are removed and
replaced with a Global Average Pooling (GAP) layer.
This will result in 512 and 2048 embeddings, respectively.
Afterwards, these embeddings will be used for the triplet
loss optimization method to further enhance the em-
bedding models. Lastly, after obtaining the embeddings
from the respective signature images, a feature gallery
is formed by averaging all the embeddings. Their final
modified form can be seen in Figure 3 and 4.

D. Triplet Loss Optimization
To further improve the embedding model’s capabil-

ities, the proposed method takes advantage of an opti-
mization method called Triplet Loss. This optimization
process requires triplets as inputs which contain three
different inputs, which are the anchor image, the positive
image (genuine signature), and negative image (forged
signature). The anchor image is obtained from the first
instance of the genuine signature images of an identity
while the postive images will take the remaining genuine
signatures.

However, due to the nature of triplets, the inequality of
the genuine signatures and forged signatures data must be
equalized. This is done by first counting which class has
the most instances and randomly repeating the signature
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Figure 3. Feature Extractor from the VGG-16 architecture [34]

Figure 4. Feature Extractor from the ResNet-50 architecture [35]

Figure 5. Triplet Loss Optimization process [36]

images of the other class until the numbers are the same
while the anchor images are simply the same for each
triplet. The triplet loss optimization architecture can be
seen in Figure 5.

E. Classifiers for Signature Verification
In order to fully utilize the image embeddings, this

research uses several machine learning classifiers. These
classifiers are SVM, ANN, Random Forest, and XGBoost.
Externally, the classifiers are not much different as all
of them take the vector difference between the feature
gallery and a signature’s image embeddings as inputs.
However, their internal structures are different from one
another and may offer different perspectives on how the
data can be used. Thus, offering various results on various
occasions such as data size.

The models are trained using the training data ob-
tained from preprocessing. Additionally, to make sure
that the models are optimal, the proposed method takes
advantage of hyperparameter tuning method, specifically
the grid search method. This process uses the validation
data instead of the training data to save computational
power and time.

F. Evaluation
For the evaluation of this case, the AUC evaluation

metric is used [37], which is a commonly employed
performance measure in binary classification tasks. This
method measures the machine learning model’s discrim-
inative ability across different decision thresholds by
plotting the Receiver Operating Characteristic curve and
calculating the area beneath it, which is referred to as
Area Under Curve (AUC). In addition, the True Positive
Rate (TPR) values at certain False Positive Rate (FPR)
values such as 0.1, 0.01, and 0.001 are also evaluated.

5. EXPERIMENTAL SETUP
A. Hardware Specification

This research is conducted on a laptop equipped
with an Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz
processor, featuring four cores and eight threads. The
CPU operates at a base clock rate of 1.60GHz, with a
maximum turbo boost frequency of [insert boost clock
speed if available]. The system is configured with 8 GB
of system memory (RAM). Additionally, the laptop is
equipped with a 476 GB INTEL SS solid-state drive
(SSD) for storage.
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B. Software Tools
The software used to conduct the research is Visual

Studio Code (Version 1.86.2) as the Primary Integrated
Environment (IDE) for coding and project management.
Python (Version 3.11.1) was the programming language
used for implementing the entire system. Additionally,
the libraries numpy, tensorflow, os, cv2, sklearn, and mat-
plotlib for the various tasks. Furthermore, Visual Studio
Code was used on a Windows 10 operating system for
compatibility and ease of development.

6. RESULTS AND DISCUSSION
A. Testing Results without Triplet Loss Optimization

Figure 6. ROC Curve for ICDAR dataset with VGG16 and without
Triplet Loss Optimization

Figure 7. ROC Curve for ICDAR dataset with ResNet-50 and
without Triplet Loss Optimization

From Figure 5 to Figure 8, the results of the different
type of combinations of datasets, deep learning embed-
ding models without triplet loss optimization, and ma-
chine learning classifiers are shown through ROC curves.
Additionally, the numerical summary of the combinations
are also shown in Table II.

Figure 8. ROC Curve for BENGALI dataset with VGG16 and
without Triplet Loss Optimization

Figure 9. ROC Curve for BENGALI dataset with ResNet-50 and
without Triplet Loss Optimization

It can also be seen from Figure 5 that two curves,
belonging to Random Forest and XGBoost respectively,
stood out as the top two curves the graph due to them
being entirely above the other two curves. However, in
Figure 6 to Figure 8, all curves nearly overlaps with one
another making harder for visual analysis. Thus, for more
information, the numerical analysis in Table II is needed.

For the combination of ICDAR dataset and VGG16
embedding model, the best machine learning classifier is
Random Forest with an AUC of 0.970 and an average
TPR of 0.698. On the other hand, the best machine
learning classifier for the ResNet-50 embedding model
is Support Vector Machine with an AUC of 0.952 and an
average TPR of 0.564.

Unlike the ICDAR dataset, the combination of the
BENGALI dataset and the VGG16 embedding model’s
best machine learning classifier is XGBoost with an AUC
of 0.972 and an average TPR of 0.677. While the best
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TABLE II. RESULTS TABLE WITH TRIPLET LOSS OPTI-
MIZATION

Without Triplet Loss Optimization
ICDAR Dataset

Model AUC TPR at
FPR 0.1

TPR at
FPR
0.01

TPR at
FPR
0.001

VGG16
+ SVM

0.887 0.623 0.142 0.024

VGG16
+ ANN

0.928 0.764 0.34 0.113

VGG16
+ RF

0.97 0.896 0.651 0.547

VGG16
+ XGB

0.967 0.896 0.703 0.542

ResNet-
50 +
SVM

0.952 0.849 0.608 0.236

ResNet-
50 +
ANN

0.935 0.821 0.222 0.094

ResNet-
50 +
RF

0.943 0.835 0.486 0.08

ResNet-
50 +
XGB

0.952 0.844 0.387 0.066

BENGALI Dataset
VGG16
+ SVM

0.959 0.854 0.544 0.216

VGG16
+ ANN

0.945 0.886 0.254 0.023

VGG16
+ RF

0.97 0.916 0.65 0.558

VGG16
+ XGB

0.972 0.94 0.716 0.374

ResNet-
50 +
SVM

0.952 0.89 0.45 0.136

ResNet-
50 +
ANN

0.958 0.906 0.684 0.548

ResNet-
50 +
RF

0.977 0.936 0.684 0.198

ResNet-
50 +
XGB

0.976 0.938 0.756 0.286

machine learning classifier for the ResNet-50 embedding
model is Random Forest with an AUC of 0.977 and an
average TPR of 0.606.

B. Testing Results with Triplet Loss Optimization
Just like in sub section A, Figure 9 to Figure 12

represents the results of the combinations of datasets,
deep learning embedding models, and machine learning
classifiers. However, these embedding models in the four
figures are optimized through triplet loss optimization.
Additionally, Table III represents the numerical summary
of the combinations.

Figure 10. ROC Curve for ICDAR dataset with VGG16 and with
Triplet Loss Optimization

Figure 11. ROC Curve for ICDAR dataset with ResNet-50 and
with Triplet Loss Optimization

Figure 12. ROC Curve for BENGALI dataset with VGG16 and
with Triplet Loss Optimization
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Figure 13. ROC Curve for BENGALI dataset with ResNet-50 and
with Triplet Loss Optimization

In Figure 10, there are three curves, which represent
the ANN, Random Forest, and XGBoost classifiers, which
stood out among the four curves. However, Figure 9,
Figure 11, and Figure 12 showed that the curves nearly
overlap with each other. Thus, further numerical analysis
using Table III is necessary.

For the ICDAR dataset and VGG16, SVM is the best
classifier, achieving an AUC of 0.991 and an average TPR
of 0.778. Other than that, the XGBoost classifier achieved
an AUC of 0.981 and an average TPR of 0.857 for the
ResNet-50 embedding model.

In contrast to the ICDAR dataset, the BENGALI and
VGG16 combination’s best machine learning classifier is
ANN, achieving an AUC of 0.971 and an average TPR
of 0.527. Lastly, the best machine learning classifier for
the combination of BENGALI and ResNet-50 is Random
Forest with an AUC of 0.972 and an average TPR of
0.648.

C. Summary of Testing Results
For the ICDAR dataset, the best method without triplet

loss optimization is through the combination of VGG16
and Random Forest with an AUC of 0.970 and an average
TPR at 0.698. On the other hand, the best method with
triplet loss optimization is through the combination of
VGG16 and SVM with an AUC of 0.991 and an average
TPR of 0.778.

Meanwhile for the BENGALI dataset, the best method
without triplet loss optimization is through the combina-
tion of ResNet-50 and Random Forest with an AUC of
0.977 and an average TPR of 0.606. In addition, the same
combination still retained its spot for the best method with
triplet loss optimization, having an AUC of 0.972 and an
average TPR of 0.648.

It can be summarized that the triplet loss method can
improve the AUC of the proposed methods. Instances
such as the best BENGALI method losing around 0.005
points in AUC after triplet loss optimization does not

TABLE III. RESULTS TABLE WITHOUT TRIPLET LOSS
OPTIMIZATION

With Triplet Loss Optimization
ICDAR Dataset

Model AUC TPR at
FPR 0.1

TPR at
FPR
0.01

TPR at
FPR
0.001

VGG16
+ SVM

0.991 0.981 0.703 0.651

VGG16
+ ANN

0.987 0.986 0.613 0.057

VGG16
+ RF

0.989 0.981 0.811 0.618

VGG16
+ XGB

0.984 0.967 0.712 0.354

ResNet-
50 +
SVM

0.941 0.835 0.458 0.448

ResNet-
50 +
ANN

0.981 0.939 0.684 0.538

ResNet-
50 +
RF

0.974 0.925 0.712 0.656

ResNet-
50 +
XGB

0.981 0.943 0.83 0.797

BENGALI Dataset
VGG16
+ SVM

0.968 0.928 0.518 0.156

VGG16
+ ANN

0.971 0.916 0.656 0.008

VGG16
+ RF

0.97 0.918 0.584 0.398

VGG16
+ XGB

0.971 0.928 0.48 0.07

ResNet-
50 +
SVM

0.96 0.874 0.562 0.36

ResNet-
50 +
ANN

0.961 0.876 0.576 0.188

ResNet-
50 +
RF

0.972 0.91 0.682 0.614

ResNet-
50 +
XGB

0.957 0.872 0.698 0.534

necessarily mean that the overall model got worse. While
the AUC indeed decreased, the average TPR received an
increase of 0.042 which means that the overall model
improved its sensitivity or consistency under different
conditions. Furthermore, from the two datasets, the model
with triplet loss optimization performs better or showed
more improvements on the ICDAR dataset, which con-
tains a lesser amount of data. Hence, it can also be
summarized that the triplet loss optimization method can
help when data are scarce.

Although the performance metric and the dataset
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used in this study are different than the other state of
the arts methods, comparisons can roughly be made.
The proposed method’s best performance achieved the
AUC of 0.991 and 0.977 for the ICDAR and BENGALI
dataset respectively. On the other hand, the state of the
arts methods produced various results as such, we will
compare this paper’s results with the papers that inspired
this research. They achieved the accuracy of 95% and
96.33% respectively [4, 5]. Thus, it can be concluded that
the proposed method can contend with other state of the
arts methods.

7. Conclusion and FutureWork
A. Conclusion

In this research, the integration of advanced tech-
nologies, particularly deep learning and machine learning
techniques, was explored to overcome the limitations
of traditional signature verification methods. The study
focused on leveraging the combination between two
powerful deep learning models (VGG-16 and ResNet-
50) and machine learning signature verification models
(SVM, ANN, Random Forest, and XGBoost), alongside
the triplet loss optimization method, to enhance the accu-
racy of signature verification. The experiments conducted
involved the application of these models on two distinct
signature datasets, ICDAR-2011 and BHSig260-Bengali.
The evaluation metrics, including AUC and TPR at spe-
cific FPR values, provided a comprehensive assessment
of the proposed methods’ performance. The findings indi-
cated that the triplet loss optimization method contributed
to better overall model performance, emphasizing its role
in enhancing the discernment between genuine and forged
signatures.

The results highlighted the effectiveness of combining
VGG-16 and Random Forest for the ICDAR dataset and
ResNet-50 with Random Forest for the Bengali dataset
without the triplet loss optimization method. On the other
hand, the combination of VGG-16 and SVM is better for
the ICDAR dataset while ResNet-50 and Random Forest
remain as the best combination for the BENGALI dataset
with the triplet loss optimization method. Notably, the
triplet loss method demonstrated improvements in the
models’ sensitivity, especially in scenarios with limited
data, as observed in the ICDAR dataset. In conclusion,
the combination of deep learning embedding models
(VGG-16 and ResNet-50), triplet loss optimization, and
machine learning classifiers (SVM, Random Forest, ANN,
XGBoost) presents a versatile and robust solution for
handwritten signature verification. The proposed methods
exhibit promising results, opening avenues for improved
security protocols in various sectors such as banking,
legal institutions, and government agencies. As technol-
ogy continues to advance, the integration of sophisti-
cated signature verification systems becomes crucial for
maintaining the integrity of electronic transactions and
safeguarding sensitive information.

B. Future Work
In this work, the images were resized down to 64

by 64 due to the limitations of the devices used in this
research. Future works may consider the possibility of
larger image resizes for the possibility of better results.

In addition, the proposed method already achieved high
results even without triplet loss optimization to improve
the embedding model, future work may consider the pos-
sibility of a noisier dataset and more extreme data sizes,
be it lower or higher than the ones used in this experiment.
In addition, this study’s evaluation only considers the
results of the proposed method, not including efficiency.
Therefore, any future work continuing this research may
consider improving the efficiency aspect in general.
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