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Abstract: The objective of this research is to address the challenges of query optimization in systems with a large search space
of execution plans caused by distribution. The research aims to develop effective strategies for optimizing the join operator in a
relational database, specifically focusing on minimizing workload delay and query costs. Additionally, the research aims to compare
the performance of Ant Colony Optimization (ACO) algorithm and Q-Learning technique in achieving optimal execution plans for
queries. To achieve the objective, the research utilizes a reinforcement learning model, specifically the Q-Learning technique. The
Ant Colony Optimization (ACO) algorithm is also employed as a comparison method. These techniques are applied to the query
optimization process, specifically for adjusting the optimal execution plan for a query in a continually updating environment. The
research findings reveal that the utilization of Q-Learning and Ant Colony Optimization techniques improves the query optimization
process. These techniques help identify optimistic queries with minimal workload delay and query costs. By applying reinforcement
learning and optimization algorithms, the research successfully achieves an optimal execution plan for problematic queries in a
distributed system with a large search space of execution plans. The novelty of this research lies in the combination of reinforcement
learning and optimization algorithms for query optimization in a distributed system. The utilization of Q-Learning technique and Ant
Colony Optimization algorithm in this context addresses the challenges of adjusting optimal execution plans in a continually updating
environment. This research contributes to the field by providing effective strategies for optimizing the join operator in a relational
database, improving the efficiency of query optimization, and reducing workload delay and query costs.
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1. INTRODUCTION
The paper begins with an introduction outlining the

challenge of optimizing multi-join queries in distributed
systems, introducing Ant Colony Optimization (ACO) and
Q-Learning as potential solutions. Section 2 delves into the
intricacies of the multi-join query optimization problem,
highlighting the complexities involved and the importance
of efficient optimization for system performance. Following
this, Section 3 elaborates on the application of ACO to
multi-join query optimization, detailing its principles and
discussions. In parallel, Section 4 introduces Q-Learning as
an alternative approach, explaining its workings and com-
paring it with ACO in terms of efficacy. The experimental
results, presented in Section 5, elucidate the outcomes of
evaluating ACO and Q-Learning in a controlled setting,
focusing on metrics such as optimization time, workload
delay, and cost. Finally, the conclusion summarizes the key
findings, discusses their implications, and proposes avenues
for future research, providing a comprehensive overview of
the study’s contributions to the field of query optimization

in distributed systems.

The method of choosing an efficient execution strategy
for handling a query is known as query optimization. A
conventional query optimizer calculated the cardinality of
the various tables using statistics and probability criteria
that were saved, resulting in the finding of the optimum
query method. These data also included the dataset, blocks,
different values in each column, attribute selectivity, and
the typical number of records satisfying an equality con-
dition [1]. Reinforcement Learning (RL), one of the ma-
chine learning exact methods, is being used to describe
or discuss how such a computational intelligence picks
up new information and improves its approach through
contact with the environment [2], [3], [4], [5]. Deep Re-
inforcement Learning is required to determine the best
query execution technique. These techniques are advan-
tageous because they can serve as manually programmed
query optimizer components and are adaptable to different
workloads and data distributions [6]. We investigated these
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DRL-based query optimizers to understand more about their
performance limitations. Researchers showed that all such
methods have constraints as of their fundamental models
consider giving unfortunate estimates and lack a universally
applicable feature encoding, despite effectively choosing
high quality query plans the rest of the time. we have
been unable to connect the open source for past work.
According to our supposition, withdrawing these restricts
will result in additional maximize the performance for
DRL-based information retrieval. RL is an unsupervised
method that allows an individual’s behavior to observe the
state of its surroundings and perform actions that directly
effect it in order to develop the best policy. Although
Reinforcement Learning can be used to solve optimization
problems for a stand-alone treatment, its use to flexibly
systematic framework optimization problems in dynamic,
decentralized systems are currently being researched.

Many academics have worked hard to enhance the low
exploration efficiency of the basic Q-learning algorithm,
which is based through valuation, mention strategic plan
learning, and the TD approach [7]. The Q-Learning system
was enhanced with tutor supervision and a unique relatively
modest control-based overseen reinforcement learning path
planning reach. This accelerated the system’s convergence
and established the notion of least in part directed q-
learning. It also used the Q-learning strategy to initialize
the Q-Table, which improved the route planning process.
However, Ant Colony Optimization (ACO), a meta-heuristic
optimization tool, employs work load latency in high order
performance and is inspired by genuine ant species and their
foraging methods. Artificial termites in a colony collaborate
to tackle difficult discrete optimization problems. As a
result, collaborative effort seems to be an essential piece of
something like the artificial ants. It is also acknowledged
the said ant colony can just be used in as both a framework
such as evolving heuristic methods to handle optimization
technique. Ant colony optimization, positive list of basic in-
vestigators (artificial ants) is given computational resources
and a way to interact with one another [8], [9], [10].

ACO algorithm is an appropriate and efficient option
for optimizing a query in databases due to its features
and traits such as its resilience, based optimization, par-
allelism derived from the ability to function simultaneously
and independently, and flexibility to combine with other
techniques [11]. ACO and RL are distinguished by the
fact that ACO employs a heuristic evaluation to identify
which moves are superior, whereas RL does not. ACO also
employs a distributed method, in which numerous agents
collaborate to solve a specific problem. The ACO algo-
rithm’s low order performance is work load delay, and this
may last distinction—the ACO’s use of heuristics—made
completely modeling an ACO algorithm as an RL algorithm
challenging.

A. Query Optimization
The classic difficulty of multi-query optimization is

RDF/SPARQL. For the problems experienced during op-
timization, we can state that, first and foremost, if an
optimizer is unable to continue exploring the search space,
they cannot be certain of discovering the ideal execution
strategy. As a result, we must devise a method for searching
the entire search space. Second, many traditional models
struggle to generate reliable cost estimates, and joining or-
dering— which governs the rate of data flow— is a critical
issue. So, the order of joins has a considerable impact
on query performance [12]. We analysis an optimization
solution for the join ordering problem in this study in order
to address the aforementioned problems; more details are
provided in the section following.

Figure 1. Complete process of query optimization

Figure 1 depicts the full query optimization technique.
The procedure starts with an input SQL query, which is then
passed to the parser, which generates an algebra tree linked
to the query. Our algorithms then select the optimal join
order from among numerous join order options. The join
order is used to generate a query execution method (QEP).
The query execution plan is traversed by the execution
engine, and the appropriate retrieved data is output.

To process a query, a sequence of steps must be taken:
first, open up the request to really be filtered; then, optimize
the request’s inside of. finally, run the optimized request
through the engine to obtain the consequence [13], [14].
Every aspect of the query’s processing is demonstrated step
by step here.
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• Create the query first, then send it to the query engine
for processing. Take a look at a SPARQL, SQL, or
RDF query.

• The semantic test can be used to assess a statement’s
meaning. If the shared pool contains code, the shared
pool check recognizes it and does not perform any
additional database optimization or execution steps.

• The data retrieval process and after that debugs it
and application into to the format provided regarding
regular expression parsing comparison or keyword
order, such as SELECT, WHERE, and so on, and verifies
for the RDF attribute. Side by side comparisons of
RDF repositories These RDF repositories are query
able.

• The analyzer then modifies the triple pattern order of
the original question to match that of its equivalent
form in SPARQL algebra.

• Check the linkages and syntax. Provide an equivalent
relational algebraic expression for the question.

• Query can receive results predicated on the RDF
repositories’ primary model without any optimization,
but as the repositories increase in size, it becomes
required to execute the query using various opti-
mization techniques to ensure that it produces results
in a reasonable amount of time. Using the type of
approach, the simplest level of work is chosen from
among well all query plans.

• Query optimization is a technique in which a database
system assesses numerous query approaches and
chooses the best optimal strategy with the lowest
expected cost. Throughout the optimization process,
each statement should go through hard parsing at
least once, and the parsing should be enhanced. A
repeating execution plan is generated by Row Source
Generator using the optimizer’s execution plan soft-
ware and the rest of the database. A set of rows are
produced by each iterative execution phase, and the
application that issued the SQL statement receives
rows in the final step.

• Develop a low-cost evaluation method for the ques-
tion plan.

• If there have been no errors up to this point in the
process, the final step is the query execution phase,
in which an optimized query is run through a query
engine to receive the results of a SPARQL query.

2. Multi-Join Query Optimization Problem
The following is an explanation of how an RDBMS

handles user queries: After receiving the query, the query
parser analysis its grammar, checks relationships, and turns
the user-submitted request into its internal form. it is usually
turned into a relational formula expression, often known as a

query syntax tree. a structured algebra affirmation has many
equivalent expressions, and thus many equivalent query
linguistic structure trees. Following that, the query optimizer
determines which physical implementation to utilize for
each relational algebra operation and generates the query
execution plan (QEP). The QEP describes the physical
approach that will be used for each operation, as well as the
order in which the operations in A query will be performed.
The query-execution engine takes and executes the QEP that
has been passed to it, and returns the results to the user.
The query optimizer chooses the one with the lowest cost
output to the engine from among all similar QEPs. Once
the optimization step of applying pressure the to choose and
project operations is implemented, a query that comprises
project, select, and join operations would then transform
into a structured algebra expression made up of n join
operations, referred to as a join tree [15], [16].

An example numerous query q encompass r1, r2, r3, r4, r5
five relations, that joined as Figure 2 left deep trees, Figure 3
shown Bushy tree and Figure 4 shown right deep tree. These
are signified as some using of join plant. The nodes are
relations comprising query q and the intrinsic nodes express
join operation and significant improvement

Figure 2. Left-Deep tree (Join Tree Q1)

Figure 3. Bushy tree
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Figure 4. Right Deep Tree (Join Tree Q2)

Bottom-up execution refers to executive orders. The
physical methods used to perform the join operation in
a different order and with a different physical result in
considerable variations in the cost of the connect trees.
Assuming that all join operations are performed using the
same physical technique, the problem of optimizing multi-
join queries can be reduced to choosing the best join order
and resulting join tree from a cost standpoint. Given that
trees in left linear space can completely utilize this same
measurement and frequently contain the best strategy, or at
smallest a method with a cost equal to the optimal strategy,
consider left relevant as a random search.

Attempting to prevent the mathematical product’s be-
ginnings is commonly regarded as a difficulty constraint
in order to narrow the search area even further. Q is
an example of a multiple join query with five relations:
R1,R2,R3,R4,R5.

Figure 5. Query graph

Figure 5’s query graph G = (V, E) illustrates the qualities
associated with five relations based on statistical data from
the database catalogue. The query graph’s Relationships are
illustrated as nodes, and an edge between two denotes the
characteristics they share. Figures 2 and 4 depict the two
join trees Q1 and Q2 in the query Q’s left linear space. When
the “avoiding Cartesian product” restriction constraints are

applied, Q1 fails to meet the conditions and is an invalid
join tree; Q2 satisfies the conditions and is a suitable joining
tree.

The query optimizer must choose appropriate Order of
Execution of Relational Operators, Access Methods for
Relevant Relations, and Interactions for Join Operations
again from specified solution space in order to improve the
set of metrics of the resulting Request Execution Plan by
implementing the appropriate search strategy. Establish the
order of transmitting data across locations to minimize data
volume and network connectivity costs [17]. Information
retrieval methods have been the focus of research in dis-
tributed databases. because of their ability to search globally
and their successful application to diverse combinatorial
optimization problems, a new class of methods, including
iterative methods, ant colony optimization, particle swarm
optimization, and many more, are currently being utilized
in structured and distributed databases to identify optimal
and suboptimal solutions for big join queries in the provided
problem space. Query Optimization makes assumptions and
unifies cost models by portraying the price of a query
plan as a recurring process, which is how we introduce
optimization algorithms using query optimization in this
paper and define and analyze corresponding query opti-
mization methods. The next examples require this since it
allows for the modeling of numerous parameters and cost
measurements.

A. Scenario 1
As a result of a cloud service, multiple user can request

a large scientific data gathering via a interface. requests are
processed in the cloud. multiple user publishes user requests
by joining predicates onto the web interface, that conform
to query templates such as

SELECT * FROM Table-Name WHERE Q1 AND Q2

where Q1 and Q2 are unnamed predicates. Accepting higher
monetary fees can frequently shorten the time it takes to
process requests in the cloud [18].

As both a result, after submitting a query, customers are
presented with a visual representation of various exchange
among completion time and financial costs (as realized by
other query plans), from which they can select the appropri-
ate exchange. to hurry up the production, its cloud service
undertakes a preprocessing step in which it determines the
applicable request intends by each request framework. both
expense performance measures were indeed processing time
or pecuniary costs since the selectivity’s of the predicates
must be specified as parameters during preprocessing. It is
deemed relevant if the time-fees tradeoff of a request intend
was indeed pare to-optimal at for lesser it only variable
inside this measurement space—that seems to be, no exit
option must have fees as well as way quicker runtime.
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B. Scenario 2
Integrated SQL queries are a typical application for

P[Q2,Q3]: All pertinent request strategies for one particular
request format were also approximated ahead of schedule
versus eliminate information retrieval pricing sometimes
when speed. Parameters model the quantity of run-time
buffer space or the selectivity of irrelevant predicates. the
processing time is the only cost metric in the typical situa-
tion. however, inside the case of interpolation method query
processing, execution time may well be exchanged for result
precision [15]. therefore, in scenario, optimization must
take both the metrics execution time and result precision
into consideration. the optimum request plan is decided at
runtime based not just on actual values are provided and
more on a regulation and it calculates how to best balance
execution time and return precision, for example, depending
on the present total power or the lowest accuracy needed
for such a single iteration.

3. Ant Colony Optimization
The ant colony is really a meta-heuristic algorithm

called secretion data in order to identify a quickest distance
from with a protein source here to hives without use of
impactful cues. Ant colonies leave behind pheromones,
which are chemical molecules, as they seek for food. More
pheromone is released onto the ground as the ants go down
the track. The above positive reaction system is likely to
result in the formation of an obvious direction because after
with their hives towards the source of food, enabling the
next ant to choose one path with a probability related to
the amount of pheromone. The following are the primary
traits of actual ants:

(1) True ants choose the strongest pheromone trail.

(2) The amount of pheromone left on a path reduces the
distance.

(3) Pheromones allow genuine ants to communicate in
an indirect way.

The ACO was created using the previously indicated
behavior of identifying genuine ants looking for the short-
est path. Artificial ants collaborate to solve problems by
exchanging information through the use of pheromone de-
posits on paths. This revolutionary method is known as Ant
Colony Optimization (ACO). Numerous artificial ants help
ACO build optimization methods and exchange information
via a communication system. They take the shortest paths
because ants emit pheromones that other ants can detect and
follow if they come across them. As a result, the collective
behavior that has established shows that if a few ants choose
the same course of action, the likelihood of further ants
choosing the same course of action increases. The key idea
behind ACO is to portray a problem as a graph search for
the shortest path with the lowest cost [18], [19].

The following are the steps in the Ant Colony Query
optimization algorithms:

Algorithm 1 Ant Colony Query Optimization
Input: The query relations r = {ri}(i = 1..n)
Output: The optimization of query relations.
BEGIN

1) Step 1: Configure the specifications. The suggested algorithm’s
parameters are set to zero.

2) Step 2: Sorting the nodes by their geographical coordinates:
These nodes are classified as either perimeter nodes or center
nodes. In preparation for the algorithm’s subsequent execution,
the categorized results are recorded and sorted.

3) Step 3: The m ants are assigned at random to one of the n nodes,
and this node is added to the ant’s tabu list.

4) Step 4: The path length is calculated when the ants have made
their choice. after that, the relevant tabu list is altered. rep Step 3
until about the ant has accomplished its tour. the current optimal
path length is retained in this iteration, and the global optimal path
is updated.

5) Step 5: Refresh the secretion: using the equation from the upgraded
secretion updating rules, the pheromone on the optimal path is
worldwide modified.

END.

Iteration control is the sixth step. set the iterative counter
to return to Step 4. if the procedure is not rescinded, the
best workaround is returned [20], [21].

Limitations of ACO: Ant colony does have strict limita-
tions whereas getting special contains somewhere around
parallelization, computing, global network view abilities,
but instead fast speed, to name few of [22], [23]:

• The ACO-required 1st structure appears to lack the
one organized format sure going to begin. along secret
mission sure nutrition, that whole of such drive over
all locations once spontaneous, leading to the one
severely restricted community scattering potential.
such an elongates a timing provide the optimum
solution.

• Because of the low pheromone concentration on the
ants’ traversal pathways, the initial convergence speed
of ACO is reduced. this lengthens the time required
to produce a set of interesting possibilities. however,
because of the positive feedback mechanism, the pace
of convergence to the optimized design rises.

The ACO algorithm iteration is frequently separated into
two sections. To begin, both ant in the colony leaves a
path in the graph from a starting vertex to the end vertices
and edges. Second, once all ants have begun to arrive at
the completion vertices and edges, the perimeters of each
path are marked with a quantity of secretion proportional
to the standard of the path reported. In the conventional
ant system [24], an ant k establishes a path by recursively
commuting from its most recently visited vertex x to some
other vertices and edges y that the ant has yet to witness.
Estimated probability pk

xy(i) for an ant k to migrate from
vertex x to an unvisited vertices and edges y at iteration I
of the process is defined as [25]:
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pk
xy(i) =


[Txy(i−1)]α∑

z∈Vk(x) [Txz(i−1)]α[ηxz]β
, z ∈ Vk(x)

0, z < Vk(x)
(1)

As between, the and parameters determine the relative
importance of the information given by global secretion
traces and local heuristics. The secretion amount Txy(i)
which is coupled with an edge connecting vertices x and y,
is updated at iteration I based on the most recent experience
of all ant colonies. Where Txy(i−1) is the general secretion
amount on the edge between vertices x and y at iteration
process Txy(i − 1) is a neighborhood methodology measure
capturing the inverse of the (estimated) distance between
vertex x and vertex y, and vk(x) is the ant k’s unvisited
vertices after visiting vertex x.

Txy(i) = (1 − ρ)Txy(i − 1) +
m∑

k=1

∆T k
xy(i) (2)

where denotes an extraction efficiency that prevents the
colony from correlating to a local optimum and T k

xy(i)
records the amount of secretion deposited by ant k on an
edge ωxy connecting vertices x and y at iteration i. At
repetition I this quantity is provided as a function of a
constant q and the length Lk of ant k’s path Tk(i). i.e.,

∆T k
xy(i) =

{ Q
Lk
, ωxy ∈ Tk(i)

0, ωxy < Tk(i)
(3)

4. Q-Learning
A crucial RL concept is Temporal-Difference (TD)

learning. It combines techniques from Monte Carlo (MC)
and Dynamic Programming (DP). TD, like MC, learns
directly from raw experience and modifies estimates without
waiting for the final result [24]. One of these TD control
algorithms which discovers the action-value function Q
stands for Q-learning (s; a). This function tells the agent
whether doing action a while in states is a good idea. To
isolate the acting policy from the learning policy, Q-learning
adopts an off-policy method. As a result, even if the action
chosen in the following state was poor, the information
was not incorporated in the update of the current state’s
Q-Function, resulting in a terrible decision [26]. However,
because Q-learning employs off-policy, the difficulty is
resolved.

The Q-value calculation is as follows:

Q(x, a) = R(x, x′, a) + γ
∑

x′
P(x′|x, a) maxa∈AQ(x′, a) (4)

The value represents the learning rate, which ranges
from 0 to 1. r is indeed a prize a certain denotes the speed

with which it is curtailed accented with oil - rubbed period.
Q(x, a) of intervention with in present incarnation a amount
of the present virtues 1

4 (s, a) and or the equations clearly
indicates the simplest activity inside the current condition
are also used to keep updating s. Q-learning has been
preserved besides using such this same past equation of
between frequently upgrade the q-value for every situation.
prior to commencing Q-Learning, its q-table includes tro-
phies. whether an operator inside this condition determines
doing an activity oriented on something like a strategy,
that as well advancements towards the next government
(4). the above step is conducted loads of times only until
outcome q-value iterates to just a unique value, about
which direction that whole q-table is being used to remedy
of one problem situation. To solve the Bellman problem,
Q-Learning integrates whether nonlinear optimization but
also model - based methodology. Q-learning seems to be
the core element among several classification methods as
its simplicity or fruitful such as single person particular
conditions. a value would be only reconfigured once each
activity out q learning. subsequently, — when it comes
myriad states-actions would’ve never been witnessed al-
ready when, this is hard complete aim to address complex
difficulties productively in such a expansive state-action
setting. besides this, because of the q-table such as rewards
would be predetermined, a large quantity after all memory
rack is required. together in inter system consists of two
and more agencies, an outsized state-action brain seems to
be obligated, where it postures troubles. As a final outcome,
foundational q-learning methods have been made obsolete
so they are powerless sure achieving successful learning
together in multi-agent particular circumstance [27].

Q-Learning algorithm: As previously stated, q-learning
is among the most thoroughly was using learning algo-
rithms [28]. That whole method is easy and also is primarily
based on continuing to follow updating formula:

Algorithm 2 Q-Learning Algorithm
BEGIN

1) Initialize function of Q-arbitary
2) Take note of the present situation s.
3) Times

• Using Q, compute the policy (s, a).
• Select an action an in accordance with agent policy (s, a).
• Carry out action a and note the resultant reward r and the

following
◦ State s.
◦ Apply Equation (4) to update Q(s, a).
◦ Set s→ s.

4) Till completed.
END.

Agent Training process: The agent must explore his
surroundings and learn from his behaviors, whether positive
or negative, when using an algorithm like Q-learning. The
key principle of this strategy is to compute the maximum
each state’s predicted future benefits for effort [23]. The
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Q table, which is an important idea in this strategy, then
appears. In fact, this table retains the Q-value obtained
from each action-state and hence depicts the environment
to some extent. This value is calculated by the Bellman
equation [29] from the expected cumulative reward, where
represents the discount rate (2[0, 1]), i.e. the greater it is,
the more important distant rewards are

Qπ(s, a) = Eγt ×

s∑
t=0

Rt+1(s, a) (5)

Q-values for a given state and action, the value for
projected discounted cumulative reward Rt+1(s, a). In the
first part of the operation, the Q-table must be built with
the following parameters: n columns for the number of
actions and m rows for the number of states, with total
values set to zero. Then comes the decision and action. The
concept of exploration and exploitation trade-off enters the
picture with the “-greedy strategy.” As earlier mentioned,
the “parameter will be higher at initially and will decrease
progressively.” The agent discovers the environment for the
first time, according to the reasoning. And the second time,
he’ll apply his expertise to make the best decisions possible.
The final phase is the update, which comes after the action
has been chosen and executed.

Q-Table: The Q-table must be changed with the value of
the action-state, where R is the learning rate ([0, 1]) which
averages modifications.

Figure 6. Example of a basic environment (left) and its Q-table(right)

Measure Reward and Evaluate: Now we have taken
an action and observed an outcome and reward.

Qnew(s, a) = Q(s, a)+ α
[
R(s, a) + γmaxa′Q(s′, a′) − Q(s, a)

]
(6)

The state and action’s Q-value; R(s, a) - the remunera-
tion for doing an activity in a state; Max Q(s′, a′) denotes
the greatest estimated future payoff; Q(s, a) denotes the
current Q values.

This learning approach can be performed as many times
as necessary, until the agent has enough information to
always choose the correct action from the Q-table. Fig-

ure 6 illustrates a world with only nine states. Consider
a four-elevator, ten-floor elevator group control [30], [31]:
it generates a lot of state and a large Q-table. Because
of the processing power, using the Q-learning method to
these cases is impossible. As a result, Deep Learning and
Reinforcement Learning have been integrated.

5. Experimental Results
This section will demonstrate numerous successful tests

to assess the efficacy of our suggested paradigm. In addition,
the latency In any case, our simulations will be compared
against the usual inference style of play to determine
effectiveness. Mohsin et al. [32] employs a new rendition
such as C# interface to perform type evolution technique
(ACO) automated system with Q-Learning methodology
published via Windows Phone code mag [33], [34], [35],
[36], [37]. The software is written in C# and runs on
MATLAB. To properly implement the platform version on
Hadoop 2.4.1, and Hive 0.12.0, Apache, Spark 1.1.0, as well
as to investigate the many factors that may influence the
overall performance of encrypted query database systems
(see Table I).

Some of the criteria that perform include optimization
time, workload delay, minimal cost, scaling up queries size
and number of entries solely within the database, request
result size, or use of multiple-condition searches, etc. The
studies’ default values and parameters are bandwidth - 1000
mbps, latency - 10 milliseconds, database size - 50000
records, query size - 1000 records, record size - 10 bytes,
and data distribution - same performance. The database
system will be assessed based on query efficiency, which
will be displayed with optimization time delivery, work load
delay, and lowest cost applied.

Optimization Time: The optimization times varies be-
tween the ACO and Q-Learning approaches. Keep in mind
that the cost estimates are normalized to the best plan
discovered. This includes the optimal answer in almost all
instances up to size 40, i.e., the costs are correct, but due to
the NP-hardness, we can no longer guarantee optimality for
larger questions. ACO algorithms appear to improve quicker
than Q-Learning methods: sometimes when length 100, it
is simply the best method available, whereas Q-Learning
approaches fail. Nevertheless, as demonstrated with the
smaller sizes, it works well enough in overall, even when
regular Q-Learning would have been a superior alternative.
the workload optimization time is seen in Figure 7.

The relative advantages of the optimization techniques
remain unchanged from earlier workloads. Except for the
fact that the ACO Method now produces slightly better
plans than the Q-Learning algorithm, the optimization time
for the ACO Algorithm is practically linear. Considering
the presence of a little super-linear component.
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TABLE I. Experimental Parameters

Parameters Meaning

Software C# and runs on MATLAB
Platform Hadoop 2.4.1, and Hive 0.12.0, Apache, Spark 1.1.0

Bandwidth 1000 mbps
Latency 10 milliseconds

Database size 50000 records
Query size 1000 records
Record size 10 bytes

Figure 7. Optimization time

Cost Model. Minimum Cost: As a result, because the
calculation approach is based on either duration (the total
amount of all element values), the same computation has
been employed. The general fee is decided even as a total
amount anyway i/o charge with all participating system
and data transport (communication) charge if attempting to
transfer organization’s between both locations appears to be
required:

TotalCost = IO join +COMRi (7)

in which,

• IO join represents the cost of the join procedure, and

• COMRi indicates the cost of moving entity Ri between
site locations.

The IO join cost is calculated as follows:

IO join =
(
P join + Pwrite

)
× IO (sc) (8)

in which

• IO(sk) signifies a i/o period for such turntable some-
times when posture sc,

• Pwrite signifies that whole profile rely essential to save

all the enlist final outcome, as well as P join connotes
its document number activated of about operate it and
enter protocol for both ri or typically begin.

P join has been derived just like:

P join = PRi × PR j (9)

where

• PRi is the number of pages in entities Ri and R j.

Pwrite is calculated as follows:

Pwrite =
card(Ri join R j) × len(Ri join R j)

Ps
(10)

where Ps is the size of the page, The average duration of a
tuple in Ri is given by len(Ri), while the number of tuples
in Ri is given by card(Ri). Overall cost of moving relation
Ri from place S k to location S p is computed as follows:

COMRi = card (Ri) × len (Ri) ×COM
(
S k, S p

)
(11)

where COMRi is the time needed to move one byte from
location S k to location S p.

The ACO model’s least values were compared to the Q-
learning algorithm’s cheapest cost in the first experiment, as
illustrated in Figures 8 and 9. As illustrated by the figures,
ACO still provides a lower cost than Q learning. The results
show that ACO achieves greater performance in terms of
cost minimization.

Work load Latency: Work flow performance, tail la-
tency, and total costs while using the ACO, Q-Learning
algorithm to select the query plan with the lowest cost value.
hinting that ACOs are better than Q-Learning methods for
changing hardware Figures 9 depicts a comparable com-
parison to a commercial database system. Again, ACO can
save money and reduce workload delays. The difference,
however, is small, and the overall costs are much lower,
signaling that the commercial system is a better starting
point than the Q-Learning method. When compared to
the Q-Learning algorithm, for example, ACO achieved a
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cost and time reduction of over 50%, meaning that the
commercial system is more flexible to various hardware.

Figure 8. Minimum cost

These expenses do not include commercial system li-
censing fees, which were waived for the purposes of this
study. Work load until a set of queries is done, latency
performance has a significant impact on dashboard perfor-
mance), we will look at the distribution of query latencies w
Figure 9 compares the workload latency of Q-Learning and
ACO algorithms, which is the amount of time required to
build a query plan. Despite the fact that ACO avoids the Q-
Learning algorithm’s accelerating lookup expense, and as
such it is somewhat easier than Q-Learning for requests
due to the price of creating network calls. Overhead is
outweighed by the exponential search cost as the number
of relations to join grows, and the ACO optimization delay
climbs substantially quicker.

Figure 9. Workload latency

Scale up Queries: throughout this number of experi-
ments, researchers strong impact after all person improve-
ment like grow exponentially asks. In our testing, we look
at the ACO algorithm first, then the Q-Learning algorithm.
Each time an ACO was recalculated, only about 45 benefits
were recalculated. In comparison, the Q-Learning algorithm
does around 1558 benefit re-computations per time, result-
ing in a query optimization time of seventy-seven seconds,
as opposed to seven seconds for ACO. Scale up is another
major concern in the Q-Learning process. The ACO plans
also produced roughly identical results on the queries we
ran.

As a result, the ACO saves substantial time while main-
taining the quality of the designs presented. Researchers
calculated the price of ACO without the sharability data
processing to determine the advantage of the sharabil-
ity computation; each node is assumed to be potentially
cacheable. We discovered that the optimization time grew
dramatically across the spectrum of scale up queries, and
also that sharability computation is also a highly helpful
improvement. Because the optimization time for the Q-
Learning method and the ACO algorithm is linear, the ACO
algorithm now produces slightly better plans than the Q-
Learning algorithm. The minimum cost ACO model was
compared to the minimum costs achieved using the Q-
Learning method. In summary, our modifications of the
ACO’s implementation result in an orders of magnitude gain
in performance, which is critical for its utility.

6. Conclusions and FutureWork
Query optimization has a significant impact on the cost.

In this study, we provided an optimization of reinforcement
learning execution using the Ant Colony method and the
Q-Learning algorithm. The lowest cost, workload delay, op-
timization time, and scale up questions, according to study.
According to the experimental data, ACO outperforms Q-
Learning in terms of discovering optimal solutions in terms
of both time and quantity. The influence of query cost and
optimization time will also be investigated. When compared
to the Q-Learning algorithm, using a non-dominated ACO
algorithm can discover optimistic queries and reduce query
cost.

Future work could focus on refining and extending the
reinforcement learning models used in this study. Exploring
advanced algorithms or hybrid approaches that combine
multiple reinforcement learning techniques could lead to
further improvements in query optimization performance.
As new technologies and frameworks for distributed com-
puting continue to evolve, future work could explore the
integration of reinforcement learning-based query optimiza-
tion techniques with emerging platforms such as edge
computing, server less architectures, or block chain-based
databases.
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