
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 15, No.1 (Feb-24)

http://dx.doi.org/10.12785/ijcds/150142

Multi-Faceted Job Scheduling Optimization Using Q-learning
With ABC In Cloud Environment

Sanjeev Sharma1 and Neeraj Kumar Pandey2

1School of Computing, DIT University, Dehradun, Uttarakhand, India
2Department of Computer Science & Engineering, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India

Received 28 Apr. 2023, Revised 8 Jan. 2024, Accepted 21 Jan. 2024, Published 1 Feb. 2024

Abstract: Resource allocation is the utmost challenging and common problem, particularly in the cloud service model in Infrastructure
as a Service (IaaS). The issue of load balancing is so harmful that irregular load balancing may result in a structure smash. Adopting
a suitable access plan and allowing the system to spread work among all existing resources leads to utilizing Virtual Machines (VMs)
appropriately. To get enhanced results from the Artificial Bee Colony Algorithm (ABC), a reinforcement learning technique Q-learning
is combined using multifaceted job scheduling optimization based on ABC(QMFOABC) has been proposed. The proposed approach
improves resource utilization and scheduling created on resource, cost, and makespan. The efficiency of the suggested strategy was
evaluated in Datasets Synthetic Workload, Google Cloud Jobs (GoCJ), and Random by using CloudSim to the remaining scheduling
strategies for load matching like Max-min, Multifaceted Cuckoo Search (MFCS), Multifaceted Particle Swarm Optimization (MFPSO),
Q-learning, Heuristic job scheduling with Artificial Bee Colony approach with Largest Job First algorithm (HABC LJF), First come
first serve (FCFS). According to the findings of the experiments, the algorithm that employed the QMFOABC method has better results
in resource utilization, throughput, cost, and makespan. Compared to Max-Min (82.31%), MOPSO (35.62%), HABC LJF (21.65%),
Q-Learning (11.72%), VTO-QABC FCFS(5.87%), and VTO-ABC LJF (5.86%) shorter time than MOCS, a considerable improvement
is found.

Keywords: Cloud computing, multifaceted job, scheduling, Qlearning, virtual machines, ABC

1. Introduction
The provision of shared resources by the different users

as per their demand through the internet is an important
facility provided by cloud computing. Cloud computing is
becoming popular in IT as an adaptable, elastic, and simple
approach to developing service platforms using outsourced
resources [1]. Furthermore, a parallel and distributed com-
puting hybrid allows us to use collective resources on a
pay-as-you-go basis, and the only requirement is an internet
connection. IaaS is essential in managing Virtual Machines
(VM), data centers, and servers among the different service
models. By providing a cloud server, IaaS helps its users
store and process data in a virtual cloud environment and
helps them by giving maintenance-free hardware, applica-
tions, or different operating systems.

Furthermore, depending on the rental agreement be-
tween the cloud service provider (CSP) and the cloud
service user, the user can fulfill requirements like service
level agreements (SLA) or quality of service (QoS). Not
only this, but IaaS also helps its users remotely access
servers and execute various functions on Virtual machines
using cloud computing [2]. Cloud computing empowers

service providers to deliver high-level functioning resources
to data centers to assist cloud service consumers.

There is an unbalanced resource allocation with the
uneven change in the numerous cloud users and their
frequent requirement for virtual resources for servers, CPU
memory, or RAM. Furthermore, many users (VMs) don’t
have access to the resources, so they need preemptive and
non-preemptive associates between virtual machines [3].
Therefore, the VM should be capable of running rapidly
whenever a job is performed in a cloud environment to
minimize waiting periods. Accordingly, a work schedule
must be allocated and spread across available resources.
Numerous tasks are assigned to different virtual machines
to compile work better, and they will operate in parallel to
finish the assignment. All VMs should be assigned work in
parallel so that each one can fully utilize its resources. The
work must ensure that all jobs are spread equally across
all VMs to prevent system instability or unavailability.
The scheduling must consider additional elements such as
resource usage, price, and makespan to prevent this. Several
academics have developed approaches to load balancing in
mixed and similar systems [4]. Passing on jobs in a load-

E-mail address: sanjeev8404@gmail.com, dr.neerajkpandey@gmail.com https:// journal.uob.edu.bh/

http://dx.doi.org/10.12785/ijcds/150142
https://journal.uob.edu.bh/

578 Sanjeev Sharma, et al.: Multi-Faceted Job Scheduling Optimization Using Q-learning With ABC In Cloud.

Figure 1. Process for Q-learning strategy

balancing form maximizes job circulation between existing
resources and minimizes system execution time.

The framework for the managing of cloud resources
is shown in figure 1. The primary goal for researchers
to strive to develop an efficient algorithm is to pass the
request to the cloud broker as soon as the user requests
the system. The suggested approach should allow users
to effectively send tasks to the appropriate VM based on
specified parameters, such as the deadline or other criteria.
In addition, it must guarantee that the requests given by the
user are completed in compliance with the SLA document’s
specifications. Various requests generated by the user are
maintained on VMs. The Cloud computing services subse-
quently distribute QoS-based inquiries to confirm that the
user’s bids are correctly completed. This procedure depends
on the scheduling policy’s performance (Data Broker). As
a result, the workload balance between the machine and the
server must be modified. Virtual Machine Monitors (VMM)
or hypervisors play a significant part in cloud computing.
Multiple VMs can be run on the same hardware layer with
hypervisors [5]. VMware is one of the utmost well-known
software facilities for handling company server resources.
Although virtualization plays a significant part in cloud
technology, poor scheduling or delegating jobs to VMs that
cannot satisfy requirements still exist. Cloud computing
should provide scheduling and load balancing across nodes
to maximize resource consumption to tackle this challenge.
Due to load balancing and scheduling across nodes, process-
ing times were slashed, but the system became unbalanced.

In the virtual environment, task assignments must con-
sider success rate, cost, and time. Therefore, much re-
search has examined QoS parameters for optimizing cloud
resources and their scheduling in single or bi-objective
optimization [6], [7], [8] while some papers have discussed

multi-objective optimization [9]. However, a few cases of
approaches that have been utilized to improve the compe-
tence of the on-demand job are the Strength Pareto evolu-
tionary algorithm (SPEA) [10], the Niched Pareto genetic
algorithm (NPGA) [11], the Genetic Algorithm (GA) [12]
and Particle Swarm Optimization (PSO) [13], [14].

Karaboga devised the Artificial Bee Colony (ABC)
algorithm, a meta-heuristic approach for solving issues
and finding optimized results near the suitable worth [15],
[16]. The ABC algorithm is modeled after bee colonies’
foraging activity, which requires adaptability to changing
habitats and food sources. The ABC algorithm has been
shown to help solve job scheduling challenges [17] and
traveling salesman problems [18]. The ABC algorithm uses
an environment-based learning technique akin to Reinforce-
ment Learning (RL), which uses observation to anticipate or
choose an appropriate answer. Agents learn how to act in a
specific situation by doing and watching the outcomes. The
Q-learning method is used in this study to assist the system
in making predictions and judgments regarding the best
schedule to follow. To resolve the scheduling problem in
a virtual environment, we offer a multifaceted optimization
scheduling model in combination with the Q-learning tech-
nique and ABC algorithm (QMFOABC). The study aims
to design a multifaceted scheduling strategy to optimize
work schedules to decrease simultaneous makespan, cost,
and resource utilization while also considering the system’s
load balance.

The following are the research objectives along with the
proposed method:

• Suggested a scheduling method for multifaceted op-
timization. This method involves various constraints
like utilization of resources, cost, and execution time
for load balancing and scheduling.

• Construct mathematical representations for finding
cost, makespan, and resource utilization for schedul-
ing problems.

• The suggested approach combines Q-learning and
ABC algorithms for solving scheduling problems
with multi-objective optimization. The presented sys-
tem is a combination of two heuristic scheduling
systems, LJF and FCFS.

• The suggested approach tries to gain stability through
fitness function by finding the individual loads of VM.
Then, the simulation process was carried out with the
help of CloudSim using Q-learning.

The remaining part of the paper consists of a literature
review, problem definition and formulation, and a hybrid
algorithm evaluation of the experimental work. The last part
is the conclusion and future scope.

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 15, No.1, 577-593 (Feb-24) 579

2. Literature Review
Finding a solution for the NP-hard problem is a dif-

ficult task in cloud computing, and load balancing and
task scheduling optimization are among them. Therefore,
resource scheduling and allocation research have been pre-
sented to optimize the load, power, and execution time.
We must evaluate a concept in scheduling numerous tar-
gets or cloud settings to use current resources or rapid
processing efficiently. Several ideas have been offered to
handle scheduling problems and load balancing difficulties
in the virtualized environment, employing heuristic, meta-
heuristic, hybrid meta-heuristic algorithms, or even machine
learning approaches [19], [20].

Heuristic approaches are much more approachable in
providing solutions to problems in cloud computing, such
as predicting the execution time and load balancing in the
virtual environment, a successful solution based on the max-
min approach given by Mao [21]. The practice shows that
the execution time decreases with the increase in resources
by VM. Another method that utilizes the idle resources by
rescheduling the jobs based on their completion time was
based on Enhanced load balances static scheduling proposed
by Patel [22].

A task scheduling approach in the grid cloud to diminish
execution time and cost was proposed by Zhang [23].
The strategy also uses computational models to solve the
challenge of grid-cloud work scheduling. A combination
of non-preemptive and independent jobs in a dynamic
scheduling manner is another approach for load balancing
using resource-aware has been proposed by Hussain et
al. [24]. The initial step was to choose the VM with the
largest processing share size. The second stage included
assigning the jobs left to the shortest VM. The outcomes
revealed that the algorithm could shorten the makespan
with leftover issues with resource consumption and load
imbalance. [25] recommended that the scheduler technique
be changed by applying soft computation built stochastic
hill-climbing on load management.

Adhikari and Koley [26] introduced the competent,
dynamic multi-workflow scheduling (CDMWS) method,
an emotional multi-workflow scheduling technique. This
strategy was designed to enhance the ratio of makespan,
decrease makespan and increase CPU utilization to meet
the deadline. There are two aspects to this strategy. The
initial section calculated the computation for every job
based on the task dependencies and deadline. The other part
was to decrease power consumption by arranging virtual
machines to maximize resource use. CDMWS beat the
Round Robin (RR) and Enriched Workflow Scheduling
Algorithm (EWSA) algorithms in the tests.

Shrimali and Patel [27] studied optimal resource alloca-
tion, emphasizing the multi-objective optimization (MOO)
technique to tackle energy efficiency challenges. MOO has
also been presented as a VM allocation method. According

to the findings of the experiments, MOO resulted in effi-
ciency improvements owing to optimal resource allocation
without impacting data center performance.

Meta-heuristic techniques are trendy in solving the
issues related to cloud computing. Ant colony optimiza-
tion(ACO) reduces job completion time, as shown in the
study by Song et al. [28]. The authors proved the effec-
tiveness of ACO. Other approaches, such as the RR and
FCFS algorithms, performed worse than ACO. An enhanced
PSO technique was developed to enhance resource access
and decrease the makespan time. The approach involved
changing particle weights as the number of iterations in-
creased and introducing additional arbitrary values in the
PSO’s final phases. The goal was to avoid finding locally
optimal solutions in the final stage.

The approach presented by Chen et al. [29] emphasizes
improving the completion time per the deadline restric-
tion to decrease the cost of work and complete tasks
on time, known as dynamic objective genetic algorithm
(DOGA). The resource allocation mechanism for VM in
cloud computing was suggested by Amini et al. [30] using
the dragonfly optimization algorithm. The dragonfly op-
timization algorithm outperformed the Hybrid Algorithm
Based on Particle Swarm Optimization and Ant Colony
Optimization algorithms regarding resource provisioning
and load balancing (PSO-ACO).

To address problems with elastic task allocation in a
virtual environment, Li and Han [17] proposed a fusion
of different ABC techniques. The goal was to reduce all
devices’ workload and execution time. Finally, Kruekaew
and Kimpan [31] presented the combination of an Artificial
Bee Colony in the Heuristic Task Scheduling (HABC)
Algorithm to plan and manage cloud resources to decrease
the load balance and finish time of the virtualized com-
puting. The experiments revealed that HABC effectively
handled cloud resources with the Largest Job First heuristic
algorithm (HABC LJF).

To reduce the completion time of the data center process,
a genetically simulated annealing approach was presented
by Gan et al. [32]. Basu et al. [12] presented GAACO,
a hybrid meta-heuristic method that combined the GA
and ACO algorithms to handle the Internet of Things job
scheduling in multiprocessing virtualization. The technique
ensured suitable convergence when evaluated with various
task graph sizes and processor counts regarding makespan
and effectiveness. Furthermore, it was discovered that the
GAACO approach outperformed the GA and ACO algo-
rithms in a varied multi-processor situation.

Alsadie [33] suggested a meta-heuristic structure for
dynamic VM allocation with enhanced job setting up in
a virtualized environment for multifaceted job arrangement
situations in a virtual condition that is overcome with a
meta-heuristic technique and a fusion meta-heuristic proce-
dure (MDVMA). MDVMA was a multifaceted scheduling

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

580 Sanjeev Sharma, et al.: Multi-Faceted Job Scheduling Optimization Using Q-learning With ABC In Cloud.

system that used a non-dominated arrangement of genetic
algorithms for energy consumption, time, and cost. The
CloudSim Simulator was utilized in the studies using
datasets as Heterogeneous Computing Scheduling Problems
(HCSP). The outcomes of MDVMA revealed that the
approach could enhance job arrangement well than the
PSO, Whale Optimization Algorithm (WOA), an ABC ap-
proach to lower the cloud data center’s energy consumption,
makespan, and cost.

Guo [34] introduced a fuzzy stability method for mul-
tifaceted job scheduling, outperforming the competition
regarding VM resource usage, deadline violation rate, and
lowest finishing time. PBACO [35] and the Task Allocation
approach based on RL are two multifaceted optimization
scheduling methods based on the Ant Colony Algorithm
in Cloud Computing. Zuo et al. [35] suggested a mul-
tifaceted optimization scheduling technique for cost and
performance. PBACO was utilized to find the best result.
The experiment was compared to the traditional heuristic
method and was inferior to PBACO.

To enhance job completion, energy consumption, cost,
and resource utilization, He et al. [36] introduced Adaptive
Multifaceted Task scheduling (AMTS). AMTS employed
a PSO-based strategy for multifaceted development that
measured activity and transmission delay. In addition, the
adaptive acceleration coefficient was used in the suggested
approach to account for particle variety. As a result,
AMTS discovered the optimum solution for the cloud-based
scheduling problem after enhancing the PSO algorithm.

An ABC-based strategy was developed by Jena [37]
for cloud computing energy efficiency, cost, processing
time, and resource usage. A multifaceted ABC method
was used to assign tasks to the data center. Kumar and
Venkatesan [38] employed an Ant-based heritable pro-
cess to handle multifaceted scheduling issues in the cloud
to improve execution time and latency while optimizing
throughput. Finally, Alsadie [39] presented the optimization
WOA to progress development in the virtual environment.
The attempt was to make a fitness-based plan created on
three criteria: resource, energy consumption, and quality of
service. The completion time and charge of the VMs were
lowered after considering the stated criteria.

Madni et al. [40] introduced a Multi-objective Cuckoo
Search Optimization (MOCSO) method to lower cloud user
fees with improving performance by shortening makespan
time for scheduling in the IaaS virtualized environment.
The study shows that MOSCO has better results than other
Multi-objective methods using PSO, Min-max, GA, and
ACO strategies.

With the constraints of scheduling performance and time
for multifaceted job scheduling, a hybrid algorithm was
proposed by Pang et al. [41] built on the valuation of the
distribution algorithm (EDA) and genetic algorithm (GA).
This method’s rapid convergence speed and excellent search

capabilities were its benefits. Furthermore, considering the
test findings, the EDA-GA hybrid algorithm substantially
lowered task finish time and increased load balancing
capabilities while tested using CloudSim simulation against
EDA and GA.

A hybrid method of firefly(FA) and dragonfly proce-
dure (DA) with the name Adaptive Dragonfly Algorithm
(ADA) for load balancing and job scheduling method in
the cloud was introduced by Neelima and Reddy [42]. The
proposed method was focused on load, execution cost, and
completion time. Considering execution time and cost as
performance criteria, the suggested way provided better
load-balancing outcomes than DA and FA.

Machine learning techniques have been employed in
cloud computing to handle complex issues [43]. For ex-
ample, Reinforcement Learning in combination with Dy-
namic Consolidation (RL-DC) technique helps in improving
resource utilization and minimizing energy utilization in
virtual data hubs (Farahnakian et al.) [19].

Deep Reinforcement Learning (DRL) helps the VMs get
the optimal position in the various data centers of a virtual
environment [44]. A hybrid algorithm of Q-learning and
modified PSO (QMPSO) helps balance loads of VMs in
virtual networks. The said algorithms reduce the waiting
time and power consumption. QMPSO also improves the
throughput and makespan [45].

A methodology in green computing for resource alloca-
tion was built using fuzzy logic and a reinforcement learn-
ing mechanism to deploy resources [46]. The CPU usage at
the data center determines the efficiency, hence calculating
the Data Centre Infrastructure Efficiency (DCiE) and Power
Center Infrastructure efficiency (PUE). CloudSim simula-
tions show that this substructure may deliver operative
execution for high data center energy proficiency while
avoiding SLA violations. The hybrid deep reinforcement
learning with ACO resource allocation and task scheduling
aims to optimize idle resources by employing a binary in-
order traversal tree with weighted values and reducing its
completion time. Rugwiro et al. used a DRL method to
discover idle assets and ACO to determine the best VM for
every work while job scheduling [47].

As previously stated, establishing effective strategies for
job scheduling and resource selection in virtual environment
settings were discovered to be critical. Numerous revisions
spend a lot of work arranging activities or assigning appro-
priate resources for respective exercises while seeing single,
bi, and multi-objective scheduling. As a result, this work
presented multifaceted optimization of the task scheduling
issue. In contrast, earlier research mainly concentrated on
the purposes of time (makespan or execution) and cost,
as both purposes suit the users’ expectations. However,
different circumstances or goals must be considered to
operate with cloud computing. Also, cloud load balancing
must be addressed. To enhance cloud performance, a hybrid

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 15, No.1, 577-593 (Feb-24) 581

meta-heuristic method has been devised. Nonetheless, some
strategies perform poorly in global search, while others do
poorly in local search optimization. Due to the exploratory
behavior, the ABC algorithm can help solve the multifaceted
task scheduling issue.

In contrast, the spectator bee’s exploitative conduct was
lacking. Because Q-learning may enhance solution quality,
reinforcement learning can help tackle this problem. As a
result, we offer a solution for solving the multifaceted job
scheduling issue that employs Q-learning with the ABC
algorithm (QMFOABC). QMFOABC assists in determining
the sequence of tasks for acceptable available resource
settings to discover the best job-scheduling strategy. QM-
FOABC also has a load-balancing mechanism.

The strengths and weaknesses of prior work are shown
in Table I

3. Identification And Optimization Of The Problem
The scheduling procedure is critical for load balancing,

resource time, usage, and latency in the cloud. Job schedul-
ing can be defined as:

• Let VM represent the set of virtual machines. There-
fore V M = {vm1, vm2, vm3, . . . , vmi, . . . , vmn}, where
vmi is the ith virtual machine, and i ranges from 1
to n. Each virtual machine contains resources like
bandwidth, RAM, CPU, etc.

• Let T represent the set of allocated tasks. Hence
T = {t1, t2, t3, . . . , ti, . . . , tm}, where ti is the ith task and
m are the number of autonomous jobs accomplished
on the virtual machines. Every task must contain
the required resources, like CPU, memory, instruction
sets, etc.

The above input is optimized scheduling, i.e., mapping
of m tasks and n virtual resources, which helps increase
resource utilization, maximum load balance, minimize cost,
and decrease makespan.

Multifaceted optimization challenges require
different objective functions. For example, if
OFi(x) is the ith objective function and TOF
is the total number of objectives, then a set of
objective functions can be defined as OF(x) =
{OF1(x),OF2(x),OF3(x), . . . ,OFi(x), . . . ,OFTOF(x)}.
These challenges are under non-deterministic problems.
Hence no single solution exists in these cases.

By using the multifaceted scheduling strategies, the
proposed scheduling method helps improve load balanc-
ing between different virtual machines and enhances the
throughput of the VM, resource utilization, and scheduling
optimization. The suggested algorithm helps appropriately
schedule tasks by finding suitable environments using evalu-
ation factors like reliability, makespan, resource utilization,
carbon emission, profit, failure rate, time (flow, waiting,

completion), energy consumption, and cost. Furthermore,
the fitness function is required to get the optimal scheduling
and load-balancing solution. The weighted sum approach
[48] was used to solve the multifaceted optimization prob-
lem. Considering weights as decision-makers, the weighted
sum approach helps change multifaceted problems into
single-objective optimization problems.

The following goals are covered in this research:

The Ist goal is defining the state of the task’s execution
time or makespan, i.e., the time required by the system
to execute its task. The makespan helps the task to be
performed prematurely by decreasing the execution time
and hence plays an essential role in multifaceted scheduling.
Makespan determined the time of execution for completing
the job through the VM. The time of execution is directly
proportioned to the makespan, i.e., if the task distribution
is not done correctly, then the execution time will be high
and result in a higher value of makespan. So, to get better
performance, the tasks must be distributed appropriately,
resulting in a lower value of execution and makespan.

Let vmi (vmi ∈ V M) the virtual machine be assigned
with each task t j (t j ∈ T). Each task assigned to vmi is
denoted as t ji. Therefore task on vmi is represented as vmi =
{tpi, tqi, . . . , tri}.

TotalExecutionT ime(T ET) = totaltask ∗ e f f ectiveCPI ∗
1
f

(1)
where effective CPI (ECPI)

ECPI =
totalclockcyclesneededtoexecutealltask

totalnumbero f task
(2)

and f is the CPU rate

ECPI ji =
tpi ∗CPI(tpi) + tqi ∗CPI(tqi) + +tri ∗CPI(tri)

tpi + tqi + + tri
(3)

T ET (vmi) = tpi + tqi + . . . + tri ∗ ECPI ji ∗
1
fi

(4)

or
T ET (vmi) = length(t j) ∗

1
fi

(5)

where length(task) is the no.of instructions.

The minimum value of T ET (vmi) is the min makespan
and can be calculated by Equation 6.

min makespan = minT ET (vmi); (6)

where i=1 to n.

The value of an objective function of makespan can be
calculated by Equation 7.

OF1 =
min makespan

makespan
(7)

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

582 Sanjeev Sharma, et al.: Multi-Faceted Job Scheduling Optimization Using Q-learning With ABC In Cloud.

TABLE I. COMPARISON OVERVIEW OF EXISTING LITERATURE

Reference
work

Methodology Performance Met-
ric

Strength and Weakness

[20] Gray
Forecasting
Model

Energy consump-
tion, QoS

Use of prediction-based algorithms in a heterogeneous environ-
ment.Limitation: Only heuristic algorithms were used, which discussed
only the limited parameters like response time and availability of
resources.

[23] MCTE Response time,
cost

The proposed strategy helps to reduce the task completion and cost.
Limitation: Priority is only given to response time and other parameters
are missing

[24] RALBA Makespan,
throughput,
resource
utilization.

The results of the research work help in the utilization of the resources
and the QoS parameters. Limitation: research work lacks discussion of
the parameters like load balancing and energy consumption.

[26] CDMWS Execution,
response time.

Research focuses on the reduction of execution time and fails to justify
the other QoS parameters.

[27] MOO Resource
allocation and
utilization

The research helps utilize energy with efficient resource allocation but
lacks QoS parameters like makespan and throughput.

[28] IMOACO Makespan Research helps to minimize makespan but ignores the QoS parameters
like total cost and load balancing.

[30] Dragonfly Execution –
response time,
load balancing.

Research helps in finding improved resource allocation strategy by
considering execution time but lacks in QoS parameters like throughput,
makespan, etc.

[31] HABC Makespan and
load balancing.

Research helps improve resource scheduling. Limitation: lack of anal-
ysis of other deadline constraints.

[33] MDVMA Makespan, energy
consumption.

Research helps in optimizing task scheduling. Limitation: Limited
parameters related to energy consumption are discussed.

[38] HGA-ACO Throughput,
Response time,
completion time.

The research helps in task allocation and discusses the QoS parameters
like throughput and execution time but also ignores the makespan,
energy consumption, etc.

[33] TSMGWO Makespan The results parameters are compared with different meta-heuristic
techniques but lack many QoS parameters like energy consumption,
compilation time, cost, etc.

[40] Cuckoo
search
optimization

Cost, makespan Research helps understand the concept of resource scheduling by
considering the parameters of cost and makespan. The limitation of the
research is exposed QoS parameters like energy, throughput processing
time, etc.

[41] GA Load balancing,
task completion
time

The research shows good load-balancing ability and minimal task com-
pletion time. Limitation: the research fails to consider the uncertainty
and dynamics of cloud computing. Hence, research is very far away
from focusing on task scheduling issues of real cloud computing.

[42] Dragon Fly Load, completion
time, cost

In this, the author discussed the parameters of load and processing time
cost. Limitation: Research lacks discussion on energy consumption and
power demand.

[43] Machine
learning
with cloud
computing

Cloud security
threats

In this author discussed the use of ML to overcome the different cloud
security issues with the help of reinforcement learning. Limitation:
Other QoS parameters are not considered.

[45] MPSO Load balancing In this paper, the author discussed dynamic load balancing by using the
Q learning technique and hence improves results in overall enhance-
ment throughput of the system. Limitation: The research work can be
improved by using other reinforcement techniques in cloud computing.

After obtaining the first goal, the IInd goal is to calculate the total cost. The total cost is the cost of processing the

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 15, No.1, 577-593 (Feb-24) 583

task and is expressed in terms of bandwidth usage, memory
usage, and CPU cost. When a task t j is processing on
the virtual machine vmi the estimated cost Ecost can be
calculated by Equation 8.

Ecost(t ji) = (p1 ∗ ET (t ji)) + (p2 ∗ ET (t ji)) + (p3 ∗ ET (t ji))
(8)

where ET (t ji) is the execution time of (t j) processing on
(vmi) and p1 is bandwidth usage per unit,p2 is the memory
usage per unit and p3 is the CPU cost per unit, respectively.

So the addition of all costs of task execution on VMs
can be calculated by Equation 9.

T Ecost =
m,n∑

j=1,i=1

Ecost(t ji) (9)

The minimum cost of the set T Ecost is only for t j and
is the minimum value in the set of allocated task T is
executed on V M. Therefore min T Ecost can be calculated
by Equation 10

min T Ecost =
∑
t j∈T

minEcost(t j) =
∑
t ji∈T

minEcost(t ji) (10)

The value of the objective function in terms of cost is

OF2 =
min T Ecost

T Ecost
(11)

The third goal is to find the consumption of memory
and CPU sent to various processing units. For a particular
task sent to vmi, a load of memory (M L) is calculated as

M Li =
M R j

M Ti
+ M RBi (12)

Where M Li is the load of memory on the ith machine,
M R j is the memory required for the demand of the jth
job, M Ti is the maximum memory, and M RBi is the
memory required before execution of the jth task.

The next task is to find the CPU load for the jth task on
vmi. Let’s assume that the CPU load on the ith machine is
CPU Li, CPU R j is the CPU requirement for the request
of the jth task, CPU Ti is the total CPU availability, and
CPU RBi is the CPU usage required before execution of
the jth task.

CPU Li =
CPU R j

CPU Ti
+CPU RBi (13)

Since the memory and CPU are equally important, we
assume the equal weightage of memory and CPU. So (w1+
w2) = 1, where w1 and w2 are the weightage of memory and
CPU. Therefore, the utilization of a virtual machine (VUi)
can be calculated as

VUi =
w1

(1 − M Li)
∗

w2

(1 −CPU Li)
(14)

Figure 2. Process for Q-learning strategy

The above equation gives the load on the single machine,
so if there are n number of virtual machines, then a total
load of n machines (T LMn) will be

T LMn =

n∑
i=1

VUi (15)

If x is the total no. of hosts in the virtual environment,
then the average value of load (AVL) of all virtual machines
in the cloud is

AVL =
∑x

i=1 T LMn

x
(16)

The difference in each machine’s average value and load
will result in the objective function in terms of utilization.

OF3 =

x∑
n=1

| AVL − T LMn | (17)

The value of the final proposed objective function is

OF = (BF1OF1) + (BF2OF2) + (BF3OF3) (18)

BF1, BF2, andBF3 are the balancing coefficient of
makespan, cost, and utilization of resources. For a better
solution, the value of the utility function OF must be high.

4. Load BalancingWith Hybrid ABC Algorithm
A. Q-Learning Algorithm

One of the different machine learning strategies that
learn from the environment is Reinforcement Learning
(RL). RL allows agents to learn from environmental feed-
back and helps to react by changing the state regarding
penalties or rewards. Q-learning is one of the different types
of Reinforcement Learning (RL). The primary goal of RL
is to teach the agent via environmental errors and trials.
The agent can receive the status of the environment and
take a behavior that impacts the environment to achieve a
better benefit and know from mistakes. Because of the un-
certain environment, the Markov decision procedure (MDP)
provides a structure aimed at agent supervisory, and the
outcome is occasionally random. The agent selects a similar
act given the identical state or condition, but the effect is
not necessarily equivalent. The process of Q-learning can
be viewed in figure 2.

Let A = {a1, a2, . . . , an} be the set of actions of the agent
and S = {s1, s2, . . . , sm} be the set of states. At time t, the
agent chooses an action at ∈ A in a state st ∈ S , and a
reward of rt+1 is awarded if the agent moves to the next
state st+1 ∈ S . To complete the task, choosing a proper deed
that increases the Q-value of a discrete instance is required.

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

584 Sanjeev Sharma, et al.: Multi-Faceted Job Scheduling Optimization Using Q-learning With ABC In Cloud.

By picking a suitable action at in a state st, the Q-value is
likely to gain the maximum rewards and is in its best state
and can be evaluated as

Q(st, at) = (1−β)Q(st, at)+β(rt+ωmax
a+1

Q(st+1, at+1)) (19)

Where β is their learning rate calculated as β=1/(1+total
number of visits to state st), ω is the deduction aspect (0 <
ω < 1) effect on the consecutive instance by the preceding
act, and rt is the reward or penalty corresponding to the
action in the instance st. Using the greedy approach, the
Q-learning strategy will generate an optimal solution from
the knowledge recorded in the Q-table. Equation 20 helps
in generating the Q-value.

Qt+1(st, at) = Q(st, at)+β(rt+ωmax
a′t

Qt(τ(st, at), a′t)−Qt(st, at))

(20)

Where τ is the conversion factor and maxaQ(st+1, a)
approximates the finest upcoming value. Balancing of load
and allocating resources in the cloud are described in
Algorithm 1.

Algorithm 1 Q value update()

1: Create a Q table by initializing the value of reward r,
discount factor ω, and learning rate β.

2: Let n be the number of total states, and p are the total
actions in each state

3: for x = 1 to n do
4: for y = 1 to p do
5: Q(sx, ay) = 0
6: end for
7: end for
8: Move to the next state st+1 by selecting an action ax

from the action set A, ax ∈ A.
9: Calculate the new value of the learning rate, reward

10: Update Qt+1 using the equation
11: Qt+1(st, at)=Q(st, at) + β[rt + ωmaxa’t(Qtτ(st,at),a’t)-

Qt(sx, ay)]
12: Repeat this step for all other states

B. Improved ABC Strategy
The ABC strategy [18] is a swarm-intelligence-based

meta-heuristic technique. The swarm scheme comprises
agents communicating with one another and their sur-
roundings. The agent’s purpose within that algorithm is to
discover the optimal food origin. The food origin reflects a
bee that symbolizes a collection of different possibilities in
the search space and every agent.

Based on the roles of bees, the agents in ABC are
classified into three bee categories: employed, onlooker,
and scout bees. At first, each employed bee identifies an
arbitrary food source. After finding the food resource, the
employed bees try to discover a new source (food) nearby
their existing food position. Subsequently gathering nectar,
the employed bee identifies the optimal food origin. The

bee will switch to the next food origin only if the new
food source is superior to the prior one and shares this
information with the onlooker bees. Based on knowledge
gained from the employed bees, the onlooker bees decide
on new food sources. Onlooker bees are likelier to choose
a food source with a lot of food or excellent quality.
Therefore, every onlooker bee will seek a different food
origin. Finally, they choose a food origin and then shift to
another one. The number of iterations is likewise fixed, so if
an improved food origin is unavailable, the employed bees
who possess the chosen food origin develop scout bees and
are in charge of researching the unused food origin in an
unexplored region of exploration space.

Individual bee set exhibits diverse exploratory and ex-
ploitative activities [49]. For example, a search agent’s
experimental activity entails looking for an unused food
origin in the exploration region. In contrast, exploitative
action, on the other hand, entails looking for an improved
food origin nearby the existing food supply. We employ Q-
learning in this paper to improve our approach and deliver
more relevant solutions to challenges. Because the ABC
algorithm exhibits strong exploratory and weak exploitative
performance, we strive to enhance exploitative actions.
The procedure can be summarized as: The ABC approach
depicts the position of the food supply with various results
to the situation during the startup phase. Primarily, the food
supply is produced arbitrarily, as given in Equation (21).
The employed bees are then linked to food origin. The Q-
starting table’s value is 0.

y0
p,q = (ymax

q − ymin
q) ∗ rand(0, 1) + ymin

q (21)

Where ymax
q and ymin

q are the upper bound and lower
bound of the qth optimization parameter.

Also, The ABC method divides the procedure into three
categories: the employed, the onlooker, and the scout bee
phase. The method cycles through all three steps till the
extreme figure of values is achieved.

During the first phase, employed bees establish the
adjacent food source a f st

p,q of the current food source
c f s−t

p by Equation 22.

a f st
p,q = (c f st

p,q−c f st
i,q)∗rand[−1, 1]+c f st

p,q (22)

Where a f st
p,q is the qth optimization parameter of

a f sp
−t and the index of the food source is denoted by

i.

If the fitness function value of the new
source is larger than the present food source i.e
f itness(a f sp

−t) > f itness(c f sp
−t) then move to

the new location and forget the current site. After moving
to a new location, the Q-table value is updated using

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 15, No.1, 577-593 (Feb-24) 585

Equation (21). In this case, the new food source will
receive the reward and the current food source with
receiving the penalty. Whereas if the fitness value of
the new source is smaller than the present, the current
food source will get the reward, and the new source will
receive the penalty. Whenever an employee discovers an
appropriate food source, the Q-table is updated. As a result,
if bee Emp is the no. of bees employed, Q-table will be
updated bee Emp times. Therefore, the Q-table will be
updated bee Emp times if bee Emp is the number of
bees engaged. The onlooker’s bee chooses the employed
bee’s food sources during the employed bee phase from
the Q-table value. The Q-table will be revised by using
Equation 23 after the replacement of the old food origin
with the fresh food origin, and the onlooker bees carry out
this process.

a f st
p,q = (c f st

p,i − c f st
RFS ,i) ∗ω

t
p,q ∗ rt

q + c f st
p,i (23)

ω ∈ [−1, 1], and c f st
RFS ,i is the optimization limit of the

ideal food origin produced by arbitrary collection. Onlooker
bees exploit available food and upgrade to all extents by
altering weight standards instead of providing information
on dimensions. Q-values (penalty and reward) are altered
at this stage. If a scout bee makes numerous unsuccessful
attempts to locate an improved neighbor, it will reject a
food source and begin searching for a new one at random.
The QMFOABC algorithm is discussed in Algorithm 2.

5. InvestigationalWork And Its Discussion
The input parameters and the outcomes of the exper-

imentation are defined in this segment. Next, we distin-
guished the proposed approach (QMFOABC) with LJF,
FCFS, and the Max-Min task scheduling algorithm to
evaluate its performance [21]. We also determined the
QMFOABC method with well-known meta-heuristic job
scheduling approaches as the CS, PSO, and HABC LJF
algorithms. Finally, a test scenario, standard datasets, vari-
able scenarios for the suggested methodology and the
comparative approaches, experimentational outcomes, and
the temporal complexity of the QMFOABC technique were
used to assess the performance of the recommended ap-
proach.

A. Setup For Simulation
This section describes an experiment that was carried

out to compare the performance of the suggested approach
(MOABCQ) with existing methods for task scheduling in a
heterogeneous virtual situation. A test case was constructed
and established via CloudSim 3.0.3 [50]. CloudSim is a tool
for simulating virtual resources, simulation, modeling and
experimenting with virtualized cloud data. This experimen-
tation used a PC equipped with RAM 16 GB and i7 Intel
8750H CPU (clocked at 2.20 GHz). A simulated situation
was used in this experiment to illustrate the suggested
strategy’s efficacy in scheduling and load balancing. The
simulation setup of this experimentation is given in Table
II

Algorithm 2 QMFOABC()

1: Create the population and compute discrete fitness
standards.

2: Configure the following parameters:
1) Optimal result.
2) No. of iterations (max).
3) Population size.

3: Determine the Optimal result.
4: While the halting requirements are met.

The phase of Employed Bees:
5: Do for all locations, Update employed bee position by

equation (22).
6: Estimate the new position.
7: if fitness(a fs-t

p) > fitness(c fs-t
p) i.e if the new posi-

tion’s fitness value is higher.
8: Substitute the new position for the present position and

END if of step 7.
9: Compute the possibility, through the onlooker phase

revise the Q-table for a certain place and END for of
step 5.
The phase of Onlooker Bees:

10: for all onlookers, do
11: Choose a location depending on the possibility and Q-

value.
12: Modify the location of the onlooker bee by Equation

(23)
13: Determine the new location’s value.
14: If the new location’s fitness value is higher.
15: Substitute the new location for the present location and

END if of step 14.
16: Revise the Q-table (20) and END for of step 10.
17: Determine the best result (Q-table).

The phase of Scouting Bees:
18: For each location, do
19: Abandon the efficient results and produce new ones at

arbitrary.
20: Update the Q-table (20) and END for of step 18.
21: END while.

B. Datasets Scale
Different datasets were used to assess the scheduling

performance of the suggested method: 1) Synthetic work-
load dataset, 2) GoCJ – Goole Cloud Jobs dataset [51], and
3) Random dataset. The parameters and dataset are shown
in Table III.

C. Parameter Set For The Recommended Technique And
Their Evaluation Approach
As previously stated, parameter setting influences al-

gorithm efficiency, which relies on the size or type of
the problem. As a result, we must tune the parameters to
confirm we utilize the proper parameters for the issue type
and dataset. The table below shows how the parameters
are defined. The settings for the experiment’s application of
the Kruekaew and Kimpan’s ABC algorithm [31] are listed
in Table IV. Finally, the MOCS, Multi-objective particle

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

586 Sanjeev Sharma, et al.: Multi-Faceted Job Scheduling Optimization Using Q-learning With ABC In Cloud.

TABLE II. SIMULATION SETUP

Type Parameter Value

Host No. of Host 40
Bandwidth 10GB/s
RAM Requirement 16 GB
Virtual Machine Monitor Xen
MIPS 180650
Storage 2TB

Data Centre No. of Data Centre 1
VM Scheduler Time Shared
VM Monitor Xen
Cost per storage 0.1-1.0
Cost per Memory 0.1-1.0

Task Cloudlet Task length 1k-900k
No. of Task 200-1000

Virtual Machine No. of VM required 10-100
Processor Speed 3500-100000 MIPS
Memory Required 1-4GB
Bandwidth required 1000-10000
Cost per memory 0.1-1.0
Cost per Storage 0.1-1.0
Cloudlet Scheduler Time Shared
No. of Processing Elements 1
VM monitor Xen

TABLE III. THE DATASET AND ITS PARAMETERS

Data Set No. Data set Name Task Size in MIs No. of
Task

1. Synthetic Workload Dataset 1 - 45000 Tiny jobs 1 - 250 1k
Small size jobs 800 - 1200
Medium size jobs 1800 - 2500
Large size jobs 7000 - 10000
Extra-large size jobs 30000 - 45000

2. GoCJ Dataset 15000 – 900000 Small size jobs 15000 – 55000
Medium size jobs 59000 – 99000
Large size jobs 101000 – 135000
Extra-large size jobs 150000 – 337500
Huge size jobs 525000 - 900000

3. Random Dataset 1000- 70000

swarm optimization (MOPSO), and HABC approaches were
contrasted using the suggested technique to assess schedul-
ing performance.

D. Experimentation And Outcomes
The standard dataset is used in this segment to appraise

investigational results in views of DI, makespan, through-
put, cost, and ARUR [24] for a recommended scheduling
performance. In this experimentation, we evaluated the
concert of the suggested approach (QMFOABC). First, we
joined the QMFOABC strategy with the LJF and FCFS
to generate ”QMFOABC LJF”and QMFOABC FCFS,”
respectively. Then, we compared them with the MOCS,
MOPSO, HABC LJF [31], Max-Min task scheduling

algorithm [21], and FCFS scheduling. The average of
the outcomes for each dataset after 20 iterations is in the
following sections.

A assessment of the recommended method’s concert in
relationships of makespan is shown in the first part. 100
VMs were given in this trial, and the system was provided
200 to 1000 jobs. The experiment outcomes are displayed in
Figure 2,3,4. According to the experimental findings in Fig-
ure 3, the QMFOABC technique was exposed to lesser the
average makespan improved than the overhead conversed
techniques when the random dataset was studied. However,
MOCS providing the least average makespan of the methods
revised on 400 datasets. Max-Min, MOPSO, Q-Learning,

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 15, No.1, 577-593 (Feb-24) 587

TABLE IV. PARAMETER SET FOR THE RECOMMENDED TECHNIQUE AND THEIR EVALUATION APPROACH

Algo Name Parameter used Values

QMFOABC No. of Population(n) 950
No. of locations visited among n explored locations (m) 94
No. of best sites (c) 1
No. of Emp bees 195
No. of Onlooker bees 755
Total repetitions 1000

HABC [31] No. of Population(n) 950
No. of locations visited among n explored locations (m) 94
No. of best sites (c) 1
No. of Emp bees 195
No. of Onlooker bees 755
Iterations maximum 1000

MOCS [40] Population size 20
Abandon probability 0.25
Step size 0.01
Maximum iterations 1000

MOPSO [52] Particle size 100
Weight min 0.1
Weight Max 0.9
Self-recognition coefficient 1.49
Maximum iterations 1000

HABC LJF, QMFOABC FCFS, QMFOABC LJF, and
FCFS finished at 82.39%, 23.41%, 20.77%, 13.85%, 8.82%,
3.77%, 3.69% less time than MOCS respectively.

Figure 3. Performance comparison of Makespan on random dataset

If we consider the insight of QMFOABC, it can be found
that for 0 to 1000 jobs (with an interval difference of 200),
QMFOABC LJF provides a lesser average makespan than
QMFOABC FCFS. On average, QMFOABC FCFS had
a makespan 0.51% shorter than QMFOABC LJF for 600
jobs.

QMFOABC LJF provided the shortest average

makespan when since the investigational findings in Figure
4 and Figure 5 utilized the GoCJ and Synthetic workload
datasets, respectively. The makespan average of MOABCQ
LJF was 8.21%, 30.26%, 34.94%, 42.25%, 46.17%,
92.15%, and 117.80% less than that of QMFOABC FCFS,
MOCS, HABC LJF, MOPSO, Q learning, FCFS, and
MaxMin by means of the dataset GoCJ respectively. The
makespan average of MOABCQ LJF was 2.97%, 10.76%,
15.35%, 22.87%, 25.53%, 98.61%, and 150.75% less
than that of QMFOABC FCFS, MOCS, HABC LJF,
Q-Learning, MOPSO, FCFS, and Max Min when using
the Synthetic Workload dataset, respectively. Therefore,
except for the ratio of the makespan average decrease,
it can be shown that QMFOABC LJF beat the other
techniques when both datasets were run.

Overall analyses revealed that the suggested approach
might offer the shortest value of makespan as QM-
FOABC LJF can assign the work to the most suitable
resource. These findings lead us to conclude that the sug-
gested approach can effectively distribute resources within
the system.

The efficiency of the approach is compared in the second
part for throughput, i.e., the no. of jobs completed in a given
amount of time. Figure 5,6,7 shows the experimental results
of assessing the effectiveness of a random dataset, which
reveal that QMFOABC outperformed other algorithms in
terms of throughput. However, during comparison, the
MOCS had gained the max value while the others at max-
min (45.17%), MOPSO (18.97%), HABC LJF (17.20%),
Q-learning (12.16%), QMFOABC FCFS (8.10%), QM-

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

588 Sanjeev Sharma, et al.: Multi-Faceted Job Scheduling Optimization Using Q-learning With ABC In Cloud.

Figure 4. Performance comparison of Makespan on GoCJ dataset

Figure 5. Performance comparison of Makespan on Synthetic work-
load dataset

FOABC LJF (3.63%) and FCFS (3.56%) respectively.
Considering the QMFOABC, QMFOABC LJF has a larger
throughput as compared to QMFOABC FCFS in 200, 800,
and 1000 jobs. QMFOABC FCFS offered 0.50% more
throughput than QMFOABC LJF for 600 processes.

GoCJ and Synthetic workload conducted throughput
tests, and the outcomes presented that QMFOABC achieved
improved efficiency. The outcomes are presented in Fig-
ures.7 and 8. The throughput offered by QMFOABC LJF
was 6.14% higher than QMFOABC FCFS during compar-
ison. The total throughput test trials lead us to conclude that
QMFOABC LJF can assign tasks to appropriate resources
consistent with the testing outcome in the first section.

In the third part, the suggested method’s effectiveness
is compared to the ARUR, and other crucial needs for job

Figure 6. Performance comparison of throughput on random dataset

Figure 7. Performance comparison of Throughput on GoCJ dataset

scheduling in the structure. This experimentation used 3
datasets with one hundred virtual machines and one thou-
sand jobs. Table V presents the experimentation outcomes.

We discovered that QMFOABC provided greater ARUR
values than the other approaches. The algorithms utilized in
this experiment that produced results similar to those of the
ARUR were MOCS, MOPS, HABC LJF, Q-learning, QM-
FOABC LJF, and QMFOABC FCFS, in contrast to FCFS
and Max-Min. QMFOABC LJF produced higher ARUR
values in tests using the random dataset than MOPSO,
HABC LJF, Q-Learning, MOCS, and QMFOABC FCFS,
with values of 21.53%, 20.94%, 18.72%, 14.01%, and
6.15%, respectively.

Compared to HABC LJF, MOCS, Q-learning,
MOPSO, and QMFOABC FCFS, QMFOABC LJF

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 15, No.1, 577-593 (Feb-24) 589

TABLE V. PERFORMANCE EVALUATION IN VIEW OF ARUR ON DIFFERENT DATASETS

Task Scheduling Methods
Dataset QMFOABC LJF QMFOABC FCFS MOCS MOPSO Q-

learning
Max-
Min

HABC LJF FCFS

Random 0.822 0.772 0.708 0.647 0.67 0.21 0.652 0.342
GoCJ 0.772 0.722 0.682 0.664 0.59 0.17 0.672 0.232
Synthetic
work-
load

0.811 0.806 0.771 0.732 0.765 0.188 0.733 0.515

Figure 8. Performance comparison of Throughput on Synthetic
workload dataset

provided higher ARUR values using the GoCJ dataset
at 6.31%, 11.34%, 12.63%, 13.61%, and 22.99%.
Using the Synthetic Workload dataset for testing, the
QMFOABC LJF approach produced ARUR values that
were greater than those of the MOPSO, HABC LJF,
Q-Learning, MOCS, and QMFOABC FCFS methods, at
9.86%, 9.74%, 5.74%, 4.99% and 0.62% respectively.

The three datasets were tested, and it was discovered
that QMFOABC LJF offers the best ARUR value for
further approaches. Consequently, we can infer that the
MOABCQ LJF technique may effectively plan system jobs
and support fairly allocating work among the accessible
resources, which can aid in the structure’s maintenance of
stability approach.

In the fourth part, the suggested strategy’s performance
is compared in relation to the degree of imbalance (DI),
which is used to evaluate the system’s balancing load. The
same datasets used in the earlier experiment sections were
also used for these trials. One hundred virtual machines and
200, 400, 600, 800, and 1000 jobs were used to test these
studies.

Compared to MOCS, MOPSO, HABC LJF, Q-
Learning, FCFS, and Max-Min, the suggested method (QM-
FOABC) was evaluated, and the outcomes are shown in
Table 4. The DI values of QMFOABC LJF were the
least while tested on a dataset of GoCJ and random,
demonstrating that QMFOABC LJF can distribute jobs
more evenly among available resources in the system than
the other approaches. However, we discovered that QM-
FOABC LJF provided a lesser DI value as compared to
other techniques while utilizing the Synthetic workload
dataset and setting jobs in the scheme equal to 200 to 1000
jobs. QMFOABC FCFS has the lowest DI value except
tested with 400 jobs. With a task distribution rate of 4.37%,
QMFOABC FCFS is superior to QMFOABC LJF.

The QMFOABC approach was found to evenly allocate
the work across the existing resources in the structure,
which led to a lower DI, according to the testing with
all three datasets. Furthermore, an in-depth analysis of
the suggested approach demonstrates that QMFOABC LJF
outperformed the other examined methods. Nevertheless, it
relies on the test dataset.

The last part compares the effectiveness of the suggested
strategy from a financial standpoint to evaluate the expenses
or overheads associated with cloud computing using three
datasets. The experiment outcomes are displayed in Figures
8,9,10. According to Figure.9 QMFOABC was shown to
cut costs more than the above-discussed approaches while
utilizing the random dataset. Furthermore, the comparison
indicates that QMFOABC LJF had about 3.38% lower cost
than QMFOABC FCFS. The QMFOABC LJF method,
however, costs 4.888% higher than the QMFOABC FCFS
procedure with 1000 jobs.

The findings in Figure.10 showed that QMFOABC
could lower costs more than the other approaches while
trying with the dataset of GoCJ, just as it did with the
random dataset. For example, we observed that the QM-
FOABC LJF strategy has a low cost compared to the
QMFOABC FCFS method at about 20.9% when associat-
ing QMFOABC FCFS with QMFOABC LJF and testing
on different jobs. Additionally, it was discovered that the
QMFOABC FCFS technique cost 0.48% more than the
QMFOABC LJF method while experimenting with 600
and 1000 jobs.

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

590 Sanjeev Sharma, et al.: Multi-Faceted Job Scheduling Optimization Using Q-learning With ABC In Cloud.

Figure 9. Performance comparison of throughput on random dataset

Figure 10. Performance comparison of Throughput on GoCJ dataset

The outcomes in Figure 11 demonstrate that, like testing
with the first two datasets, the QMFOABC approach is less
expensive compared to approaches when testing with the
dataset of Synthetic workload. The QMFOABC LJF strat-
egy was found to have a low cost as compared to the QM-
FOABC FCFS algorithm, excluding 400 jobs, when QM-
FOABC FCFS has a low cost than the QMFOABC LJF
technique at 1.90%. The tasks in the system were made to
equal 200, 600, 800, and 1000.

The suggested approach of QMFOABC minimizes costs
more than the other comparative methods, per the test-
ing with all three datasets. But when we compared QM-
FOABC LJF with QMFOABC FCFS, we discovered that
QMFOABC LJF could be used more effectively for task
scheduling given the system’s current resources than QM-
FOABC FCFS. This is because QMFOABC LJF has a lower
percentage when compared to the two approaches’ different

Figure 11. Performance comparison of Throughput on Synthetic
workload dataset

percentages. But it relies on the testable dataset.

6. TIME COMPLEXITY OF QMFOABC
The QMFOABC method’s temporal complexity may

be determined as follows: an initial population of n bees
is supplied in ABC. As a result, it takes n iterations
to discover suitable virtual machines in the cloud and n
iterations to update the figures in the Q-table. Consequently,
the complexity will be the big-oh(n) of QMFOABC. The
temporal complexity is equivalent to k * O. Ignoring k, the
entire time complexity of QMFOABC is equal to big-Oh.

7. Conclusion
This paper recommends the QMFOABC approach for

multi-objective optimization scheduling in a heterogeneous
virtual environment. This approach considered selecting
suitable VMs after evaluating each VM’s fitness. Heuris-
tic methods using FCFS and LJF were also given. The
recommended approach signifies improving the scheduling
and resource management, hence increasing virtual machine
(VM) performance while balancing the load between them.
The key goal is to address the constraints of concurrent
elements like makespan, cost, and resource utilization. In
comparison to various other algorithms such as Max-Min,
FCFS, Q-Learning, HABC LJF, MOPSO, and MOCS, this
method helps to balance the workload among the system
resources that are available and improves in minimizing
makespan, lowering cost, and increasing throughput and
ARUR. Finally, tests were run on a variety of datasets to
gauge how well the suggested algorithms worked.

In comparison to the previously stated scheduling strate-
gies, the recommended technique aids in improving the
drop values of through, cost, DI, makespan drop, and
ARUR while also aiding in load-balancing jobs with the
system’s current resources. The results of the trial show
that the suggested technique outperformed the alternatives.
Although we observed that the QMFOABC LJF technique

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 15, No.1, 577-593 (Feb-24) 591

is the best we noticed few limitations too, like not all test
datasets support the optimization of system performance
and some adjustment is needed with a parametric setting.

Job scheduling in edge/fog/multi-virtual situations may
present difficult but lucrative challenges in the future. We
offer a method for scheduling arrangements that functions
well in various contexts. It is also feasible to employ
other machine-learning techniques. The performance of the
suggested scheme compared to the QMFOABC technique
may also be assessed in a practical setting.

References
[1] S. Sharma and N. K. Pandey, “Improved task scheduling strategy

using reinforcement learning in cloud environment,” in 2022 2nd
International Conference on Innovative Sustainable Computational
Technologies (CISCT). IEEE, 2022, pp. 1–5.

[2] D. Ardagna, G. Casale, M. Ciavotta, J. F. Pérez, and W. Wang,
“Quality-of-service in cloud computing: modeling techniques and
their applications,” Journal of Internet Services and Applications,
vol. 5, no. 1, pp. 1–17, 2014.

[3] K. Psychas and J. Ghaderi, “On non-preemptive vm scheduling in
the cloud,” Proceedings of the ACM on Measurement and Analysis
of Computing Systems, vol. 1, no. 2, pp. 1–29, 2017.

[4] S. Crago, K. Dunn, P. Eads, L. Hochstein, D.-I. Kang, M. Kang,
D. Modium, K. Singh, J. Suh, and J. P. Walters, “Heterogeneous
cloud computing,” in 2011 IEEE International Conference on Clus-
ter Computing. IEEE, 2011, pp. 378–385.

[5] R. Messier, Collaboration with cloud computing: Security, social
media, and unified communications. Elsevier, 2014.

[6] O. Alsaryrah, I. Mashal, and T.-Y. Chung, “Bi-objective optimiza-
tion for energy aware internet of things service composition,” IEEE
Access, vol. 6, pp. 26 809–26 819, 2018.

[7] L. Liu, M. Zhang, R. Buyya, and Q. Fan, “Deadline-constrained
coevolutionary genetic algorithm for scientific workflow scheduling
in cloud computing,” Concurrency and Computation: Practice and
Experience, vol. 29, no. 5, p. e3942, 2017.

[8] X. L. ZhangjunWu, Z. Ni, D. Yuan, and Y. Yang, “A market-oriented
hierarchical scheduling strategyin cloud workflow systems,” 2011.

[9] D. Yagyasen, M. Darbari, P. K. Shukla, and V. K. Singh, “Diversity
and convergence issues in evolutionary multiobjective optimization:
application to agriculture science,” IERI Procedia, vol. 5, pp. 81–86,
2013.

[10] J. D. Knowles and D. W. Corne, “Approximating the nondominated
front using the pareto archived evolution strategy,” Evolutionary
computation, vol. 8, no. 2, pp. 149–172, 2000.

[11] J. Horn, N. Nafpliotis, and D. E. Goldberg, “A niched pareto genetic
algorithm for multiobjective optimization,” in Proceedings of the
first IEEE conference on evolutionary computation. IEEE world
congress on computational intelligence. Ieee, 1994, pp. 82–87.

[12] S. Basu, M. Karuppiah, K. Selvakumar, K.-C. Li, S. H. Islam,
M. M. Hassan, and M. Z. A. Bhuiyan, “An intelligent/cognitive
model of task scheduling for iot applications in cloud computing
environment,” Future Generation Computer Systems, vol. 88, pp.
254–261, 2018.

[13] F. Luo, Y. Yuan, W. Ding, and H. Lu, “An improved particle swarm
optimization algorithm based on adaptive weight for task scheduling
in cloud computing,” in Proceedings of the 2nd International Con-
ference on Computer Science and Application Engineering, 2018,
pp. 1–5.

[14] I. Alharkan, M. Saleh, M. A. Ghaleb, H. Kaid, A. Farhan, and
A. Almarfadi, “Tabu search and particle swarm optimization al-
gorithms for two identical parallel machines scheduling problem
with a single server,” Journal of King Saud University-Engineering
Sciences, vol. 32, no. 5, pp. 330–338, 2020.

[15] D. Karaboga et al., “An idea based on honey bee swarm for
numerical optimization,” Technical report-tr06, Erciyes university,
engineering faculty, computer . . . , Tech. Rep., 2005.

[16] B. Akay and D. Karaboga, “A modified artificial bee colony algo-
rithm for real-parameter optimization,” Information sciences, vol.
192, pp. 120–142, 2012.

[17] X. Li, Z. Peng, B. Du, J. Guo, W. Xu, and K. Zhuang, “Hybrid
artificial bee colony algorithm with a rescheduling strategy for solv-
ing flexible job shop scheduling problems,” Computers & Industrial
Engineering, vol. 113, pp. 10–26, 2017.

[18] D. Karaboga and B. Gorkemli, “A combinatorial artificial bee colony
algorithm for traveling salesman problem,” in 2011 International
Symposium on Innovations in Intelligent Systems and Applications.
IEEE, 2011, pp. 50–53.

[19] F. Farahnakian, P. Liljeberg, and J. Plosila, “Energy-efficient virtual
machines consolidation in cloud data centers using reinforcement
learning,” in 2014 22nd Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing. IEEE, 2014,
pp. 500–507.

[20] S. Ismaeel, R. Karim, and A. Miri, “Proactive dynamic virtual-
machine consolidation for energy conservation in cloud data cen-
tres,” Journal of Cloud Computing, vol. 7, no. 1, pp. 1–28, 2018.

[21] Y. Mao, X. Chen, and X. Li, “Max–min task scheduling algo-
rithm for load balance in cloud computing,” in Proceedings of
International Conference on Computer Science and Information
Technology: CSAIT 2013, September 21–23, 2013, Kunming, China.
Springer, 2014, pp. 457–465.

[22] G. Patel, R. Mehta, and U. Bhoi, “Enhanced load balanced min-
min algorithm for static meta task scheduling in cloud computing,”
Procedia Computer Science, vol. 57, pp. 545–553, 2015.

[23] H. Zhang, J. Shi, B. Deng, G. Jia, G. Han, and L. Shu, “Mcte:
Minimizes task completion time and execution cost to optimize
scheduling performance for smart grid cloud,” IEEE Access, vol. 7,
pp. 134 793–134 803, 2019.

[24] A. Hussain, M. Aleem, A. Khan, M. A. Iqbal, and M. A. Islam,
“Ralba: a computation-aware load balancing scheduler for cloud
computing,” Cluster Computing, vol. 21, pp. 1667–1680, 2018.

[25] B. Mondal, K. Dasgupta, and P. Dutta, “Load balancing in cloud
computing using stochastic hill climbing-a soft computing ap-
proach,” Procedia Technology, vol. 4, pp. 783–789, 2012.

[26] M. Adhikari and S. Koley, “Cloud computing: a multi-workflow
scheduling algorithm with dynamic reusability,” Arabian Journal
for Science and Engineering, vol. 43, pp. 645–660, 2018.

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

592 Sanjeev Sharma, et al.: Multi-Faceted Job Scheduling Optimization Using Q-learning With ABC In Cloud.

[27] B. Shrimali and H. Patel, “Multi-objective optimization oriented
policy for performance and energy efficient resource allocation in
cloud environment,” Journal of King Saud University-Computer and
Information Sciences, vol. 32, no. 7, pp. 860–869, 2020.

[28] S. Gao, Y. Li, and H. Huang, “A multi-objective task scheduling
method based on aco in cloud environment,” in 2020 IEEE 6th In-
ternational Conference on Computer and Communications (ICCC).
IEEE, 2020, pp. 1554–1559.

[29] Z.-G. Chen, K.-J. Du, Z.-H. Zhan, and J. Zhang, “Deadline con-
strained cloud computing resources scheduling for cost optimization
based on dynamic objective genetic algorithm,” in 2015 IEEE
Congress on Evolutionary Computation (CEC). IEEE, 2015, pp.
708–714.

[30] S. R. Branch and S. Rey, “Providing a load balancing method based
on dragonfly optimization algorithm for resource allocation in cloud
computing,” International Journal of Networked and Distributed
Computing, vol. 6, no. 1, pp. 35–42, 2018.

[31] B. Kruekaew and W. Kimpan, “Enhancing of artificial bee colony
algorithm for virtual machine scheduling and load balancing prob-
lem in cloud computing,” International Journal of Computational
Intelligence Systems, vol. 13, no. 1, pp. 496–510, 2020.

[32] G.-n. Gan, T.-l. Huang, and S. Gao, “Genetic simulated annealing
algorithm for task scheduling based on cloud computing environ-
ment,” in 2010 International Conference on Intelligent Computing
and Integrated Systems. IEEE, 2010, pp. 60–63.

[33] D. Alsadie, “A metaheuristic framework for dynamic virtual ma-
chine allocation with optimized task scheduling in cloud data
centers,” IEEE Access, vol. 9, pp. 74 218–74 233, 2021.

[34] X. Guo, “Multi-objective task scheduling optimization in cloud
computing based on fuzzy self-defense algorithm,” Alexandria En-
gineering Journal, vol. 60, no. 6, pp. 5603–5609, 2021.

[35] L. Zuo, L. Shu, S. Dong, C. Zhu, and T. Hara, “A multi-objective
optimization scheduling method based on the ant colony algorithm
in cloud computing,” Ieee Access, vol. 3, pp. 2687–2699, 2015.

[36] H. He, G. Xu, S. Pang, and Z. Zhao, “Amts: Adaptive multi-
objective task scheduling strategy in cloud computing,” China
Communications, vol. 13, no. 4, pp. 162–171, 2016.

[37] R. Jena, “Task scheduling in cloud environment: A multi-objective
abc framework,” Journal of Information and Optimization Sciences,
vol. 38, no. 1, pp. 1–19, 2017.

[38] A. Senthil Kumar and M. Venkatesan, “Multi-objective task schedul-
ing using hybrid genetic-ant colony optimization algorithm in cloud
environment,” Wireless Personal Communications, vol. 107, pp.
1835–1848, 2019.

[39] D. Alsadie, “Tsmgwo: Optimizing task schedule using multi-
objectives grey wolf optimizer for cloud data centers,” IEEE Access,
vol. 9, pp. 37 707–37 725, 2021.

[40] S. H. H. Madni, M. S. A. Latiff, J. Ali, and S. M. Abdul-
hamid, “Multi-objective-oriented cuckoo search optimization-based
resource scheduling algorithm for clouds,” Arabian Journal for
Science and Engineering, vol. 44, pp. 3585–3602, 2019.

[41] S. Pang, W. Li, H. He, Z. Shan, and X. Wang, “An eda-ga hybrid

algorithm for multi-objective task scheduling in cloud computing,”
IEEE Access, vol. 7, pp. 146 379–146 389, 2019.

[42] P. Neelima and A. R. M. Reddy, “An efficient load balancing system
using adaptive dragonfly algorithm in cloud computing,” Cluster
Computing, vol. 23, pp. 2891–2899, 2020.

[43] U. A. Butt, M. Mehmood, S. B. H. Shah, R. Amin, M. W. Shaukat,
S. M. Raza, D. Y. Suh, and M. J. Piran, “A review of machine
learning algorithms for cloud computing security,” Electronics,
vol. 9, no. 9, p. 1379, 2020.

[44] L. Caviglione, M. Gaggero, M. Paolucci, and R. Ronco, “Deep
reinforcement learning for multi-objective placement of virtual
machines in cloud datacenters,” Soft Computing, vol. 25, no. 19,
pp. 12 569–12 588, 2021.

[45] U. Jena, P. Das, and M. Kabat, “Hybridization of meta-heuristic
algorithm for load balancing in cloud computing environment,”
Journal of King Saud University-Computer and Information Sci-
ences, vol. 34, no. 6, pp. 2332–2342, 2022.

[46] T. Thein, M. M. Myo, S. Parvin, and A. Gawanmeh, “Reinforcement
learning based methodology for energy-efficient resource allocation
in cloud data centers,” Journal of King Saud University-Computer
and Information Sciences, vol. 32, no. 10, pp. 1127–1139, 2020.

[47] U. Rugwiro, C. Gu, and W. Ding, “Task scheduling and resource
allocation based on ant-colony optimization and deep reinforcement
learning,” Journal of Internet Technology, vol. 20, no. 5, pp. 1463–
1475, 2019.

[48] R. T. Marler and J. S. Arora, “The weighted sum method for
multi-objective optimization: new insights,” Structural and multi-
disciplinary optimization, vol. 41, pp. 853–862, 2010.

[49] S. Fairee, S. Prom-On, and B. Sirinaovakul, “Reinforcement learn-
ing for solution updating in artificial bee colony,” PloS one, vol. 13,
no. 7, p. e0200738, 2018.

[50] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and
R. Buyya, “Cloudsim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning
algorithms,” Software: Practice and experience, vol. 41, no. 1, pp.
23–50, 2011.

[51] A. Hussain and M. Aleem, “Gocj: Google cloud jobs dataset for
distributed and cloud computing infrastructures,” Data, vol. 3, no. 4,
p. 38, 2018.

[52] H. Saleh, H. Nashaat, W. Saber, and H. M. Harb, “Ipso task schedul-
ing algorithm for large scale data in cloud computing environment,”
IEEE Access, vol. 7, pp. 5412–5420, 2018.

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 15, No.1, 577-593 (Feb-24) 593

Sanjeev Sharma currently pursuing his
Ph.D. from DIT University, Uttarakhand,
India. He has completed his M.TECH in
CSE from Uttaraknad Technical University,
Dehradun, Uttarakhand, India. His research
interests include Cloud Computing, Algo-
rithms, Networking, ML, and parallel com-
puting.

Dr. Neeraj K Pandey is an Associate Pro-
fessor in the Department of CSE, Graphic
Era Deemed to be University, Uttarakhand.
He has over 13 years of teaching and re-
search experience. He has published more
than 45 research papers in international jour-
nals and conferences. His research areas in-
clude Cloud Computing, Machine Learning
and Deep Learning, IoT, Image Processing,
etc.

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

	Introduction
	Literature Review
	Identification And Optimization Of The Problem
	Load Balancing With Hybrid ABC Algorithm
	Q-Learning Algorithm
	Improved ABC Strategy

	Investigational Work And Its Discussion
	Setup For Simulation
	Datasets Scale
	Parameter Set For The Recommended Technique And Their Evaluation Approach
	 Experimentation And Outcomes

	TIME COMPLEXITY OF QMFOABC
	Conclusion
	References
	Biographies
	Sanjeev Sharma
	Dr. Neeraj K Pandey

