&P International Journal of Computing and Digital Systems
[::} ISSN (2210-142X)
= Int. J. Com. Dig. Sys. 16, No.1 (Aug-24)

o5
2,
L

oy

https://dx.doi.org/10.12785/ijcds/160162

Microservices for Asset Tracking Based on Indoor Positioning
System

Dondi Sasmita' and Gede Putra Kusuma?

L2Computer Science Department, BINUS Graduate Program — Master of Computer Science, Bina Nusantara University, Jakarta,
Indonesia. 11480

Received 06 Feb. 2024, Revised 19 Apr. 2024, Accepted 05 May 2024, Published 10 Aug. 2024

Abstract: Indoor positioning systems (IPS) are widely used for different use cases, but most of them are for asset tracking and
indoor navigation. Asset tracking, for instance, might help industries be more efficient, such as warehouses, stock recording, guest
trackers, and many more. Implementation of asset tracking needs to have the IPS, such as trilateration and fingerprinting. To have an
accurate location, it is not just precise; the data that will be consumed also needs robust services to process all that data in almost real
time. Bluetooth low energy (BLE) is used to send the received signal strength indicator (RSSI) to the microservices-based server. To
support this, microservices architecture (MSA) is designed with a Service-Oriented Modeling and Architecture (SOMA) framework to
translate business goals into necessary services. We were implementing and comparing both MSA implementation strategies, which are
orchestration and choreography strategies, on cloud computing with the Kubernetes platform. These strategies were compared to find
the most resource-efficient with the biggest number of served requests. The bigger the served request number, the more assets will be
tracked in real time. Less resource usage could also mean the computational cost is inexpensive. The study finds that the choreography
strategy in MSA is better for IPS since the number of served requests is five times higher with similar resource usage.

Keywords: Indoor Positioning System, Bluetooth Low Energy, Asset Tracking, Microservices Architecture, SOMA Framework

1. INTRODUCTION

The Global Positioning System (GPS) is being used
everywhere for daily tasks, e.g., finding addresses, tracking
packages, and others. GPS is powerful since it uses satellite
technology, but it cannot be used for specific scopes such
as indoor navigation or tracking assets inside a building or
underground. Many industries, including healthcare, supply
chain management, retail, construction, manufacturing, and
many more, can utilize these scenarios. For instance, the
military uses asset tracking for target tracking, where the
system estimates and detects an object’s behavior, even pre-
dicting its future location [1]. In the supply chain industry,
asset tracking serves as a tool for logistic tracking and
inventory management. With this, the company can track
and monitor the shipment progress and conduct inventory
counts more effectively in real time. Additionally, clothing
stores could use the asset tracker as an anti-theft and
counterfeiting device, triggering an alarm when the clothes
pass through exit points [2]. Asset tracking is also useful
for companies that need to track their employees’ locations.
The tracker could be placed on an employee’s laptop or a
construction worker’s safety helmet to check whether their

employees are on the office or construction sites [3]. With
asset tracking that can be used as other sensors, companies
can monitor their construction workers’ conditions and
safety at the same time. Safety and healthy workers will
lead to better productivity [4]. Similar to the others, in
hospitals, asset tracking could be implemented to track their
patients, medical staff, medical equipment, and vehicles.
The goals are to improve patient care, productivity, and
operational efficiency [5]. Asset tracking in manufacturing
can monitor the location and condition of products and
materials. Sensitive industries like pharmaceuticals and food
could standardize their products’ quality by monitoring their
surroundings, equipment, and environment [6].

While asset tracking is useful to improve business
productivity, there are some challenges to implementing it.
The cost of the device or tracker is really dependent on
the number of devices, use cases, and devices’ lifecycle
plans [2]. The algorithm for asset tracking is also critical.
A fully autonomous factory full of robotics, for instance,
will need better accuracy compared to a factory that still
has people do manual procedures. Internet of Things (IoT)

E-mail address: dondi.sasmita@binus.ac.id, inegara@binus.edu

https://journal.uob.edu.bh

https://dx.doi.org/10.12785/ijcds/160162
https://journal.uob.edu.bh

%
A0
>
§’~+:1J'-uj
3

S Bl

862

Dondi Sasmita., et al.: Microservices for Asset Tracking Based on Indoor Positioning System.

energy efficiency and interoperability are also some of the
challenges. These IoT devices need a constant supply of
power, which could be expensive or limited in some cities or
countries. Also, the lack of interoperability of IoT devices
from different vendors will create challenge as well. The
more custom the 10T interfaces or protocols, the longer it
takes to integrate with existing or new devices [6].

The technology to get user-specific location inside a
building or room is called an indoor positioning system
(IPS), and it could be implemented using different tech-
nologies such as wireless fidelity (WiFi) [7], [8], [9],
Bluetooth low energy (BLE) [10], [11], [12], [13], [14],
radio frequency identification (RFID) [2], [5], etc.

BLE is a wireless technology that runs at 2.4 GHz
frequency, just like wireless fidelity (WiFi), but BLE’s size
is smaller, the price is cheaper, and it consumes less energy,
which makes BLE perform better in the long run and scale
up efficiently in terms of cost. Batteries power most BLEs,
but some devices, such as BLE Gateway, require more
power than BLE Beacon and primarily rely on electricity.

Indoor positioning systems (IPS) commonly use sev-
eral techniques, such as trilateration, fingerprinting [9],
[12], [14], [15], and hybrid approaches. Trilateration is
a technique that uses three devices to estimate distance.
Fingerprinting is estimating distance by creating a radio
map database to collect data from several points and create
a model using that data. While hybrid combines both
trilateration and fingerprinting.

There are several methods to estimate an asset’s loca-
tion, like weighted k-nearest neighbor (WK-NN), machine
learning, and deep learning-based. Collecting fingerprinting
data or a radio map database can complement these meth-
ods. One of the neural network-based algorithms is artificial
neural networks (ANN).

There are several methods to estimate an asset’s loca-
tion. The great system behind the IPS is crucial for real-
time data retrieval. There are few architectures to build
systems, such as monolith [16] and microservices [17], [18],
[19], [20]. Monolith’s modules are dependent on each other,
while modules in microservices are independent. Since the
modules are independent, services in microservices archi-
tecture (MSA) could be written in different programming
languages and use messaging protocols to communicate,
like Protocol buffers (Protobuf) [21] and JavaScript Object
Notation (JSON). Additionally, the 10T itself can use mes-
sage queuing telemetry transport (MQTT) [22], [23] to send
telemetry information to the server.

To start sending the telemetries, the public must be able
to access the IPS’s system anytime and anywhere. One
of the easiest and most common is to host the system
in a public cloud instead of on-premise. There are several
global cloud hosting companies with reputable names, such
as Google Cloud Platform (GCP), Amazon Web Services

(AWS), Alibaba Cloud, Microsoft Azure, Digital Ocean,
and many more.

In this experiment, BLE will be used as a beacon
and gateway since it has several advantages, like its size,
price, and efficiency. We will send the data from BLE to a
microservices-based server. Researchers will design a mi-
croservices architecture with the Service-Oriented Modeling
and Architecture (SOMA) framework [17] that suits asset
tracking on IPS. The design will use both MSA’s implemen-
tation strategies, which are orchestration and choreography
strategies. We will deploy this MSA in a cloud comput-
ing environment featuring Kubernetes services. Finally, the
comparison of served requests and resource usage between
those strategies will be done to find the better approach for
IPS.

2. RELATED WORKS

To implement IPS in real time, there are two things
that need to be considered, which are indoor positioning
methods and microservices architecture.

A. Indoor Positioning Methods

Implementation of IPS is dominated by Bluetooth and
WiFi technologies, especially when Bluetooth low energy
(BLE) is introduced because of its power consumption. Ad-
vertisement packets, a feature of BLE, report the Received
Signal Strength Indicator (RSSI).

In 2021, Suseenthiran et al [10] also did research regard-
ing BLE. They used the RSSI, calculated the information
using trilateration, and then sent it via LoRa (long range)
technology. Their research can be continued in the future
for IoT (Internet of Things) purposes since LoRa can send
signals over a long range.

Other than Trilateration, Fingerprinting is also becoming
more popular. This method can be used for BLE and
WiFi technologies as well [8], [9], [12]. Riady & Kusuma
used Fingerprinting and pedestrian dead reckoning (PDR)
combined with ANN.

Researchers are increasingly using neural networks as
part of their methods. Sulaiman et al, in 2022, were us-
ing generalized regression neural networks (GRNN) [8&].
Combined with the fingerprinting technique, their research
divides the phase into two: offline and online. The offline
phase is to collect data from radio map fingerprinting and
create a neural network model.

Cha & Lim also proposed a new framework based on
neural network called the hierarchical auxiliary deep neural
network (HADNN) in 2022 [9]. The idea is to simplify
the calculation of building, floor, and users’ locations at
once. Compared with the same dataset from TUT2017 and
TUT2018, HADNN gave a better result and improved the
floor’s accuracy to 94.58%.

When trilateration or fingerprinting alone is not enough,
there is research that combines those two to get a better

https://journal.uob.edu.bh

https://journal.uob.edu.bh

Int. J. Com. Dig. Sys. 16, No.1, 861-873 (Aug-24)

¥

R
%)
Gle fiiay

“u’ 863

2,

10 Allgy

result. Lie & Kusuma are two of them. They proposed the
coarse-to-fine algorithm in 2021 [24]. The mean position
error (MPE) is 0.874 meters, and the computation to process
it is between 0.4 and 0.7 milliseconds.

Mehrabian & Ravanmehr, in 2023, also used a hybrid
approach that combined PDR and fingerprinting [25]. They
used a novel filter called weight-based optimization (WBO)
to optimize the RSSI value. Then they optimized the path
loss parameter with particle swarm optimization (PSO) to
convert RSSI to a distance value. The mean absolute error
(MAE) value is 0.68 meters from a room with a size of
4.25 x 10.7 meter?.

From the IPS work that has been done in the last couple
of years, there are trends to use BLE over other technologies
because its performance gets better each year. Also, BLE
is one of the cheapest options to mass produce. Hybrid is
also becoming a way to find a better result by combining
the advantages of each methodology.

B. Microservices Architecture

“A monolith is a software application whose modules
cannot be executed independently” [16]. One of the reasons
organizations moved from monolith was the monolith’s
flexibility. Organizations were unable to selectively scale
up modules or services, as they were required to expand
the entire architecture. As the system scales up, so does the
cost.

“A microservices is a cohesive, independent process in-
teracting via messages. While A microservices architecture
(MSA) is a distributed application where all its modules are
microservices” [16].

A microservices architecture is totally different from a
monolith, but there is no definitive answer to which archi-
tecture is the best. Both architectures have their strengths
and weaknesses. Velepucha Flores did research in 2023
regarding the architecture’s strengths and weaknesses [26].
Small applications demonstrate the strength of monolithic
architecture, as it simplifies development and deployment.
Maintenance, reusing code, and tracking code changes are
also simpler. However, as the application grows, so does
the cost of maintenance and scaling. It is also difficult to
use a different programming language. This case will arise
when there is a limitation on the programming language
used. Where a microservices architecture has strengths, the
system could always be online. This happened since during
updates and deployments, we don’t need to restart the whole
application. We can assign the team specifically for each
service, making maintenance and testing are easier.

In 2004, Ali Arsanjani introduced techniques to identify,
specify, and realize services in a service-oriented architec-
ture (SOA), their flows and composition, as well as the
enterprise-scale components needed to realize and ensure
the quality of services required by SOA [27]. Then, in
2008, Arsanjani et al proposed a method for developing

service-oriented solutions called service-oriented modeling
and architecture (SOMA) [17]. SOMA is used for different
sizes of scopes in multiple industries worldwide. The idea
of SOMA is to standardize on how to analyze, design,
implement, and deploy SOA effectively.

In 2021, Wang et al surveyed and interviewed pro-
fessionals with different backgrounds and positions, from
software engineers to devops [28]. Wang et al conducted this
survey in two ways: face-to-face and online, focusing on
three main concepts: architecture, infrastructure, and code
management. 81% of respondents cite the business process
as the primary factor in determining the MSA granularity
of the services under development. While 43% refer to data
access and 24% to the team’s structure.

Still in the same year, de Toledo et al also interviewed
25 practitioners related to 16 architectural technical debts
(ATD). There’s a potential issue when MSA is developed
with shared databases if it is not well designed. A database
per service and a saga pattern [29] could solve this issue,
ensuring data consistency for each service.

Other than data consistency, there are distribution, porta-
bility, availability, and robustness, which are a few key
characteristics of MSA [30]. There are several ways to
implement these, including orchestration using Docker. This
will isolate problems in each service without affecting other
services.

Docker is one of many tools to contain the microser-
vices. The goal is to simplify the lives of developers by
automating scale-up and scale-down processes. Dragoni et
al did research to show how powerful containerization and
orchestration microservices are with Kubernetes [30]. With
the tool, developers can focus on the service’s performance.

In MSA, performance can be affected by its design.
Shadija et al, in 2017, did research that shows services’
granularity could affect MSA performance if their design is
too deep [31]. The granularity could be affected by the size
of the application, business processes, number of software
engineers, database design, and the re-use of the services.
Infrastructure also affects performance, like the latency and
the service’s location in the container.

When designing the MSA, other than performance, we
need to look at the business model. If the product will be
software as a service (SaaS), then the approach might differ
from internal use. In 2020, Song et al researched a SaaS
that can be modified [32]. Normally, customers can only
customize a small part of the SaaS, but in this research,
they proposed a method known as deep customization.
The idea is to group the granularity into four, which are
class/function, components, services, and languages.

MSA is also advantageous in terms of portability and
service maintenance. But with the services that are growing
and getting bigger, sometimes it would be tricky to find the

https://journal.uob.edu.bh

https://journal.uob.edu.bh

&
Ay\é‘ LIRS

§’~+:1J'-uj

0
% b

864

Dondi Sasmita., et al.: Microservices for Asset Tracking Based on Indoor Positioning System.

root cause of issues; therefore, Brandon et al researched a
topic related to root cause analysis (RCA) in MSA. They
were using graphs to help visualize the RCA [33]. From
their findings, the graph solution is better than the machine
learning approach, with a difference of around 19.41%.
They used Kafka and Spark to detect system anomalies
and save them. The solution is trained by using the data’s
patterns and shows the RCA in a graph. Their solution
allows users to set priority at the service, component, or
database level.

You can implement a microservices-based architecture
in on-premise, cloud, and edge computing. Tusa et al
compared the microservices-based system with serverless
functions in edge computing to support IoT analytics [18].
Since edge computing resources are close to the data
sources, the latency will be small and suitable for real-time
data processing. According to this research, microservices
with auto-scaling enabled are better than static ones.

Cota et al proposed a system called BHiveSense, which
is an information system for remote monitoring and man-
agement of apsiaries based on microservices and IoT [20].
The goal is to ”monitor honeybee colonies to promote more
sustainable resource usage and maximize productivity.”. The
system itself is divided into four groups: a prototype of
commercial off-the-shelf hive sensing, a Representational
State Transfer (REST) backend API, a web application, and
a mobile application. The backend is implementing a mi-
croservices architecture with ten modules, all of which are
transparent to the users. The information is then availbale
to the public via the API gateway module.

Atitallah et al, in 2023, researched how to implement
microservices with entities that are fine-grained and loosely
connected for deep-learning-based disease diagnosis ap-
plications [19]. They used microservices to decouple and
distribute their federated learning model. They are breaking
down the data analytic functions into smaller and more
specific microservices. With these fine-grained services,
they are able to improve scalability by making sure the
service is optimized and resource-efficient. This proposed
approach shows that it is better than traditional monolithic
architecture with centralized learning.

3. THEORY AND METHODS
A. Bluetooth Low Energy

Bluetooth Low Energy (BLE) is a wireless technology
that runs on an unlicensed frequency of 2.4 GHz. The
price of BLE is cheaper compared to other technologies,
and it is supported by most smartphones, making BLE
quite common to be used [34]. BLE power consumption
is also quite efficient, and its relatively small size makes
this technology easier to deploy [10]. BLE also has higher
sample rates, a smaller network latency, and better accuracy
than WiFi [11].

For several scenarios, BLE can be grouped into two: a
beacon and a receiver. A BLE beacon is a Bluetooth-based

device that can send signals and is powered by batteries
[13]. A receiver is a Bluetooth-based device that can receive
signals from transmitters or beacons that will be processed
or sent to a server.

BLE has a feature that reports the RSSI, which will be
used to calculate the signal’s strength between the beacon
and receiver. The power of the signal is dependent on
distance and the broadcast power value. From RSSI data,
the distance between beacon and receiver can be calculated
using several methods, like Lateration and Fingerprinting.

B. Fingerprinting

Fingerprinting is divided into two phases: offline and
online. During the offline phase, RSS data will be collected
from several reference points, as shown in Figure 1. With
this information, a radio map database will be created. Each
row of the database contains two dimensions, x and y. The
offline phase’s goal is to form a model [34]. Later, in the
online phase, this data will be used to estimate the asset
location using WK-NN.

To get the weight for this method, we should first
calculate (1)

1

Wy=) —
= di

ey

Where W is the weight’s value and d is the result of
the calculation between the asset location’s RSS and the
RSS from the radio map, which will be calculated using
Euclidian distance as shown in (2)

@)

Where p is the RSSI value that saved in radio map and
p is the measured RSSI. Once we have all the distances
and weights, we should normalize the weights using (3)

W,
NW, = o— 3)
=1 Wj

By calculate each normalized weight, asset’s location’s
estimation can be calculated using (4)

(x,y) = JZ (VW - (x7.3))) “)

J=1

Where (x,y) is estimated position while (xj,yj) is ref-
erence point.

https://journal.uob.edu.bh

https://journal.uob.edu.bh

Int. J. Com. Dig. Sys. 16, No.1, 861-873 (Aug-24)

m

SO

AN

“u_’ 865

e,
W

430 AL

(=
L 1 8 & o
1 B] Public Area J
[] o

) Transmitter

® Reference Point

Figure 1. Fingerprinting Method
Subscriber Subscriber
Al A2

Subscriber

Figure 2. Publisher Subscriber Pattern

3 Topic A
Publisher » | Topic B '*

Topic C
-

MQTT Broker

C. Message Queuing Telemetry Transport

This protocol is designed specifically for operation on
low-cost and low-power sensor or actuator devices. MQTT
runs over TCP with a small data packet, so the power
consumption is minimized [23].

MQTT uses a publish/subscribe pattern. The publisher
will send the message, while the subscriber will receive it.
In order to filter messages, MQTT uses topic to group the
messages, so the subscribers only get messages from the
topic which they subscribed, as shown in Figure 2.

MQTT also provides quality of service (QoS), which
guarantees the reliability of message delivery. There are
three levels, level 0 messages are sent only once. Level
1 messages are sent at least once, so if the subscribers are
not ready, the publishers could re-send the messages again.
Lastly, Level 2 messages need to be received. Important or
chained data might use level 2 QoS.

u N
i !

Event Broker

Centralized
Service

!

Service 2

Service 1 Service 3

Service 1 Service 2 Service 3

080

Choreography

Orchestration

Figure 3. Orchestration and Choreography

D. Microservices

A microservice is a cohesive, independent process inter-
acting via messages. And a microservice architecture is a
distributed application where all its modules are microser-
vices [16].

A few characteristics of MSA that make it more fa-
vorable than monolith architecture are flexibility, modular-
ity, size, and independence. Flexibility means the system
should be aligned with business dynamics and support the
modifications needed by the organization. The system’s
components need to be isolated, where each component
contributes to the whole function. In MSA, the service’s
size should be small, if it is too big, the service needs to be
broken down into two or more services so each service can
focus on one thing only. Lastly, services in MSA should be
operated independently from other services and can only
communicate through published interfaces.

MSA can be implemented using two strategies, which
are orchestration and choreography, as shown in Figure 3.
Orchestration needs a conductor, a centralized service that
will send requests to other services until a response is
received. While choreography assumes that there is no cen-
tralized service, the strategy will use publisher subscriber
mechanisms to collaborate between services.

Figure 4 shows the deployment era from traditional
to container. In traditional deployment, the application is
running on top of the operating system, which will be
difficult if there are applications that need to run on different
stacks. This issue was solved in the virtualization era, where
the application will be running inside a virtual machine. But
this deployment also has an issue where there are multiple
applications that run on different versions of libraries. For
instance, application A needs to run on Java 8, while
the other is using Java 11. These Java versions might
need different libraries, and if the system was updated,
the application might break. That is where the container-
ization deployment tries to address this issue, where each
application will have its own environment. With this scope,
developers would not worry about breaking applications

https://journal.uob.edu.bh

https://journal.uob.edu.bh

¢
& 1\&5

e

%)
Ty

30 Alisy;
%,

&

866

Dondi Sasmita., et al.: Microservices for Asset Tracking Based on Indoor Positioning System.

|ADD I App |

Bin/ Library

|ADDIADD| | App

virtual Maching Gomainer Gontainer Gomtainer

| App

| App

Bin / Library

0s os

virtual Maching

| App || App || App | | Hypervisor | |

| Operatng sysem [|

Container Runtime |

Operating System | | Operating System |

| Haraware [| Hardwre | | Hardwere |

Traditional Deployment Virtualized Deployment Container Deployment

Figure 4. Comparison Between Deployments

when updates are applied.

E. Google Protocol Buffers and Remote Procedure Call
Protocol bufters (Protobuf) were developed by Google
and introduce a mechanism to encode structured data in an
efficient and extensible format [21]. Protobuf is both human-
and machine-friendly because it allows developers to create
a Proto file, which will later be compiled into a native
language. Protobuf is language- and platform-independent,
which is in line with microservices behavior. It supports
Go, Python, Kotlin, and other programming languages.

Google Remote Procedure Call (gRPC) is an open-
source remote procedure call framework that utilizes proto-
buf as an interface description language and uses the next
version of the hypertext transfer protocol (HTTP), which is
HTTP/2 [35]. gRPC can use a single HTTP/2 connection
for bi-directional communication between client and server.
This key feature allows users to stream messages in both
directions.

Figure 5 shows the implementation of gRPC with Pro-
tobuf. The gRPC server can be written in Go and will be
called by the gRPC stub written in Python or Kotlin. These
gRPCs use Protobuf to send requests and receive responses.

FE. Cloud Computing

Cloud computing is a model that allows networks to
demand configurable resources like networks, databases,
servers, applications, and services that can be provided and
deleted instantly using the user interface [36].

There are five elements in cloud computing that is
on-demand self-service, broad network access, resource
pooling, rapid elasticity, and measured service.

On-demand self-service gives customers the flexibility
to instantiate new resources (Central Processing Unit, Stor-
age, etc.) automatically without any interactions with other
people who provided the services. With broad network ac-
cess, the resources can be accessed from public devices such
as laptops, personal computers (PCs), and smartphones.
The goal of resource pooling is to give economic scale
to customers by implementing multi-tenancy and model
virtualization. The next element is rapid elasticity, which
makes sure customers can add and remove resources with-
out commitment or a long-term contract. And to give cus-
tomers a way to evaluate their resources, cloud computing

Proto Response(s)

» gRPC Stub

Python Service

Proto Request

Proto Request

gRPC Stub

Go Service Proto Response(s)

Kotlin Service

Figure 5. Google Remote Procedure Call

hosting gives information based on measured resources that
customers have subscribed to.

In terms of services, there are four groups that commu-
nities are aware of, which are Infrastructure as a Service
(IaaS), Platform as a Service (PaaS), Software as a Service
(SaaS), and Data Storage as a Service (DaaS) [36].

4. ProPoSED MICROSERVICES DESIGN FRAMEWORK

We used the Service-Oriented Modeling and Architec-
ture (SOMA) framework to interpret indoor positioning’s
business use case into services. There are six phases
in SOMA, which are business and modeling transforma-
tion, identification, specification, realization, implementa-
tion, and deployment & monitoring.

The research is focusing on estimating the location of
assets inside a room within a building. During identifica-
tion, we used goal-service modeling (GSM) to transform
business goals into services based on their key performance
index (KPI) and the metrics that needed to be measured. The
goal-service modeling can be seen in Table I.

Once we identified basic services through GSM, we
detailed the services with a technique called domain decom-
position. This technique is a top-down analysis of business
models and business process modeling to identify services,
components, and flows. The result is in Table II.

During domain decomposition, we focused on account
management and asset location only. Here we were detailing
the process of account registration, where the flow is
enhanced by email verification and notification. We did the
same thing with the office registration, BLE registration,
and asset location. We added more flows to those services.

Once the services are fixed, we then group those func-
tions into services and explore their technical feasibility
through early prototypes designed and developed. These

https://journal.uob.edu.bh

https://journal.uob.edu.bh

Int. J. Com. Dig. Sys. 16, No.1, 861-873 (Aug-24)

m

SO

AN
0
w867

Uy

10 Allgy

TABLE I. Goal-Service Modeling

Goal | KPIs | Metrics | Services
1. Attract and retain customers | Increase new and retain exist-
ing users
1.1. Enable assets tracking ser- | Increase new and retain exist-
vice ing users with indoor position-
ing system
1.1.1. Enable assets tracking | Increase new and retain exist- | Number of indoor positioning))
service in office complex ing users with indoor position- | system users in office complex e Account Registration

ing system for office complex

Improve indoor
system’s quality

positioning

Account Management

Number of indoor positioning
system tracked assets in office
complex

Office management
BLE management

Asset management
Assets’ estimation’s lo-
cation

Assets’ location histories
e Algorithm management

Number of issues and solved
issues of indoor positioning
system

Store log information
Monitoring response
time

TABLE II. Domain Decomposition

1. Account Managemet
1.1. Account Registration
1.2. Office Registration
1.3. BLE Registration

2. Assets Location

2.1. Location Estimation
2.2. Location Histories

1. Account Managemet
1.1. Account Registration
1.1.1. Email Verification
1.1.2. Notification

1.2. Office Registration
1.2.1. Building Registration
1.2.2. Floor Registration
1.3 BLE Registration
1.3.1. BLE Beacons

1.3.2. BLE Gateways

2. Assets Location

2.1 Location Estimation
2.1.1. RSSI Data Checking
2.1.2. Estimation Methods
2.1.3. Estimation Process
2.2. Location HIstories

steps are part of specification

and realization. The designed

architecture can be seen in Figure 6.

5. Prorosep METHOD

A. Indoor Positioning System
We used an Espressif board named ESP32-S3, as shown

in Figure 7. It has BLE 5.0 and Wi-Fi modules embedded.
We will need to write a custom firmware so it will scan the
BLE Beacon with a universally unique identifier (UUID)
that is predefined. This device will be our gateway to receive
beacon RSSI, then assemble a payload with several other
pieces of information and send it to the server. We will put
six devices in a room with a size of 19 x 12 meter?.

The fingerprinting method with WK-NN will be used
to estimate the location of the BLE beacon. With finger-
printing, there will be two phases: online and offline. For
the offline phase, we will collect RSSI data based on 46
reference points and 45 testing points. The floor plan can
be seen in Figure 8. The blue color is the BLE gateway, the
green color is the reference point, and the red color is the
testing point. We will pick 45 random testing points from
the plan. The number of K that will be used is 6.

Once we get the radio map, we will estimate the location
with WK-NN (4) and calculate the mean position error
(MPE) with (5).

n

1
MPE = — Z error;
n

i=1

&)

where error is a Euclidean distance calculated from the
real location of the beacon (x, y) with the estimated location

(xp,yp) as shown in (6)

(©)

error = AJ(x=x,) + (=)

Together with the error, we will benchmark the esti-
mate’s process time, Central Processing Unit (CPU) and
Random Access Memory (RAM) usage as well.

https://journal.uob.edu.bh

https://journal.uob.edu.bh

\
R

yi%

(@30 Al

£

s
L

868

Dondi Sasmita., et al.: Microservices for Asset Tracking Based on Indoor Positioning System.

Ed—»
=

Clients

BLE Beacon BLE Gateway

Figure 7. Espressif ESP32-S3

ssaw

Orchestration Strategy

.
Services . Moules
P .
E Authentication | * | Acces
= & . o -
= T . -+ »
Authorization | «
AP 9 ! M RDBMS
2 Services L] e
Gateway | - A .
- Ll =
dl - M
+ » :
. ——
!‘-s -
2 * | Login |Register
g . E! B! Mo -
N g Account . < o
] Services M Change | Forgot RDBMS
= - Pwd Pwed
=l . . A
Load APL .
Balancer Gateway |« » .
< > 5 : Y
H) .
N g Logging M post . \'--.--/
= Services * | payioad >
E| . Log
= : S—
.
.
.
) APL P o 4 . kf:mslgs:m'ny building
Gateway [Ll g X - CRUD | CRUD
™ o N = Location =« floacation - »
- v g Services - - v RDBMS
S . insert | beacon | update
3 M RSEl | CRUD | location
.

MOTT

__

;

:

:

:

:

:

:

:
o

:

:

:

:

Subscriber Estimator

Broker

Y

Services Services

1st | 2nd n
\MethodMethodMethod

Bresraea e e e e rr e w

Choreography Strategy .

I I T I

Figure 6. Proposed Microservices Architecture

B. Microservices

With SOMA, we have specified and decided on the IPS
functionalities. We translated those features and services
into a chart shown in Figure 6. There will be seven
services, which are account, authentication, log, location,
subscriber, estimator, and API gateway services. To support
those services, third-party software will be installed as well.
They are PostgreSQL as a relational database management
system, MongoDB as a document data model, and EMQX
as an MQTT broker.

The subscriber service is the first service that receives
RSSI information from BLE gateways. The information will
be sent by BLE gateways using the MQTT protocol through
the MQTT broker. The main program of the subscriber
service is to establish a connection with an MQTT broker
and subscribe to a certain topic. Every time a payload is
sent to a topic, the subscriber service will receive it and
process the payload. Once the payload is processed, the
subscriber will call the location service using a Google
remote procedure call (gRPC) with a protocol buffer.

https://journal.uob.edu.bh

https://journal.uob.edu.bh

m

SO

AN
w869

e,
W

430 AL

Int. J. Com. Dig. Sys. 16, No.1, 861-873 (Aug-24)

o 200 400 600 800 1000 1200 1400 1600 1800

e o 0 0 o 0 o e o o @ o0 @ e 9.0 0 0 0 @ ®
C 2k M Ry SRk MR R SR 2

oooooo‘ooooooo‘oooooo.ooo
a0 o o o e o o o @ o

® @ 0 2 92 0 0 2 8 O 0 8 O 0 0 00 0 O 0 0 00
500 [] [[[] [[[

® © ©® ® 2 0 0 % O 0 O ©®® O ¢ 00 0 O O O OO

12Zm

™| o ol o e @ 6o oB ¢« HA P, & , «. 9.0,
900 00.0.00.00.0.0

I EEEEEEEN N NN
1100

> 0 0 0 o 0 0 0 o o 0 0 o @

Testing Reference BLE om

® Points Point (46) . Gateway

(167)

Figure 8. Fingerprinting Floor Plan

The location service is designed to store information
related to the location of the asset. Based on our business
flow, we stored several pieces of information, e.g., build-
ings, beacons, gateways, estimation algorithms, RSSI, and
the assets’ locations themselves.

Even though the estimated location is stored in the
location service, the process of estimation itself happens
in a different service, which is the estimator service. This
service job is only to estimate assets’ locations based on
methods or models that have been assigned to a building
or a floor. There are possibilities that different buildings or
floors might need different algorithms. This service will call
the location service’s function periodically to check whether
there are assets that need to be estimated. If there is, the
estimator service will check the assigned algorithm, use it
to estimate location, and return the coordinates of X and Y
to the location service.

For security reasons, all services are inaccessible from
outside the private network, except the API gateway service.
The API gateway service is built as an orchestrator, hence
the name of the strategy. As an orchestrator, the flow inside
microservices is transparent to the client. For instance, when
clients call an endpoint to retrieve a list of buildings, the
API gateway communicates with several services, which are
account, auth, log, and location.

The other services, which are account, auth and log
services, act as supported services in this research. Those
services are developed to do basic things such as users’
registration, checking passwords, storing log information in
databases, and other things that are not directly affected by
the location service’s performance.

To host these services, we used a cloud provider named
Digital Ocean in the Singapore region for this research’s
infrastructure. They have a managed Kubernetes service,
so we could focus on developing the services instead of
maintaining the Kubernetes platform. We will use their load
balancers as well to balance the traffic for both orchestration
and choreography strategies.

Digital Ocean has a dashboard that shows metrics related
to their servers and Kubernetes platform. This will help
us measure our services’ performance. During the test, the
metrics that will be measured are CPU and RAM. Other
than those, we will measure the number of served requests
too.

C. Evaluation

The microservices performance’s test scenarios are to
compare between two strategies: orchestration and chore-
ography. For orchestration, there will be two sub-scenarios
where we will test the API gateway with the Post method
only and the Get & Post methods together. So, there will be
three scenarios in total. Each scenario will be tested with
the same settings. The settings are to test with different
numbers of nodes and pod replication. We will test with 1
node & 3 pods, 1 node & 5 pods, 2 nodes & 5 pods, and 2
nodes & 8 pods. In terms of the number of connections, the
test will use 100, 500, and 1,000 concurrent connections.

The specification of the Kubernetes cluster’s machine
is 8 vCPU and 16 GB of RAM per node. For the load
balancer, we will use two nodes so it can accommodate up
to 20,000 connections, 20,000 requests per second, and 500
SSL connections concurrently.

https://journal.uob.edu.bh

https://journal.uob.edu.bh

®
R
§% u
8 ke iy

870

Dondi Sasmita., et al.: Microservices for Asset Tracking Based on Indoor Positioning System.

TABLE III. Fingerprinting Radiomap

X Y Gl G2 | G3 | G4 | G5 | G6
(cm) | (cm)
200 | 100 | -61 | -63 | -65 | -73 | -70 | -76
200 | 300 | -59 | -69 | -68 | -73 | -71 | -76
200 | 500 | -57 | -55 | -61 | -67 | -75 | -73

1800 | 500 | -68 | 62 | -54 | -54 | -40 | -47
1800 | 700 | -66 | -66 | -59 | 54 | -54 | -31

6. Resurt ANp Discussion
A. Data Acquisition

After installing the BLE gateways and deploying the
microservices on the cloud, we initiated the data collection
process. Using fingerprinting, we collected RSSI based on
reference points (RP). There are 46 RPs, each with 100
sample data points. Total RSSI data is 4600 records. From
these records, we calculate the average RSSI for each RP,
so by the end, the radio map based on reference points
only has 46 records. This radio map was then uploaded
to the estimator service for the online fingerprinting phase.
To calculate the accuracy, we collected another radio map
based on testing points (TP), where the coordinates are
different from RP.

The radio map format for both RP and TP is the same. It
has eight columns that represent beacon coordinates (x and
y). The coordinates are in centimeters and started from the
base point on the floor plan’s top left, as shown in Figure 8.
The other six are RSSIs from different BLE gateways.
Table III displays the format..

With these radio maps, we calculated the WK-NN
method’s accuracy and resource usage. Using (4) and (4),
the method yields an MPE of 6.32 meters. The estimation
process took about 1.98 milliseconds with CPU usage
around 1.2% and 0.5% RAM.

Compared to several other indoor positioning methods,
the WK-NN result in this study is underperforming. Su-
laiman et al with the same fingerprinting method, show a
better result with an error of 0.48 meter. The differences are
that they were using WiFi instead of BLE and using more
complex method compared to WK-NN, which is neural
network based called GRNN. Riady & Kusuma used 23
BLE beacons with fingerprinting, and ANN got a better
result with an MPE of 1.11 meters. Aranda et al with
360 BLE beacons with fingerprinting and WK-NN, got a
normalized error of 0.68 meters.

The number of beacons used in related works seems to
affect the IPS accuracy since Riady & Kusuma and Aranda
et al got a much better result with the same technologies as
our research. When the location requires precision, such as
in a fully autonomous factory, it is important to consider

‘%\ Kk85-1-28-2-do-0-sgp1-1701420035675
A% 10 3 thesis/ sG1-128.2:000

oy om

Figure 9. CPU Usage on Kubernetes Platform

the number of beacons. Despite the BLE’s lower cost
compared to other options, the implementation of IPS in
larger buildings or factories will ultimately result in higher
costs. While the method or model might be dependent on
the room’s layout and materials, WK-NN could achieve
similar accuracy with other methods like neural network.

B. Microservices Architecture

Once the fingerprinting data was collected, we tested
the microservices’ performances. There are three scenarios:
orchestration strategy for the GET and POST methods;
orchestration strategy for the POST method; and choreog-
raphy strategy.

We conducted load testing on the orchestration strategy
using a modern benchmark tool named Bombardier. It
works by calling an endpoint for a specific period of time
with a certain number of concurrent connections. We called
the endpoints for 120 seconds with 100, 500, and 1,000
connections to find the number of served requests and their
CPU & RAM usage.

For choreography strategy, we wrote a custom Python
script to imitate a real-life scenario where the BLE gateway
pushes the RSSI payload through the MQTT broker for each
interval time. In this scenario, we sent six payloads per
second for each 120-second connection. We used the same
number of connections as the orchestration, which are 100,
500, and 1,000 concurrent connections.

We used four settings to test the microservices’ per-
formance. 1 node with 3 replications, 1 node with 5
replications, 2 nodes with 5 pod replications, and 2 nodes
with 8 pod replications. Table IV, Table V, and Table VI
displays the results. The numbers are available from the
cloud dashboard, as shown in Figure 9.

Table IV shows the results for the orchestration strategy
for the GET & POST methods. This scenario demonstrates
that the largest served request per second (RPS) occurred
when there were 1,000 concurrent connections, referred to
as the APL. The RPS is 703. The average CPU usage is
33.3%, and the RAM is 15.2%.

Table V, the second scenario, shows that calling the Post

https://journal.uob.edu.bh

https://journal.uob.edu.bh

2
>

Int. J. Com. Dig. Sys. 16, No.1, 861-873 (Aug-24) - 871

TABLE IV. Orchestrations Strategy Result (Get & Post)

No. of connec- | No. of Nodes No. of Pods Average CPU | Peak CPU (%) | Average RAM | Peak RAM (%) | Total Served | Served
tions (%) (%) Requests Requests
Per Second

100 1 3 222 36.4 20.0 20.2 26,627 221

100 1 5 334 552 21.1 21.2 35,702 297

100 2 5 15.1 29.1 14.1 15.1 36,239 301

100 2 8 23.9 46.9 13.9 17.3 55,905 465

500 1 3 36.1 49.0 20.2 20.4 37,310 310

500 1 5 32.7 47.6 22.0 22.0 51,721 431

500 2 5 17.1 35.1 14.4 15.5 44,829 373

500 2 8 25.1 46.0 14.1 17.5 79,120 659
1000 1 3 27.1 339 21.4 21.8 31,926 266
1000 1 5 36.5 41.2 224 229 51,876 432
1000 2 5 16.5 26.0 14.5 154 47,287 394
1000 2 8 333 63.6 15.2 17.2 84,367 703

TABLE V. Orchestrations Strategy Result (Post)
No. of connec- | No. of Nodes No. of Pods Average CPU | Peak CPU (%) | Average RAM | Peak RAM (%) | Total Served | Served
tions (%) (%) Requests Requests
Per Second

100 1 3 31.2 38.1 20.5 21.0 23,638 196

100 1 5 42.7 57.2 22.1 22.8 34,538 287

100 2 5 23.0 35.3 14.7 14.9 31,216 260

100 2 8 31.6 46.8 15.5 16.8 38,292 319

500 1 3 32.1 40.1 20.5 21.1 29,346 244

500 1 5 424 59.9 222 23.1 27,143 226

500 2 5 23.7 39.2 14.6 15.1 33,844 282

500 2 8 32.1 57.3 15.5 16.9 40,784 339
1000 1 3 334 46.1 214 21.8 18,310 152
1000 1 5 44.5 63.0 22.3 23.0 23,652 197
1000 2 5 25.5 414 144 154 34,984 291
1000 2 8 343 65.6 15.3 17.1 43,580 363

method results in a smaller RPS. The RPS is 363, with an
average CPU of 34.3% and RAM of 15.3%. Compared to
the first scenario, this scenario used more CPU power. It
seems the Post method mainly uses CPU since the RAM
of 100, 500, and 1,000 connections is quite the same.

In the last scenario, the choreography strategy on Ta-
ble VI gave us the best result with 3,816 RPS. With 1,000
connections, this scenario served 457,970 requests for 120
seconds, with an average CPU of 26.5% and RAM of
21.2%.

The choreography strategy shows a better result since
the telemetry and estimation location services are separated
into fine-grained services. This strategy aligns with research
done by Atitallah et al where fine-grained service affects
the performance. The event-driven pattern also plays a
significant role, enabling the processing of telemetry data in
parallel with multiple services or pods. It differs from what
Cota et al did, where they used API Gateway with REST
for their backend while we divided the backend into two,
which are an orchestration strategy with the API Gateway
for system information management only and an event-
driven pattern in the choreography strategy to process the
telemetry.

Choosing the correct region for cloud computing could
also help achieve better performance. This is similar to
the idea of edge computing research done by Tusa et al

where the closer the server, the better the latency, and it
will increase the MSA performance. For the IPS in this
study, cloud computing is suitable since the telemetry’s size
is quite small compared with other IoT systems that have
more data and are sensitive to real-time information. There
is no need to use edge computing because the cost will not
outweigh the performance.

7. ConcLusioN AND FuTurReE WORK

We have implemented an indoor positioning system
using BLE and microservices in the cloud environment. We
designed the microservices using the SOMA framework and
implemented them in choreography and orchestration strate-
gies. We then deployed this MSA on a Kubernetes platform.
After services were ready, both strategies were called with
multiple scenarios, and the choreography strategy showed
a better result with 457,970 served requests, or five times
more than the other scenarios. The CPU usage is smaller
compared to the orchestration strategy’s scenarios, but RAM
usage is 50% higher. We achieved this result by keeping
the number of nodes and pods static. In the future, with
cloud computing’s prices and technologies evolving quickly,
future research related to auto-scaling the architecture could
improve the MSA’s performance with reduced cost.

The location estimation method used in this research
is a simple WK-NN since our focus is more on the mi-
croservices architecture. As the neural network flourishes,
we could enhance the IPS by incorporating other location

https://journal.uob.edu.bh

https://journal.uob.edu.bh

30 My,
%,
W

&

1}%

%)
e 7
”/wmj

872

Dondi Sasmita., et al.: Microservices for Asset Tracking Based on Indoor Positioning System.

TABLE VI. Choreography Strategy Result

No. of connec- | No. of Nodes No. of Pods Average CPU | Peak CPU (%) | Average RAM | Peak RAM (%) | Total Served | Served

tions (%) (%) Requests Requests
Per Second

100 1 3 21.3 259 20.9 21.0 54,835 456

100 1 5 19.1 23.1 25.2 254 59,805 498

100 2 5 14.7 28.3 16.8 22.8 63,570 529

100 2 8 20.0 32.1 20.4 25.7 68,990 574

500 1 3 21.2 28.8 21.9 21.9 151,419 1,261

500 1 5 21.6 49.6 25.5 25.7 202,211 1,685

500 2 5 18.8 325 174 232 237,448 1,978

500 2 8 23.8 37.3 20.4 259 233,798 1,948

1000 1 3 234 33.7 22.0 22.0 166,682 1,389

1000 1 5 44.8 62.8 26.1 26.3 313,122 2,609

1000 2 5 19.1 335 17.8 23.5 338,781 2,823

1000 2 8 26.5 38.6 21.2 259 457,970 3,816

estimation methods, like the Graph Neural Network (GNN),
to ensure a more precise estimated location in the future.
The number of devices, building’s layouts, building’s ma-
terials, and multi-floor should be taken into consideration
when choosing the right methods or model to get better
accuracy and performance.

REFERENCES

[1] M. Alhafnawi, H. A. B. Salameh, A. Masadeh, H. Al-Obiedollah,
M. Ayyash, R. El-Khazali, and H. Elgala, “A survey of indoor
and outdoor uav-based target tracking systems: Current status, chal-
lenges, technologies, and future directions,” IEEE Access, vol. 11,
pp. 68324-68 339, 2023.

[2] X. Su, “Application analysis of rfid in supply chain management,”
Highlights in Business, Economics and Management, vol. 24, pp.
122-128, 1 2024.

[3] V. Gujar and R. P. Singh, “Innovative indoai’s smart asset tracking:
Securing efficiency, security compliance in mobile work environ-
ments,” JARJSET, vol. 11, 12 2023.

[4] M. A. Musarat, W. S. Alaloul, A. M. Khan, S. Ayub, and
N. Jousseaume, “A survey-based approach of framework devel-
opment for improving the application of internet of things in the
construction industry of malaysia,” Results in Engineering, vol. 21,
p. 101823, 3 2024.

[5] K. Saritha, C. Abhiram, P. A. Reddy, S. S. Sathwik, N. R. Shaik,
L. H. Alzubaidi, V. H. Raj, A. Dutt, and D. K. Yadav, “Iot enabled
hospital asset tracking using advanced interdisciplinary approaches,”
E3S Web of Conferences, vol. 507, p. 01007, 3 2024.

[6] M. Soori, B. Arezoo, and R. Dastres, “Internet of things for smart
factories in industry 4.0, a review,” Internet of Things and Cyber-
Physical Systems, vol. 3, pp. 192-204, 2023.

[71 O. I. Mustafa, H. L. Joey, N. A. AlSalam, and I. Z. Chaloob,
“Accurate indoor positioning system based on modify nearest point
technique,” International Journal of Electrical and Computer Engi-
neering (IJECE), vol. 12, p. 1593, 4 2022.

[8] B. Sulaiman, E. Natsheh, and S. Tarapiah, “Towards a better indoor
positioning system: A location estimation process using artificial
neural networks based on a semi-interpolated database,” Pervasive
and Mobile Computing, vol. 81, p. 101548, 4 2022.

[9] J. Cha and E. Lim, “A hierarchical auxiliary deep neural network

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

architecture for large-scale indoor localization based on wi-fi fin-
gerprinting,” Applied Soft Computing, vol. 120, p. 108624, 5 2022.

K. Suseenthiran, A. S. Ja’afar, K. W. Heng, M. Z. A. A. Aziz,
A. A. M. Isa, S. H. Husin, and N. M. Z. Hashim, “Indoor positioning
utilizing bluetooth low energy (ble) rssi on lora system,” Indonesian
Journal of Electrical Engineering and Computer Science, vol. 23,
p- 927, 8 2021.

G. P. Kusuma and M. M. K. Lie, “A review of indoor position-
ing system techniques using bluetooth low energy,” ICIC Express
Letters, vol. 13, pp. 1139-1147, 2019.

A. Riady and G. P. Kusuma, “Indoor positioning system using
hybrid method of fingerprinting and pedestrian dead reckoning,”
Journal of King Saud University - Computer and Information
Sciences, vol. 34, pp. 7101-7110, 2022.

G. Pau, F. Arena, M. Collotta, and X. Kong, “A practical approach
based on bluetooth low energy and neural networks for indoor
localization and targeted devices’ identification by smartphones,”
Entertainment Computing, vol. 43, p. 100512, 8 2022.

F. J. Aranda, F. Parralejo, F. J. Alvarez, and J. A. Paredes, “Perfor-
mance analysis of fingerprinting indoor positioning methods with
ble,” Expert Systems with Applications, vol. 202, p. 117095, 9 2022.

M. Nabati and S. A. Ghorashi, “A real-time fingerprint-based
indoor positioning using deep learning and preceding states,” Expert
Systems with Applications, vol. 213, p. 118889, 3 2023.

N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara,
F. Montesi, R. Mustafin, and L. Safina, “Microservices: yesterday,
today, and tomorrow,” 6 2016. [Online]. Available: http://arxiv.org/
abs/1606.04036

A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah, S. Ganapathy,
and K. Holley, “Soma: A method for developing service-oriented
solutions,” IBM Systems Journal, vol. 47, pp. 377-396, 2008.

F. Tusa, S. Clayman, A. Buzachis, and M. Fazio, “Microservices
and serverless functions—lifecycle, performance, and resource util-
isation of edge based real-time iot analytics,” Future Generation
Computer Systems, vol. 155, pp. 204-218, 6 2024.

S. B. Atitallah, M. Driss, and H. B. Ghézala, “Revolutionizing
disease diagnosis: A microservices-based architecture for privacy-
preserving and efficient iot data analytics using federated learning,”
Procedia Computer Science, vol. 225, pp. 3322-3331, 2023.

https://journal.uob.edu.bh

http://arxiv.org/abs/1606.04036
http://arxiv.org/abs/1606.04036
https://journal.uob.edu.bh

Int. J. Com

B

v

S

5

1

e,

LT
FF

%
. Dig. Sys. 16, No.1, 861-873 (Aug-24) < s

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

D. Cota, J. Martins, H. Mamede, and F. Branco, “Bhivesense:
An integrated information system architecture for sustainable re-
mote monitoring and management of apiaries based on iot and
microservices,” Journal of Open Innovation: Technology, Market,
and Complexity, vol. 9, p. 100110, 9 2023.

S. Popic, D. Pezer, B. Mrazovac, and N. Teslic, “Performance
evaluation of using protocol buffers in the internet of things com-
munication.” IEEE, 10 2016, pp. 261-265.

U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “Mqtt-s — a
publish/subscribe protocol for wireless sensor networks.” IEEE, 1
2008, pp. 791-798.

R. A. Atmoko, R. Riantini, and M. K. Hasin, “Iot real time data
acquisition using mgqtt protocol,” Journal of Physics: Conference
Series, vol. 853, p. 012003, 5 2017.

M. M. K. Lie and G. P. Kusuma, “A fingerprint-based coarse-to-
fine algorithm for indoor positioning system using bluetooth low
energy,” Neural Computing and Applications, vol. 33, pp. 2735-
2751, 4 2021.

H. Mehrabian and R. Ravanmehr, “Sensor fusion for indoor po-
sitioning system through improved rssi and pdr methods,” Future
Generation Computer Systems, vol. 138, pp. 254-269, 1 2023.

V. Velepucha and P. Flores, “A survey on microservices architecture:
Principles, patterns and migration challenges,” IEEE Access, vol. 11,
pp. 88339-88358, 2023.

A. Arsanjani, “Service-oriented modeling and architecture,” IBM
developer works, 3 2004.

Y. Wang, H. Kadiyala, and J. Rubin, “Promises and challenges of
microservices: an exploratory study,” Empirical Software Engineer-
ing, vol. 26, p. 63, 7 2021.

H. Garcia-Molina and K. Salem, “Sagas,” ACM SIGMOD Record,
vol. 16, pp. 249-259, 12 1987.

N. Dragoni, I. Lanese, S. T. Larsen, M. Mazzara, R. Mustafin, and
L. Safina, “Microservices: How to make your application scale,” 2
2017. [Online]. Available: http://arxiv.org/abs/1702.07149

D. Shadija, M. Rezai, and R. Hill, “Microservices: Granularity
vs. performance,” 9 2017. [Online]. Available: http://arxiv.org/abs/
1709.09242

[32]

[33]

[34]

[35]

[36]

H. Song, F. Chauvel, and P. H. Nguyen, Using Microservices to Cus-
tomize Multi-tenant Software-as-a-Service. ~Springer International
Publishing, 2020, pp. 299-331.

Alvaro Brandén, M. Solé, A. Huélamo, D. Solans, M. S. Pérez, and
V. Muntés-Mulero, “Graph-based root cause analysis for service-
oriented and microservice architectures,” Journal of Systems and
Software, vol. 159, p. 110432, 1 2020.

R. P. Ghozali and G. Putra, “Indoor positioning system using
regression-based fingerprint method,” International Journal of Ad-
vanced Computer Science and Applications, vol. 10, 2019.

C. Nimpattanavong, I. Khan, T. V. Nguyen, R. Thawonmas,
W. Choensawat, and K. Sookhanaphibarn, “Improving data transfer
efficiency for ais in the darefightingice using grpc,” 3 2023.

T. Dillon, C. Wu, and E. Chang, “Cloud computing: Issues and
challenges.”

IEEE, 2010, pp. 27-33.

Dondi Sasmita received B.Sc. degree in
Computer Science major from Bina Nusan-
tara University in 2009 and he is currently
pursuing his Master’s Degree from Bina
Nusantara University. System architecture,
cloud computing and machine learning are
his research interests.

Gede Putra Kusuma received PhD de-
gree in Electrical and Electronic Engineer-
ing from Nanyang Technological University
(NTU), Singapore, in 2013. He is currently
working as a Lecturer and Head of De-
partment of Master of Computer Science,
Bina Nusantara University, Indonesia. Be-
fore joining Bina Nusantara University, he
was working as a Research Scientist in I2R
— A*STAR, Singapore. His research inter-

ests include computer vision, deep learning, face recognition,
appearance-based object recognition, gamification of learning, and
indoor positioning system.

https://journal.uob.edu.bh

http://arxiv.org/abs/1702.07149
http://arxiv.org/abs/1709.09242
http://arxiv.org/abs/1709.09242
https://journal.uob.edu.bh

	Introduction
	Related Works
	Indoor Positioning Methods
	Microservices Architecture

	Theory and Methods
	Bluetooth Low Energy
	Fingerprinting
	Message Queuing Telemetry Transport
	Microservices
	 Google Protocol Buffers and Remote Procedure Call
	Cloud Computing

	 Proposed Microservices Design Framework
	 Proposed Method
	 Indoor Positioning System
	 Microservices
	 Evaluation

	 Result and Discussion
	Data Acquisition
	 Microservices Architecture

	 Conclusion and Future Work
	References
	Biographies
	Dondi Sasmita
	Gede Putra Kusuma

