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Abstract: Water quality (WQ) prediction is of utmost importance due to the scarcity of uncontaminated water resources. In this study, six 

machine learning (ML) algorithms, including Bagging classifier, Logistic regression (LR), J48, Random Forest (RF), IBk, and 

AdaBoostM1, were employed to assess water potability. Evaluation metrics such as accuracy, recall, precision, F-measure, false positive 

(FP) rate, receiver operating characteristic (ROC) area, and precision-recall curve (PRC) area were used to compare the capability of the 

models. The outcomes of the comparative analysis revealed that RF and J48 achieved the highest accuracy values of 0.993, followed closely 

by the Bagging classifier with an accuracy of 0.992. The AdaBoostM1 algorithm achieved an accuracy of 0.971, while the LR algorithm 

achieved an accuracy of 0.958. The IBK algorithm showed a lower accuracy of 0.714. The comparative analysis of the FP rate metric 

demonstrated that RF achieved the lowest rate of 0.006, followed closely by the Bagging classifier and J48, both with a rate of 0.007. 

AdaBoostM1, LR, and IBK had higher rates of 0.026, 0.041, and 0.289, respectively. Regarding precision, RF and J48 achieved the highest 

precision rates of 0.993, followed by the Bagging classifier at 0.992. The AdaBoostM1 algorithm achieved a precision rate of 0.972, and 

LR achieved 0.958. IBK showed less precision rate of 0.714. For the recall metric, RF and J48 achieved the highest recall values of 0.993, 

followed closely by the Bagging classifier with a recall value of 0.992. The AdaBoostM1 algorithm obtained a recall value of 0.971, while 

LR and IBK achieved values of 0.958 and 0.714, respectively. The study highlights the effectiveness of RF, J48, and the Bagging classifier 

in predicting water potability. These findings contribute valuable insights for the implementation of accurate prediction models, supporting 

the sustainable management of water resources. 
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1. INTRODUCTION  

Clean uncontaminated water is a precious supply critical 
for the well-being of both humanity and the preservation of 
ecosystems. With the ever-increasing demand and scarcity 
of freshwater worldwide, ensuring access to safe and potable 
water has become a critical challenge. Civil and 
Environmental engineering are pivotal in tackling this 
challenge by innovating water management and treatment 
techniques. Their crucial role involves developing and 
implementing novel approaches that ensure efficient and 
sustainable solutions for addressing WQ issues and 
safeguarding precious water resources [1].  

In recent years, the field of WQ classification has 
witnessed advancements through the application of various 
techniques. These include chemical analysis, remote 
sensing, and statistical models. However, the integration of 
ML techniques has shown itself to be a commanding tool in 
the field of  assessment and prediction [2]. 

ML has proven to be valuable in various aspects of WQ 
control (WQC), including predicting the potability of water 
and optimizing wastewater treatment processes. By 
leveraging large datasets and complex algorithms, ML 
models can analyze and interpret WQ parameters to provide 
accurate predictions and valuable insights. These 
advancements have revolutionized the field, enabling more 
efficient and effective management of water resources [3]. 

One of the key techniques used in ML for WQ prediction 
is the application of NNs. NNs are ML models designed to 
replicate the structure and operation of the human brain. 
Comprising interconnected nodes or "neurons," these 
models effectively process and transmit information. In the 
context of WQ, neural networks excel at recognizing 
Patterns and interdependencies within complex datasets, 
allowing for accurate forecasting of WQ parameters [4]. 

Quality assessment is the supervised machine learning 
(SML) classifier. SML classifiers utilize labeled training 
data to observe regularities and generate forecasts based on 
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new, unseen data. By training the classifier on historical WQ 
data, it can learn to classify water samples as potable or non-
potable based on specific criteria. This enables rapid and 
automated assessment of WQ, reducing the need for time-
consuming and costly laboratory analyses [5]. 

In addition to predicting water potability, ML techniques 
are also instrumental in developing comprehensive WQ 
indices. These indices provide a holistic assessment of WQ 
by combining multiple parameters, such as chemical, 
physical, and biological indicators. ML models can analyze 
large datasets and determine the effectiveness of each 
parameter, enabling the creation of accurate and reliable WQ 
indices. These indices serve as valuable tools for 
policymakers, researchers, and water management 
professionals in making informed decisions and prioritizing 
interventions [6]. 

In summary, the integration of ML techniques in the 
sector assessing and predicting the quality of water emerged 
as a game-changer. Civil and environmental engineers, 
along with ML practitioners, are at the forefront of 
developing innovative approaches to guarantee the 
availability of clean and safe water. NN and SML classifiers 
play vital roles in predicting water potability and automating 
WQ assessment. Furthermore, ML models play a part in the 
development of comprehensive WQ indices, enabling 
effective management and monitoring of water resources. As 
water scarcity continues to be a global concern, the 
advancements in ML offer promising solutions for 
maintaining the availability and quality of this precious 
resource. 

In this research, a comprehensive comparison of multiple 
classification algorithms was conducted to evaluate their 
performance in the sector of forecasting WQ. The algorithms 
assessed in this study encompassed the Bagging classifier, 
LR, J48, RF, IBk, and AdaBoostM1. Various performance 
metrics, including recall, precision, ROC area, F-measure, 
PRC area, TP rate, FP rate, were utilized to assess the 
effectiveness of these algorithms in WQ classification tasks. 
The outcomes of this comparative analysis provide valuable 
information into the suitability and performance of these 
algorithms for accurate and reliable WQ prediction and 
assessment. 

 

2. LITERATURE REVIEW 

In recent years, the involvement of ML algorithms in WQ 
assessment has garnered considerable focus. Numerous 
studies have explored the use of ML algorithms and models 
to analyze WQ parameters, enabling accurate predictions 
and efficient monitoring. This literature review aims to 
summarize and evaluate the findings of these studies, 
highlighting the advancements and potential of ML in WQ 
assessment. 

This research conducted by Ahmed, et al. [2]  explores 
the usage of different SML algorithms to estimate the Water 

Quality Index (WQI) and WQC using input features: pH, 
turbidity, temperature, and total dissolved solids. Gradient 
boosting achieves the highest efficient WQI prediction with 
an MAE of 1.9642, while MLP exhibits the highest WQC 
classification accuracy of 0.8507. These findings show the 
potential of real-time water quality detection systems with 
minimal parameters. validate 

Another study conducted by Lu and Ma [7] proposes two 
novel hybrid decision tree-based ML models, integrating 
The combination of complete ensemble empirical mode 
decomposition with adaptive noise (CEEMDAN) alongside 
extreme gradient boosting (XGBoost) and RF has been 
utilized for improved short-term WQ prediction. Using data 
from polluted sites, six WQ indicators were predicted. 
Results demonstrate superior performance of CEEMDAN-
RF and CEEMDAN-XGBoost models in various indicators, 
with MAPEs ranging from 0.27% to 14.94%. These models 
exhibit the best overall prediction performance, with average 
MAPEs of 3.90% and 3.71%, respectively. Furthermore, the 
stability analysis confirms their higher prediction stability 
compared to benchmark models. 

Accurate forecasting of WQ time series is of utmost 
importance for efficient water resource handling. Traditional 
linear models face challenges due to the complex nature and 
noise present in WQ data. To address this issue, Bi et al. [5] 
proposed a hybrid model that combines a Savitzky-Golay 
filter with a long short-term memory (LSTM)-based 
encoder-decoder architecture in a neural network (NN). The 
Savitzky-Golay filter eliminates noise, while the LSTM 
captures nonlinear characteristics in the water environment. 
Experimental results using realistic data demonstrate that the 
integrated model outperforms several state-of-the-art 
models, providing superior prediction performance. 
Additionally, another algorithm based on LSTM NN is 
established and trained by Wang, et al. [8] using monthly 
WQ indicator data from Taihu Lake (2000-2006). 
Simulations and parameter selection enhance predictive 
accuracy. The method is compared with backpropagation 
neural network and online sequential extreme learning 
machine, demonstrating superior accuracy and 
generalization. It offers a more precise and comprehensive 
approach to WQ prediction. 

Moving forward, in another study performed by Azrour, 
et al. [3] the advantages of ML algorithms are utilized to 
develop an algorithm with the ability of forecasting the WQI 
and WQC. The proposed method is built upon the 
parameters: turbidity coliforms, pH, and temperature. The 
implementation of multiple regression algorithms is 
essential and proves to be effective in forecasting the WQI. 
Additionally, the adoption of artificial neural networks 
offers a highly efficient approach for accurately classifying 
WQ. The results highlight the efficacy of this approach in 
accurately predicting the WQI and class, showcasing the 
potential of ML in WQ assessment. 
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In order to forecast harmful algal bloom (HAB) 
incidents, the study conducted by Deng, et al. [9]   utilizes 
ML methods, including SVM and artificial neural networks 
(ANN) enhanced by hybrid learning algorithms. With over 
30 years of measured data, the accuracy and applicability of 
both ML methods in predicting algal growth and 
eutrophication trends in Tolo Harbor are demonstrated. 
ANN shows quick response and satisfactory results, while 
SVM accurately identifies optimal models despite longer 
training time. Moreover, the ML methods effectively capture 
the intricate interconnections between coastal environmental 
variables and algal dynamics, accurately identifying 
significant factors. The findings underscore the potential of 
ML models to enhance the coastal hydro-environment 
management water forecasting by providing valuable 
insights into HAB outbreak mechanisms and evolution. 

The WQ forecasting performance of ten ML models was 
compared in a study conducted by Chen et al. [10] using a 
large dataset that contains a total of 33,612 data point 
collected from prominent rivers and lakes across China over 
the period of 2012 to 2018. Evaluation metrics, including 
precision, recall, F1-score, and weighted F1-score, were 
employed to assess the models. The outcomes suggested that 
the capability of learning models improved as the dataset 
size increased. Specifically, the DT, RF, and deep cascade 
forest (DCF) models trained on pH, the dissolved oxygen 
(DO), CODMn, and NH3-N datasets outperformed other 
models, accurately predicting all six WQ levels specified in 
the Chinese governmental guidelines. Additionally, two 
specific water parameter sets (DO, CODMn, NH3-N; 
CODMn, NH3-N) were identified as highly effective for 
WQ prediction. Thus, the study recommended the utilization 
of DT, RF, and DCF models incorporating these parameters 
for future WQ monitoring and timely warnings. 

To enhance WQ forecasting accuracy, this study 
performed by Yu, et al. [11] introduces a novel hybrid model 
that combines data decomposition, fuzzy C-means 
clustering, and bidirectional gated recurrent unit (BiGRU). 
The unprocessed WQ dataset undergoes empirical wavelet 
transform for decomposition into subseries, which are then 
recombined using fuzzy C-means clustering. Each clustered 
series is subjected to a bidirectional gated recurrent unit to 
develop a prediction model. The forecast result is obtained 
by summing the predictions for the subseries. The 
effectiveness of the proposed model is tested using Poyang 
Lake's WQ data from China, demonstrating highly accurate 
forecasts for all six WQ parameters. MAPE for seven-day 
ahead predictions are 4.59%. Moreover, the proposed model 
outperforms other models, reducing MAPE by an average of 
32.86% compared to the single BiGRU model. These results 
highlight the impact fullness of the proposed hybrid model 
for WQ forecasting. 

Haq and Harigovindan [12] conducted a study to enhance 
WQ prediction in aquaculture through the introduction of 
hybrid deep learning (DL) models. These models combined 
convolutional neural network (CNN) with LSTM and gated 

recurrent unit (GRU) architectures. The CNN component 
effectively captured the important characteristics of 
aquaculture WQ, while LSTM and GRU models learned 
long-term dependencies in the time series data. Extensive 
experiments were carried out using different WQ datasets, 
analyzing the influence of hyperparameters on model 
performance. The proposed hybrid DL models, CNN-LSTM 
and CNN-GRU, were compared with baseline LSTM, GRU, 
and CNN models, as well as attention-based LSTM and 
GRU models. The results revealed that the CNN-LSTM 
model demonstrated superior performance in terms of 
predictive accuracy and computational efficiency, 
surpassing all other models. 

Researchers Nair and Vijaya [13] conducted a study 
aiming to create a prediction model with high efficiency for 
assessing the quality of river water and categorizing index 
values based on predetermined WQ standards. The focus 
was on constructing a robust model capable of accurately 
predicting WQ and classifying it according to established 
standards. The study utilized a dataset collected from eleven 
sampling sites situated along the course of the Bhavani 
River, which spans across Kerala and Tamil Nadu. The 
dataset incorporated 27 parameters, including DO, 
temperature, pH, alkalinity, hardness, chloride, and coliform 
count, among others, to determine the WQI. To facilitate the 
development of ML models, the dataset underwent data 
normalization and feature selection techniques. 

Several algorithms, such as linear regression, MLP 
regressor, RF, and support vector regressor were employed 
to construct a WQ prediction model. Additionally, classifiers 
including SVM, naive Bayes, DT, and MLP were utilized to 
establish a classification model for the WQI. Experimental 
results highlighted the MLP regressor's effectiveness in 
accurately predicting the WQI, yielding RMSE of 2.432. 
Moreover, the MLP classifier achieved an impressive 81% 
accuracy in classifying the WQI. These findings demonstrate 
the promising outcomes of the developed models for WQ 
prediction and classification. 

In another study proposed by Juna et al. [4], a novel 
approach was introduced to handle the issue of absent values 
in WQ prediction. The approach combined a nine-layer MLP 
with a K-nearest neighbor (KNN) imputer. The study 
compared this method with seven other ML models under 
two conditions: Omitting incomplete data and utilizing a 
KNN imputer. The outcomes revealed that the nine-layer 
MLP model, in conjunction with the KNN imputer, achieved 
exceptional accuracy of 0.99 for forecasting WQ. This high 
accuracy was further validated through K-fold cross-
validation, affirming the robustness and reliability of the 
proposed approach. 

In summary, the mentioned studies focused on 
constructing efficient prediction and classification models 
for river WQ. The first study showcased the effectiveness of 
MLP regressor and classifier models, while the second study 
introduced a novel approach combining a nine-layer MLP 
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with a KNN imputer to address null values. Both studies 
demonstrated promising results in accurately predicting and 
forecasting WQ, contributing to the field of WQ 
management. 

To enhance WQ forecasting with non-point source (NPS) 
pollution, a novel SOD-VGG-LSTM DL model was 
developed by Wan, et al. [14]. Combining the SOD module 
based on physical processes, VGG module capturing spatial 
characteristics, and LSTM module utilizing DL, it 
overcomes the limitations of existing models. Applied to the 
Lijiang River watershed, it outperformed mechanism models 
and LSTM in extreme value prediction. The evaluation of 
the prediction model revealed maximum relative errors of 
8.47%, 19.76%, 24.1%, and 35.4% for the parameters DO, 
CODMn, NH3-N, and TP, respectively. In comparison to 
alternative methods such as ARIMA, SVR, and RNN, the 
SOD-VGG-LSTM model displayed superior performance, 
achieving an R2 that was 3.2-39.3% higher. As a result, the 
SOD-VGG-LSTM model presents a promising approach for 
accurately predicting WQ affected by nonpoint source 
(NPS) pollution. 

 In their research, Shah et al. [1] proposed a novel 
framework that leverages particle swarm optimization (PSO) 
to optimize the hyperparameters of feed forward neural 
network (FFNN) and gene expression programming (GEP) 
models. The primary objective of this framework was to 
improve the capability of FFNN and GEP models by 
optimizing their hyperparameters. The optimized models, 
namely PSO-FFNN and PSO-GEP, were then employed to 
predict the levels of dissolved oxygen (DO) and total 
dissolved solids (TDS) in the upper Indus River, utilizing a 
consistent 30-year dataset. 

To recognize the influential input parameters for accurate 
DO and TDS prediction, principal component analysis 
(PCA) was employed. The capability of the models was 
evaluated using five statistical evaluation techniques. The 
results demonstrated the effectiveness of the PSO algorithm 
in optimizing the models. Notably, the hybrid PSO-GEP 
model exhibited superior accuracy, achieving an R value 
above 0.85, a performance index close to 1, and an RMSE 
below 3 mg/l. External validation confirmed the 
generalizability of the models, and cross-validation yielded 
the best statistical metrics, with an R value of 0.87 and an 
RMSE of 2.67 for PSO-FFNN, and an R value of 0.895 and 
an RMSE of 2.21 for PSO-GEP. 

This study highlights the potential of leveraging artificial 
intelligence (AI) algorithms with optimization routines for 
accurate forecasting of WQ. The proposed framework, 
incorporating PSO optimization with FFNN and GEP 
models, showcases promising results in predicting DO and 
TDS concentrations in the upper Indus River. 

The primary focus of this study by Prasad, et al. [15] is 
to develop a water quality forecasting model that utilizes 
reliable and accurate data. As the production of big data from 
IoT-based smart WQ monitoring systems continues to 

increase, the complexity of WQ data has become more 
pronounced. To address this complexity, an advanced DL 
theory was employed, capitalizing on the effectiveness of 
LSTM DNNs in predicting time-series. This led to the 
development of a model specifically tailored for predicting 
drinking WQ. The capability of the model was assessed by 
utilizing data from the Guazhou Water Source of the 
Yangtze River in Yangzhou, spanning from January 2016 to 
June 2018. The findings illustrate the model's precise 
prediction of WQ trends, thus confirming the practicality 
and efficacy of LSTM DNNs in forecasting drinking WQ 
(word count) of this Khan et al. [16] present a WQ 
forecasting model in their paper, which utilizes the principal 
component regression technique. This model involves three 
main steps: calculating the WQI using the weighted 
arithmetic index method, performing principal component 
analysis (PCA) on the dataset to extract influential WQI 
parameters, and using the PCA output along with different 
regression algorithms for WQI prediction. Finally, the WQ 
status is classified using the Gradient Boosting Classifier. 
The Gulshan Lake-related dataset is utilized to 
experimentally evaluate the proposed system. As a result of 
the analysis, the principal component regression method 
achieved a prediction accuracy of 95%, while the GBC 
method exhibited flawless classification accuracy of 100%. 
These results establish the model's commendable 
performance, outperforming contemporary models in the 
field. 

This paper proposed by Raheja, et al. [17] evaluates the 
capability of three ML algorithms, namely GBM, DNN and 
XGBoost, in forecasting groundwater indices in Haryana 
state, India. The study utilizes two WQ indices, Entropy WQ 
Index (EWQI) and WQI. Results indicate that DNN 
outperforms the other models, exhibiting lower error values 
in predicting both EWQI and WQI. For EWQI, DNN 
achieves a Correlation Coefficient (CC) of 0.989, RMSE of 
0.037, Nash–Sutcliffe efficiency (NSE) of 0.995, and Index 
of agreement (d) of 0.999. For WQI, CC is 0.975, RMSE is 
0.055, NSE is 0.991, and d is 0.998. Electrical conductivity 
(EC) is identified as the most significant input parameter, 
while pH has the least significance in predicting both 
indices. These findings can aid in accurately predicting 
groundwater quality for potability assessments. 

In the study conducted by Venkataramana [18], various 
deep learning (DL) models were explored to forecast the 
WQI and water quality category (WQC) as indicators of 
WQ. Water samples from Korattur Lake in Chennai were 
collected and analyzed for several parameters, including pH, 
total dissolved salts, turbidity, phosphate, nitrate, iron, 
chemical oxygen demand, chloride, and sodium. DL models, 
such ANN, LSTM, and recurrent neural network (RNN), 
were trained and evaluated for both binary and multi-class 
classification tasks. Among the DL models, LSTM exhibited 
the highest accuracy, reaching approximately 94%, while 
also demonstrating the shortest execution time compared to 
other DL models.  
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3. RESEARCH METHODOLOGY AND APPROACH 

A. Back Ground of the Research Study 

 This research utilized the Weka platform, an open-
source ML software, to compare and evaluate different 
classification algorithms for predicting WQ. Six distinct 
machine learning techniques, including the Bagging 
classifier, J48 trees, RF, IBk, LR and AdaBoostM1, were 
employed to analyze the dataset. The study followed the 
structured Cross-Industry Standard Process for Data Mining 
(CRISP-DM), which consists of six phases. This systematic 
approach ensured a comprehensive and well-organized 
research process for WQ prediction. By adhering to the 
CRISP-DM methodology, the study-maintained rigor and 
reliability, thereby enhancing the validity of the research 
findings [19]. Refer to Figure 1 for an illustration of the 
stages in the CRISP-DM Methodology. 

 

Figure 1.  CRISP-DM Methodology stages. 

B. Data Set Description 

The dataset utilized in this study comprises various 
parameters associated WQ in India, collected between 2012 
and 2021. These parameters were obtained from an official 
website associated with the Government of India [20]. The 
dataset consists of 7339 instances, each characterized by six 
attributes and a single outcome. Out of approximately 
12,000 instances, 7339 were selected as non-null instances. 
Table 1 provides a definition of the attributes, and Figure 2 
illustrates the balanced distribution of potable water (1) and 
non-potable water (0) within the dataset. Among the 
attributes, DO signifies the level of free and non-compound 
oxygen within the water, playing a crucial role in assessing 
WQ. pH indicates the presence of acidic or basic 
compounds, while EC measures the water's ability to 
conduct electricity. Biochemical Oxygen Demand (BOD) 
quantifies the oxygen consumption by aerobic 
microorganisms during organic matter decomposition, 

reflecting the impact of wastewater discharge on the 
recipient area. Elevated BOD values suggest a higher 
availability of organic compounds for oxygen-consuming 
bacteria. Nitrate (NA) is formed by the combination of 
oxygen or ozone with nitrogen, and while nitrogen is 
beneficial to living organisms, excessive NA levels can be 
harmful. Total Coliform (TC) serves as an indicator of 
bacteria found in animals, including humans. Although 
coliform itself does not cause diseases, certain types like E. 
coli can pose significant health risks [21]. 

 

 

Figure 2.  CRISP-DM Methodology stages. 

 
C. Classification of Water Potability Using WQI 

To determine the potability of water based on its quality, 
several important factors are considered, including pH value, 
EC, DO, total coliforms (TC), and BOD. In order to calculate 
the WQI, the data is utilized to derive new parameters such 
as npH, ndo, nco, nbdo, nec, and nna, which are obtained 
from the original measurements (pH, EC, DO, BOD, NA, 
and TC) using the classification provided in [22]. These 
newly derived parameters are then used to compute weighted 
averages for pH (wph), DO (wdo), BOD (wbdo), EC (wec), 
NA (wna), and TC (wco), as described by the formulas (1) 
to (6) elucidated in [21]. The WQI is subsequently calculated 
using a predefined formula (7), as outlined in the procedure 
detailed by [22].  

 

                       𝑤𝑝ℎ = 𝑛𝑝ℎ × 0.165                                (1) 

 

                      𝑤𝑑𝑜 = 𝑛𝑑𝑜 × 0.281                                (2) 

 

                     𝑤𝑛𝑑𝑜 = 𝑛𝑏𝑑𝑜 × 0.234                            (3) 

  

                      𝑤𝑒𝑐 = 𝑛𝑒𝑐 × 0.009                                 (4) 

 

                     𝑤𝑛𝑎 = 𝑛𝑛𝑎 × 0.028                                (5) 
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                      𝑤𝑐𝑜 = 𝑛𝑐𝑜 × 0.281                                 (6) 

 

 𝑊𝑄𝐼 = 𝑤𝑝ℎ + 𝑤𝑑𝑜 + 𝑤𝑏𝑑𝑜 + 𝑤𝑒𝑐 + 𝑤𝑛𝑎 + 𝑤𝑐𝑜   (7) 

 
Based on the resulting WQI value, the water sample is 

classified as potable (1) if the WQI exceeds 75, or non-
potable (0) if the WQI is less than 75 [23]. This classification 
method allows for an assessment of WQ based on measured 
concentrations and corresponding criteria. 

D. Correlation Matrix 

 The heatmap correlation matrix provides valuable 
understanding of the correlation between the six chosen 
features and the quality of water in terms of its potability 
(Figure 3). Examination of the analysis reveals that DO and 
BOD exhibit the most significant predictive power [24]. DO 
shows a positive correlation of 25%, indicating that as the 
level of DO increases, the probability of water being potable 
also rises. Conversely, BOD demonstrates a moderate 
negative correlation of -18%, suggesting that higher BOD 
levels are associated with decreased potability due to 
elevated organic matter content. 

The feature pH shows a weak positive correlation of 9% 
with water potability. This implies a slight inclination for 
water potability to increase as pH levels rise. Alternatively, 
the features EC, Na, and TC display weaker relationships 
with water potability. EC exhibits a small negative 
correlation coefficient of -7%, indicating that higher EC 
levels are marginally associated with reduced potability. 
Similarly, Na and TC demonstrate small negative 
correlations of -1% and -3% respectively, implying that 
higher concentrations of nitrate and TC are weakly linked to 
a slight decrease in water potability. 

It is important to note that while DO and BOD exhibit 
stronger correlations with water potability, the relationships 
for pH, EC, Na, and TC are comparatively weaker. These 
findings highlight the varying degrees of influence that 
different WQ parameters have on the potability assessment. 
The positive correlations of DO and the negative correlation 
of BOD underscore their importance in determining water 
potability due to their direct impact on oxygen levels and 
organic matter decomposition. 

Overall, the examination of the correlation matrix reveals 
valuable understanding regarding the connections between 
the chosen features and the potability of water. DO and BOD 
emerge as the most influential factors, while pH, EC, NA, 
and TC exhibit weaker associations. These findings 
contribute to a deeper understanding of the key parameters 
affecting WQ and can aid in developing more accurate 
predictive models for assessing water potability.   

               

 

 

 

TABLE I.     DATASET DESCRIPTION 

 

 

Figure 3.  Heatmap Correlation Matrix. 

E. Data Preparation. 

Following the data exploration stage, the data preparation 
phase commenced, involving various procedures to address 
missing data, perform data scaling, encode categorical 
variables, and split the dataset. These processes were 

Attribute Definistion Datatypes

Dissolved 

Oxygen (DO) 

The dataset includes measurements of the 

concentration of dissolved oxygen (DO) in water at 

different time points. The desired or ideal level of 

DO is considered to be 10 mg/L

float64

pH 

The dataset encompasses the variation in hydrogen 

ion concentrations within water across different 

time periods. The optimal benchmark for pH, 

representing the hydrogen ion concentration, is 

identified as 8.5.

float64

Conductivity 

(EC) 

The dataset encompasses the temporal changes in 

water conductivity measurements (EC). The 

preferred or desired value for conductivity is 

established at 1,000 μS/cm.

float64

BOD 

The dataset consists of the temporal measurements 

of the Biological Oxygen Demand (BOD) in water. 

The target or preferred value for BOD is set at 5 

mg/L.

float64

Nitrate (NA)

The dataset comprises the temporal observations 

of the nitrate content (NA) in water. The desired or 

ideal value for nitrate is identified as 45 mg/L.

float64

Total coliform 

(TC) 

The dataset includes the comprehensive 

quantification of coliform bacteria in water (TC). 

The target or optimal value for the total coliform 

count is established at 100 per 100 mL.

float64

Potability

The dataset provides an indication of whether the 

water is suitable for human consumption. A value 

of 1 represents potable water, indicating it is safe 

for human use, while a value of 0 signifies non-

potable water, suggesting it is not safe for human 

consumption.

object
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implemented to ensure data integrity and optimize the 
dataset for subsequent analysis. 

• Missing Data 

The 7339 instances used were chosen out of around 
12000 instances. 

• Data Scalarization   

By utilizing the MinmaxScaler function, the data is 
rescaled to a specified range, typically between 0 and 
1. This scaling process ensures that the values are 
uniformly transformed while preserving the original 
distribution shape. The MinmaxScaler function 
effectively adjusts the values without distorting the 
inherent characteristics of the data. 

• Encoding Categorical Data 

NominalToBinary filter was implemented to convert 
potable class to 1 and not potable class to 0 on the 
class variable.  

• Splitting Data 

       To ensure accurate evaluation and mitigate bias, a 
10-fold cross-validation technique was 
implemented in this study to partition the data. This 
methodology enabled a rigorous assessment of the 
classification algorithms used for the forecasting of 
the quality of water, thereby boosting the credibility 
and validity of the research outcomes.  

F. Modelling 

The six ML algorithms Bagging classifier, LR, J48, RF, 
IBk, and AdaBoostM1 are implemented to evaluate their 
performance in WQ prediction. 

Bagging classifier is a widely adopted ensemble learning 
technique designed to enhance prediction accuracy and 
reduce variance. It achieves this by combining multiple base 
classifiers, each trained on a subset of the training data that 
is distinct and obtained through bootstrap sampling. The 
final prediction is determined through a majority voting 
mechanism. Due to its effectiveness in dealing with complex 
classification tasks and improving overall model 
performance, the Bagging classifier has found extensive 
application in diverse domains, including WQ prediction 
[25]. 

Logistic regression classifier is a widely utilized 
statistical modeling approach that is particularly suitable for 
binary classification tasks. It estimates the probability of an 
event occurrence by utilizing a logistic function and 
considering input variables. LR is appreciated for its 
interpretability, simplicity, and computational efficiency. In 
domains such as WQ prediction and others, LR has been 
extensively applied due to its capability to model the relation 
between predictors and the probability of a specific outcome 
[26]. 

J48 tree, also referred to as C4.5, is a popular decision 
tree algorithm employed for classification purposes. It 
creates a tree structure by recursively dividing the data based 
on attribute values, with the objective of minimizing entropy 
or maximizing information gain at each node. The resulting 
tree is easily interpretable and can be used for making 
predictions. J48 is widely utilized in various fields, including 
WQ prediction, due to its effectiveness, simplicity, and 
capacity to handle both categorical and numerical attributes 
[27] . 

Random Forest classifier is a powerful ensemble 
learning technique that improves classification accuracy and 
mitigates overfitting by combining multiple decision trees. 
By randomly selecting subsets of features and instances for 
each tree, it ensures diversity within the ensemble. The RF 
demonstrates robustness and can effectively handle high-
dimensional data. Its ability to capture complex relationships 
and provide reliable classification results has made it widely 
adopted across diverse domains, including WQ prediction 
[4]. 

IBk classifier, a non-parametric algorithm also referred 
to as k-Nearest Neighbors (k-NN), is extensively employed 
for classification purposes. It assigns a class to an instance 
by considering the largest count of votes of its k nearest 
neighbors within the training data. IBk is renowned for its 
simplicity and versatility in handling both numerical and 
categorical data. It has been successfully utilized in diverse 
domains, including WQ prediction, where instance-based 
learning methods are particularly effective [28]. 

AdaBoostM1 classifier is an ensemble learning 
technique that constructs a powerful classifier by combining 
multiple weak classifiers. It assigns weights to training 
instances, placing greater emphasis on misclassified 
instances during subsequent iterations. AdaBoostM1 excels 
in handling intricate classification tasks and enhancing 
overall accuracy. Its effectiveness in improving the 
capability of weak classifiers has led to extensive application 
in various domains, including WQ prediction [29]. 

G. Performance Evaluation 

The capability assessment of six ML algorithms was 
conducted based on the following metric parameters: 

Accuracy is a widely employed metric in artificial 
intelligence (AI) that evaluates the capability and efficacy of 
an ML model. It assesses the model's ability to correctly 
predict or classify data. Accuracy is determined by dividing 
the count of correctly predicted instances by the total count 
of instances in the dataset. It indicates the ratio of correct 
predictions made by the model to the total number of 
predictions. A high accuracy score suggests that the model 
is making precise predictions, whereas a low score indicates 
lower reliability. However, it is important to note that 
accuracy alone might not provide a comprehensive 
assessment of a model's performance, particularly when 
dealing with imbalanced datasets or when certain types of 
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errors are more significant than others. Hence, it is often 
necessary to consider additional evaluation metrics and 
contextual factors to obtain a holistic understanding of a 
model's performance [29]. 

 

              𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                   (8) 

 

Precision is a performance measure that evaluates the 
ratio of accurately forecasted instances that are positive to 
the total instances forecasted as positive. It assesses the 
accuracy of positive predictions, focusing on the precision 
of identifying true positives while disregarding false 
positives. This metric quantifies the effectiveness of 
correctly identifying positive cases, without considering the 
number of false positives [29]. 

 

                         𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                (9) 

 

 
The False Positive rate is a performance measure that 

calculates the ratio of incorrectly classified instances as 
positive, which are negative, to the overall count of true 
negative instances. It quantifies the classifier's propensity to 
erroneously predict negative instances as positive. This 
metric provides insight into the rate of FP predictions, 
highlighting the classifier's tendency to make such incorrect 
classifications [28]. 

 

                               𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
                                   (10) 

 
Recall metric, also known as sensitivity, evaluates the 

classifier's ability to correctly identify positive instances by 
measuring the ratio of accurately classified positive 
instances to the total number of actual positive instances. 
This performance measure provides valuable insights into 
the classifier's effectiveness in detecting and capturing 
positive cases from the available data [28].  

 

                          𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                   (11) 

 
F-Measure is an evaluation metric that combines 

precision and recall providing a comprehensive assessment 
of a classifier's effectiveness. By calculating the harmonic 
mean, it achieves a balance between accurately identifying 
positive instances and minimizing false positives. The F-
Measure offers a holistic evaluation of the classifier's 
performance by considering both precision and recall 
simultaneously. This unified measure provides insights into 
the classifier's overall accuracy and its ability to effectively 
manage the trade-off between true positives and false 
positives [29]. 

 

                    𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
                      (12) 

 

ROC area is a performance measure that assesses the 
discriminative power of a classifier. The classifier's 
quantification provides an estimate of the likelihood that a 
positive instance will have a higher rank than a negative 
instance. The ROC area summarizes the classifier's 
performance across different classification thresholds, 
providing a comprehensive indication of its discriminative 
ability. It serves as a valuable metric for evaluating the 
overall performance and ranking capabilities of the classifier  
[12]. 

PRC area, also known as the area under the precision-
recall curve, is a measure of the model's effectiveness or 
capability that evaluates the classifier's effectiveness in 
balancing precision and recall. It quantifies the overall 
performance of the classifier by calculating the integral of 
precision as recall varies. This metric reflects the classifier's 
ability to provide accurate positive predictions across 
different levels of recall. The PRC area offers valuable 
insights into the classifier's ability to strike a balance 
between precision and recall, providing an assessment of its 
performance and the quality of its positive predictions [17]. 

4.           RESULTS AND DISCUSSION 

The evaluation of the capability of the algorithms with 
respect to multiple metrics, including accuracy, precision, TP 
rate, F-measure, ROC area, FP rate, and PRC area, was 
utilized to assess the effectiveness of these algorithms in WQ 
classification tasks.  Table II presents the metrics-based 
results attained by each model. 

 

                          TABLE II.      DATASET DESCRIPTION 

 

 

The comparison of ML algorithms based on the accuracy 
metric showed that the RF algorithm and J48 achieved the 
highest accuracy value of 0.993. The Bagging classifier 
closely followed with an accuracy of 0.992, and the 
AdaBoostM1 algorithm obtained an accuracy of 0.971. The 
LR algorithm obtained an accuracy of 0.958, followed by the 
IBK algorithm with an accuracy of 0.714. The results are 
presented in Figure 4. 

 

Accuracy FP Rate Precision Recall F-Measure ROC Area PRC Area

Bagging 0.992 0.007 0.992 0.992 0.992 0.999 0.999

LR 0.958 0.041 0.958 0.958 0.958 0.991 0.999

J48 0.993 0.007 0.993 0.993 0.993 0.994 0.992

RF 0.993 0.006 0.993 0.993 0.993 1 1

IBk 0.714 0.289 0.714 0.714 0.714 0.78 0.78

AdaBoostM1 0.971 0.026 0.972 0.971 0.971 0.992 0.991
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Figure 4.  Accuracy  plot for the proposed Algorithms 

In terms of FP rate metric, the comparison of ML 
algorithms demonstrated that RF achieved the lowest rate of 
0.006. The Bagging classifier and J48 closely followed with 
an FP rate of 0.007 each. On the other hand, AdaBoostM1, 
LR, and IBk exhibited higher rates of 0.026, 0.041, and 
0.289, respectively. These results are visually presented in 
Figure 5, providing a clear overview of the varying FP rates 
across the different algorithms. 

 

 
 

Figure 5.   FP Rate  plot for the proposed Algorithms 

When comparing the precision metrics of various ML 
algorithms, it was observed that RF and J48 exhibited the 
highest precision rate of 0.993. Following closely behind 
was the Bagging classifier with a precision rate of 0.992. The 
AdaBoostM1 algorithm achieved a precision rate of 0.972, 
while LR showed a slightly lower precision rate of 0.958. In 
contrast, IBK displayed a lower precision rate of 0.714. 
Figure 6 visually represents these findings, highlighting the 
varying precision rates of the different algorithms.  

 

 

Figure 6.  Precision  plot for the proposed Algorithms 

The comparison of ML algorithms for the recall metric 
demonstrated that the RF algorithm and J48 achieved the 
highest recall value of 0.993. The Bagging classifier closely 
followed with a recall value of 0.992, and the AdaBoostM1 
algorithm obtained a recall value of 0.971. The LR algorithm 
obtained a recall value of 0.958, followed by the IBK 
algorithm with a value of 0.714. The results are presented in 
Figure 7. 

 

  

Figure 7.  Recall  plot for the proposed Algorithms 

 

F-Measure metric comparison across ML algorithms 
revealed the RF algorithm and J48 achieved the highest F-
measure value of 0.993. The Bagging classifier closely 
followed with a score of 0.992, and the AdaBoostM1 
algorithm obtained a score of 0.971. The LR algorithm 
obtained a metric of 0.958, followed by the IBK algorithm 
with a metric of 0.714. The results are shown in Figure 8. 
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Figure 8.    F-Measure plot of proposed Algorithms 

Among the evaluated ML algorithms for the ROC area 
metric, RF expressed the leading capability with a value of 
1, and Bagging classifier followed closely with ROC areas 
of 0.999. J48 followed with a value of 0.994, while 
AdaBoostM1 achieved 0.992.  LR had a value for ROC area 
metric of 0.991, and IBK with 0.78, as illustrated in Figure 
9. 

 

 

Figure 9.    ROC Area plot for the proposed Algorithms 

        

The comparison of ML algorithms for the PRC area 
metric revealed that RF attained the predominant result with 
an area of 1. Bagging and LR closely followed with an area 
of 0.999, while J48 obtained 0.992. AdaBoostM1 had a PRC 
area of 0.991, and IBK had the lowest value of 0.78. The 
results are displayed in Figure 10. 

The high values achieved by RF, J48, and the Bagging 
classifier in predicting water potability can be attributed to 
several factors. RF's ensemble approach combines multiple 
decision trees, enabling it to capture complex relationships 
and handle high-dimensional data effectively. J48, a 
decision tree algorithm, offers simplicity and interpretability 
while handling diverse attribute types. The Bagging 
classifier, with its ensemble learning technique and majority 
voting, effectively handles diverse and potentially noisy 
data. On the other hand, the lower values obtained by IBk 
and LR can be attributed to their limitations in capturing 
complex relationships or handling certain data 
characteristics. IBk's reliance on local neighborhoods may 
not adequately address the complexity of water potability 

prediction, while LR's linear nature might struggle with 
capturing non-linear patterns. In contrast, It is worth 
mentioning that the selection of algorithms can also be 
influenced by factors such as specific dataset characteristics 
and the trade-off between interpretability and predictive 
performance. 

The attribute evaluator used in this study was 
InfoGainAttributeEval, which was employed in combination 
with a Ranker. Its purpose was to rank the attributes 
according to their effectiveness within the model. The 
evaluated attributes, listed in order of effectiveness, were as 
follows: TC, BOD, pH, DO, EC, and NA. 

 

Figure 10.    PRC Area plot for the proposed Algorithms 

 

5.          CONCLUSION AND FUTURE DIRECTION 

The aim of this comparative research analysis was to 
assess and compare the predictive capabilities of the 
Bagging classifier, LR, J48, RF, IBk, and AdaBoostM1 
models. These models were implemented to evaluate their 
performance in the domain of WQ prediction, and the 
assessment included metrics such as precision, F-measure, 
TP rate, PRC area, FP rate, and ROC area. The findings 
indicate that the RF model outperformed the other models, 
demonstrating superior performance. 

The J48 and RF algorithms have showcased superior 
performance with a very slight difference with the Bagging 
classifier. AdaBoostM1, LR, and IBk followed after that 
with a significant difference for IBK values.  

The J48 model, a decision tree algorithm, holds 
superiority due to its versatility, interpretability, feature 
selection capability, robustness to missing values, and 
computational efficiency. It handles diverse datasets, 
provides understandable models, and performs well in real-
time applications, making it a valuable choice for 
classification tasks.  

RF models provide benefits including ensemble learning 
to mitigate overfitting, robustness to outliers and noise, 
feature importance estimation, non-parametric nature, and 
parallelization capabilities. These advantages contribute to 
the exemplary performance of J48 and RF models in the 
study. 
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The Bagging classifier offers advantages such as 
improved accuracy and robustness. By combining multiple 
models trained on subsets of the data, it reduces variance and 
enhances generalization. It handles complex datasets, 
provides reliable predictions, and is suitable for applications 
where accuracy and stability are crucial. 

The lower metric values observed for IBK in predicting 
potable water using features such as pH, BOD, NA, DO, and 
others could be attributed to several factors. IBK's 
performance might be impacted by sensitivity to feature 
scaling, noisy or irrelevant features, imbalanced data, 
inappropriate choice of k value, and sensitivity to outliers. 
Inconsistent feature scaling, the presence of noisy or 
irrelevant features, imbalanced class distributions, 
suboptimal k values, and the influence of outliers could 
contribute to IBK's lower accuracy. Addressing these factors 
through preprocessing, feature selection, class balancing 
techniques, parameter tuning, and outlier detection could 
potentially improve IBK's performance in predicting potable 
water. Overall, the combination of the unique advantages of 
MLP and RF, such as their ability to handle non-linearity, 
capture complex patterns, and effectively handle noisy data, 
contributed to their superior performance in contrast with the 
different models explored. 

In the field of WQ prediction, ML has faced several 
challenges. One of the main difficulties is the availability 
and quality of data. WQ datasets are often limited, 
incomplete, or contain missing values, which can hinder the 
training and performance of ML models. Another challenge 
is the inherent complexity of water systems, where 
numerous factors and interdependencies influence WQ. 
Developing accurate models that can capture and effectively 
model these complex relationships presents a significant 
challenge. Furthermore, the dynamic nature of water 
systems, influenced by environmental changes and human 
activities, requires models that can adapt and generalize well 
to new conditions. Addressing these challenges requires 
careful data collection, preprocessing techniques, feature 
engineering, and the development of robust and adaptable 
ML algorithms tailored to the specific characteristics of WQ 
prediction tasks. 

For subsequent research in the forecasting of WQ sector, 
three recommendations can be suggested: 

• Utilizing other datasets: To obtain more 
comprehensive and robust results, it is of utmost 
importance to explore and utilize additional 
datasets. This approach helps avoid potential biases 
that may have existed in the dataset used in the 
current study. Incorporating diverse datasets from 
different regions, sources, and time periods can 
provide a broader understanding of WQ patterns 
and enhance the generalizability of the findings. 

• Explore more NN models: Since only NN model 
was used in the current study, it would be beneficial 
to explore and compare the capability of different 

NN architectures. Variations such as CNNs, 
recurrent neural networks (RNNs), and more 
advanced architectures like LSTM networks or 
transformer-based models could be considered. 
This exploration would help identify the most 
suitable NN model for WQ prediction tasks and 
potentially uncover new insights. 

• Investigate hybrid models: Hybrid models bring 
together the strengths and powerful aspects of 
multiple models and can potentially improve 
prediction accuracy. Future research could focus on 
developing and evaluating hybrid models that 
integrate different ML techniques, such as 
combining NNs with ensemble methods like RF or 
gradient boosting. By leveraging the strengths of 
various models, hybrid approaches can potentially 
enhance the predictive power and robustness of 
WQ prediction models. 

•  Explore different data preprocessing techniques 
and methodologies: In future research, it is 
important to investigate and compare various data 
preprocessing techniques and methodologies for 
WQ prediction. Different approaches such as 
feature scaling, outlier detection and handling, 
missing data imputation, and feature selection can 
lead to a tremendous uprising in the model’s 
performance. Exploring different preprocessing 
techniques and methodologies, such as time series 
analysis, spatial interpolation, or domain-specific 
preprocessing methods, can help uncover hidden 
patterns, reduce noise, and enhance the quality of 
input data for ML models. This exploration will 
contribute to improving accuracy; in addition to, 
the reliability of WQ prediction algorithms. 

By incorporating these recommendations into future 
research endeavors, researchers can advance the field of WQ 
prediction by utilizing diverse datasets, exploring a wider 
range of NN models, investigating the potential of hybrid 
models, and exploring different data preprocessing 
techniques and methodologies. These efforts will contribute 
to enhancing the accuracy, reliability, and generalizability of 
WQ prediction systems, ultimately benefiting environmental 
management, public health, and decision-making in water 
resource management. 
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