
1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

14	

15	

16	

17	

18	

19	

20	

21	

22	

23	

24	

25	

26	

27	

28	

29	

30	

31	

32	

33	

34	

35	

36	

37	

38	

39	

40	

41	

42	

43	

44	

45	

46	

47	

48	

49	

50	

51	

52	

53	

54	

55	

56	

57	

60	

61	

62	

63	

64	

65	

Analyzing the Impact of Discretization Techniques on Real

Time Simulation of DC Servomotor Using FPGA

Mini K. Namboothiripad

Department of Electrical Engineering,

Agnel Charities Fr. C. Rodrigues Institute of Technology, Vashi

Navi-Mumbai, Maharashtra, India.

E-mail address: mini.n@fcrit.ac.in

Received ## Mon. 20##, Revised ## Mon. 20##, Accepted ## Mon. 20##, Published ## Mon. 20##

Abstract: This paper explains the strategies to create a hardware-based real time model of DC servomotor by utilizing the FPGA

technology that can accurately simulate the behavior of the servomotor in real-time. Such FPGA based hardware model is useful for

testing control algorithms, validating designs, and optimizing performance for various applications because of its reconfiguration

capabilities. Continuous-time model is discretized using both Backward Euler (BE) and Trapezoidal (TRZ) methods for the real-time

implementation on FPGA. The discretized models are coded using ‘C’, converted to hardware descriptive language using Vivado high

level synthesis tools, and the performance is analyzed with change in step-size by comparing with the transfer function (TF) model.

With 100 µsec step-size, TRZ response is found to be matching with the TF model, however, a step-size of 0.6 µsec was required for

the BE. Also analyzed the closed loop speed control performance of the hardware-based real time DC servomotor models with discrete

PID controller, again by varying the step-size. Both the BE and TRZ models could track the reference speed within 2 msec, because

of the PID controller, however faster dynamics was observed in case of TRZ as compared to BE, especially with larger step-size. These

analysis shows the effect of step-size and the discretization technique for the real-time modeling, however, with a suitable selected

values, the developed FPGA model can be utilized efficiently for the development of suitable control algorithm.

Keywords: Backward Euler, DC Servomotor, FPGA, High Level Synthesis, Discrete PID Controller, Real-Time Simulation,

Trapezoidal, Vivado

INTRODUCTION

DC servo motors are versatile devices widely used in
various applications across a wide range of industries and
technologies [1]. Its crucial role in robotic systems,
computer numerical control machines, medical devices,
aerospace applications, solar tracking systems, automotive
systems etc. highlight its versatility and precision control
capabilities. Its various applications in electric vehicles
such as power steering, power brake, power windows,
power seating, cooling fans, heating, ventilation, and air
conditioning systems, etc. contributes to improved energy
efficiency, enhanced vehicle control, and increased overall
performance. As technology continues to advance, the role
of these motors in various applications may expand even
further.

Research on DC servomotors spans various aspects,
including control algorithms, modelling and simulation,
real-time implementations, hardware implementations,
optimization techniques, with applications in different
fields. Real-time simulation of DC servomotors is a crucial
step in the development and deployment of control
systems. It allows rapid control prototyping and testing,
hardware in the loop and software in the loop testing etc.
without the need for complete physical hardware setups
[2]-[4]. It enables thorough testing, analysis, and
optimization of control algorithms, ultimately leading to
more reliable and efficient real-world implementations.

Simulating a DC servomotor in real-time involves
using software tools and models to replicate the behaviour
of the motor and its control system. Various papers are
available in the literature, with different software tools, to
investigate the impact of the control algorithms to enhance
the precision and responsiveness of DC servomotors. A
LabVIEW based PID controller for the position control of
DC servomotor is explained in detail in paper [5]. Similar
approach with LabVIEW, but a fuzzy-PI controller is
developed in the paper [6] to control the speed of the DC
servomotor.

The paper in [7] presents a MATLAB based simulation
model for the DC servomotor and PID controller, to
enhance the performance of the motor. Application of such
MATLAB based motor with PID controller to humanoid
robotic arm is explained in [8]. The tuning of such PID
controller using genetic algorithm for the position and
speed control of the MATLAB based DC servomotor is
presented in [9] and [10]. Whereas, the papers [11] and [12]
explains the advantages of other control techniques such as
fuzzy logic [11], ANN [12] and a hybrid fuzzy and
position-velocity controller [13] for the speed control of
DC servomotor, using MATLAB /Simulink models.

While LabVIEW [5], [6], and MATLAB/Simulink [7]-
[13] models are powerful tools for designing and
simulating control algorithms, transitioning to ‘C’ code is
often necessary for real-world deployment on embedded
systems or microcontrollers [14],[15]. Using high level

IJCDS 1570990010

1

synthesis (HLS) tools, ‘C’ code can be converted to
hardware descriptive language (HDL) which is used for the
implementation on Field Programmable Gate Array
(FPGA).

 FPGAs provide hardware-level parallelism and can
execute real time simulations of systems and control
algorithms with minimal latency [16],[17]. This is crucial
in real-time applications where rapid response times are
essential [18-21], such as robotics and automation.
Prototyping systems using FPGA can be a cost-effective
solution compared to designing custom ASICs
(Application-Specific Integrated Circuits). It offers a
balance between performance and cost, as compared to
ASICs, making them suitable for iterative development
[22].

DC servomotors often require integration with sensors
for feedback on position, speed, or torque. FPGA-based
prototypes facilitate the integration of these sensors in real-
time, helping to validate and refine the feedback control
loop. Thus well-suited for hardware-in-the-loop (HIL)
testing [23], [24] where the DC servomotor in FPGA can
be connected to a physical or a simulated control system. It
is valuable for educational purposes, providing hands-on
experience in control system design.

Such prototyping also allows engineers and researchers
to develop and optimize control algorithms for the DC
servomotor, with different specifications, in a real-time
environment. This is feasible because FPGAs are versatile
and can be easily reprogrammable, hence the same FPGA
platform can be repurposed to adapt to different DC
servomotor applications such as control of robotic arm,
conveyor system, or any other automated process. While
FPGA-based implementations offer these advantages, in
general, it requires expertise in hardware design and FPGA
programming. However, HLS tools will facilitate the
coding with high level languages such as ‘C’.

 DC servomotor can be modelled in real time on FPGA
using ‘C' code by replacing the continuous system into its
discretized form [25]-[27]. There are various discretization
methods available in literature [28]- [30] such as Backward
Euler (BE) method, Trapezoidal (TRZ) method etc.
Ultimately, it's crucial to evaluate the performance of
available models in the specific application context to
determine which discretization method better meets the
accuracy and stability requirements of the system. The
paper [31] explains in detail the discretization issue with
the BE method for the real time simulation of induction
motor, especially with the steady state error.

TRZ method is a second order approximation thus can
be computationally more efficient and accurate than BE,
especially for systems where the solution exhibits rapid
changes [32]. In the case of DC servo motors, because of
its stiff dynamics, the solution changes rapidly [1], thus

TRZ method may provide more accurate solutions, which
need to be verified.

This paper explains the real time modelling of DC
Servomotor using both BE and TRZ method on FPGA, and
compare their performance with the transfer function (TF)
model. Motor is modeled using ‘C’ code and converted to
HDL using Vivado HLS tool for its implementation on
FPGA [33]. It is observed that even with a step-size of 100
µsec, the response from TRZ is found to be at par with the
TF model. However, the response from BE is equivalent to
that only by reducing the step-size to 6µsec. Also, analysed
the performance of these discrete time models on FPGA by
connecting it in loop with the discrete PID controller [34]
for the speed control. In this case also, observed a faster
dynamic with the TRZ method as compared to the BE
method thus verified the superiority of TRZ.

Novelty of our paper is the modeling of DC servomotor
using ‘C’ with both BE and TRZ discretization techniques
and further the implementation on FPGA using Vivado
HLS. These prototypes on FPGA can be connected in loop
with the controllers for the design and development of
advanced control algorithms for various applications.
Feasibility of such HIL technique is also analysed by
connecting in loop with the PID implementation on FPGA.

MODELLING OF DC SERVO MOTOR

Equivalent circuit of a DC servomotor can be represented

as shown in Fig. 1. Using Kirchhoff’s Voltage Law on this

circuit, the mathematical equation can be written as

𝑅𝑎𝑖𝑎(𝑡) + 𝐿𝑎
𝑑𝑖𝑎(𝑡)

𝑑𝑡
+ 𝐸𝑏(𝑡) = 𝐸𝑎(𝑡) (1)

Where 𝑅𝑎 and 𝐿𝑎 are the resistance and inductance of
the armature circuit, 𝐸𝑎 is the applied DC voltage, 𝐸𝑏 is
the generated back emf and 𝑖𝑎 is the current flowing
through the armature circuit.

The back emf 𝐸𝑏 can be written in terms of angular
velocity 𝑤𝑚 and back emf constant, 𝐾𝑏 as,

𝐸𝑏(𝑡) = 𝐾𝑏𝑤𝑚(𝑡) (2)

Equations (1) and (2) can be combined as,

𝑅𝑎𝑖𝑎(𝑡) + 𝐿𝑎
𝑑𝑖𝑎(𝑡)

𝑑𝑡
+ 𝐾𝑏𝑤𝑚(𝑡) = 𝐸𝑎(𝑡) (3)

Torque developed by the motor, 𝑇𝑚, can be written in
terms of Moment of Inertia, 𝐽𝑚, and Frictional constant,
𝐷𝑚, of motor as,

𝑇𝑚(𝑡) = 𝐽𝑚
𝑑𝑤𝑚(𝑡)

𝑑𝑡
+ 𝐷𝑚𝑤𝑚(𝑡) (4)

Also, the torque can be expressed in terms of armature
current 𝑖𝑎 and Torque constant. 𝐾𝑡 as,

𝑇𝑚(𝑡) = 𝐾𝑡𝑖𝑎(𝑡) (5)

Equation (6) can be derived by combining (4) and (5),

2

Figure 1. Equivalent circuit of a DC servomotor

𝐾𝑡𝑖𝑎(𝑡) = 𝐽𝑚
𝑑𝑤𝑚(𝑡)

𝑑𝑡
+ 𝐷𝑚𝑤𝑚(𝑡) (6)

and then rearranging (3) and (6), the following (7) and (8)
can be derived.

𝑑𝑖𝑎(𝑡)

𝑑𝑡
= −

𝑅𝑎

𝐿𝑎
𝑖𝑎(𝑡) −

𝐾𝑏

𝐿𝑎
𝑤𝑚(𝑡) +

1

𝐿𝑎
𝐸𝑎(𝑡) (7)

𝑑𝑤𝑚(𝑡)

𝑑𝑡
=

𝐾𝑡

𝐽𝑚
𝑖𝑎(𝑡) − 𝐼𝑎(𝑠) = 𝑤𝑚(𝑡) (8)

Equations (7) and (8) can be discretized using a
numerical method to simulate the dynamic behavior of the
DC servo motor. It's important to note that the accuracy of
the simulation depends on the chosen step-size and the
appropriateness of the numerical method for the specific
dynamics of the system.

For the TF model, assuming zero initial conditions, (3)
and (6) can be written using Laplace transform as follows:

𝑅𝑎𝐼𝑎(𝑠) + 𝐿𝑎𝑠𝐼𝑎(𝑠) + 𝐾𝑏𝑊𝑚(𝑠) = 𝐸𝑎(𝑠) (9)

𝐾𝑡𝐼𝑎(𝑠) = 𝐽𝑚𝑠𝑊𝑚(𝑠) + 𝐷𝑚𝑊𝑚(𝑠) (10)

Substituting 𝐼𝑎(𝑠) from (10) to (9), and after the
simplification, the TF can be expressed as,

G(𝑠) =
𝑊𝑚(𝑠)

𝐸𝑎(𝑠)
=

𝐾𝑡

𝐽𝑚𝐿𝑎𝑠2+(𝑅𝑎𝐽𝑚+𝐿𝑎𝐷𝑚)𝑠+(𝑅𝑎𝐷𝑚+𝐾𝑏𝐾𝑡)
 (11)

A. Discretization Methods

During transient analysis, the total time interval of
interest is discretized into small step-size, ‘h’, and the
circuit is solved at each time-step or sample. An ordinary

differential equation,
𝑑𝑥

𝑑𝑡
, which exists due to the presents

of energy storage elements, can be solved numerically by

representing it as, slope=
𝑥𝑘−𝑥𝑘−1

𝑡𝑘−𝑡𝑘−1
. Here, k is the current

sample and k-1 is the previous sample, 𝑡𝑘 − 𝑡𝑘−1 is the
step-size, ‘h’. However, this expression may be
representing the slope at the samples k, k-1 etc. Depends
upon that, various discretization techniques like BE and
TRZ methods are defined.

In the BE method,
𝑥𝑘−𝑥𝑘−1

ℎ
 is the slope at ‘k’. Thus

𝑑𝑥

𝑑𝑡
= 𝑓(𝑘) can be written in discrete form as,

𝑥𝑘−𝑥𝑘−1

ℎ
 =

𝑓(𝑥𝑘) . However, in the TRZ method,
𝑑𝑥

𝑑𝑡
=

1

2
(𝑓(𝑥𝑘) +

𝑓(𝑥𝑘−1)) and thus,
𝑥𝑘−𝑥𝑘−1

ℎ
 =

1

2
(𝑓(𝑥𝑘) + 𝑓(𝑥𝑘−1)) is

representing the differential equation.

The choice between TRZ and BE method depends on
factors such as system dynamics, stability requirements,
and computational efficiency. In the context of DC servo
motors, the choice between TRZ and BE modelling may
also depend on other factors such as the control algorithm
used, the requirements for speed and precision, and the
specifics of the motor's behavior.

B. Discretized Model of DC Servomotor

Using the BE discretization technique, (7) and (8) can
be written as,

𝑖𝑎(𝑘) = 𝑖𝑎(𝑘 − 1) −
ℎ𝑅𝑎

𝐿𝑎
𝑖𝑎(𝑘) −

ℎ𝐾𝑏

𝐿𝑎
𝑤𝑚(𝑘) +

ℎ

𝐿𝑎
𝐸𝑎(𝑘)

 (12)

𝑤𝑚(𝑘) = 𝑤𝑚(𝑘 − 1) +
ℎ𝐾𝑡

𝐽𝑚
𝑖𝑎(𝑘) −

ℎ𝐷𝑚

𝐽𝑚
𝑤𝑚(𝑘) (13)

Which can be written in matrix form as,

[
1 +

ℎ𝑅𝑎

𝐿𝑎

ℎ𝐾𝑏

𝐿𝑎

−
ℎ𝐾𝑡

𝐽𝑚
1 +

ℎ𝐷𝑚

𝐽𝑚

] [
𝑖𝑎(𝑘)
𝑤𝑚(𝑘)

] = [
𝑖𝑎(𝑘 − 1) +

ℎ

𝐿𝑎
𝐸𝑎(𝑘)

𝑤𝑚(𝑘 − 1)
]

 (14)

Equation (14) is of ‘Ax=b’ form where ‘A’ is the
system matrix, ‘x’ is the variables, 𝑖𝑎(𝑘) and 𝑤𝑚(𝑘) ,
which need to be determined, and ‘b’ is the vector which
depends upon the input voltage and the previous sample
stored values. Here, ‘A’ depends only upon the system
parameters, and thus remains same in all samples, whereas
‘b’, need to be determined for each sample. Similarly,
using the TRZ discretization technique, (7) and (8) can be
written as,

𝑖𝑎(𝑘) = 𝑖𝑎(𝑘 − 1) +
ℎ

2
[𝑓1(𝑘) + 𝑓1(𝑘 − 1)] (15)

where 𝑓1(𝑘) = −
𝑅𝑎

𝐿𝑎
𝑖𝑎(𝑘) −

𝐾𝑏

𝐿𝑎
𝑤𝑚(𝑘) +

1

𝐿𝑎
𝐸𝑎(𝑘)

𝑤𝑚(𝑘) = 𝑤𝑚(𝑘 − 1) +
ℎ

2
[𝑓2(𝑘) + 𝑓2(𝑘 − 1)] (16)

where 𝑓2(𝑘) =
𝐾𝑡

𝐽𝑚
𝑖𝑎(𝑘) −

𝐷𝑚

𝐽𝑚
𝑤𝑚(𝑘)

Equations (11) and (12) in matrix form is

[

 1 +

ℎ𝑅𝑎

2𝐿𝑎

ℎ𝐾𝑏

2𝐿𝑎

−
ℎ𝐾𝑡

2𝐽𝑚
1 +

ℎ𝐷𝑚

2𝐽𝑚]

[
𝑖𝑎(𝑘)

𝑤𝑚(𝑘)
]

=

[

 𝑖𝑎(𝑘 − 1) +

ℎ

2𝐿𝑎

𝐸𝑎(𝑘) +
ℎ

2
𝑓1(𝑘 − 1)

𝑤𝑚(𝑘 − 1) +
ℎ

2
𝑓2(𝑘 − 1)

]

(17)

3

By solving (17), which is again of the form ‘𝐴𝑥 = 𝑏’,
𝑖𝑎(𝑘) and 𝑤𝑚(𝑘) can be determined.

Thus, at every sample, 𝑘, armature current and angular
velocity can be determined from their previous sample
value with the present sample voltage 𝐸𝑎.

DC motor modelling program is written in ‘C’, using
both BE and TRZ methods, and it is observed that the TRZ
method gives good accuracy as compared to the BE
method. That is because the TRZ method is a second-order
method thus the local error per sample is proportional to
the square of the step size. And can have better stability
and convergence properties for stiff differential equations,
which is the case with DC servomotor. The stiff
mechanical system in DC servomotors ensures that the
motor responds quickly and accurately to changes in the
input command, and thus most suitable for tracking and
positioning applications.

The control of DC servomotors often involves
feedback mechanisms, such as position or speed feedback,
to achieve the desired performance characteristics. In this
paper, speed of the DC servomotor is observed and
controlled by connecting a properly tuned Proportional-
Integral-Derivative (PID) controller in the loop. The
motor’s actual speed is compared with the reference speed,
and the error is fed to the PID controller model. The output
of the PID controller becomes the DC input to the DC
servomotor.

C. Discretized Model of PID Controller

PID controller output can be expressed as,

𝑐(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫𝑒(𝑡)𝑑(𝑡) + 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
 (18)

Where 𝑒(𝑡) is the error in speed and 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 are

the proportional, integral and derivative constants
respectively.

It can be discretized as,

𝑐(𝑘) = 𝐾𝑝𝑒(𝑘) + 𝐾𝑖int_e(k) + 𝐾𝑑Deriv_e(k) (19)

Where at each sample , 𝑘, int_e(k) represents the
integral of the error and Deriv_e(k) is the derivative of the
error. Using BE method, int_e(k) can be written as,

int_e(k) = int_e(k − 1) + h ∗ 𝑒(𝑘) (20)

similarly, derivative of the error can be discretised as,

Deriv_e(k) =
1

ℎ
 (𝑒(𝑘) − 𝑒(𝑘 − 1)) (21)

where (k − 1) is the previous sample and ‘h′ is the
step-size.

PID controller implementation can be represented as
shown in Fig. 2

Figure 2. Block diagram of Discretized PID controller

The output of the PID controller becomes the input to
the DC servomotor for the speed control. The overall block
diagram for the speed control of DC servomotor is shown
in Fig. 3.

3. REAL TIME COMPUTATION ALGORITHM

The DC servomotor modelling using both BE and TRZ
is coded using ‘C’. The total required simulation time is
divided into multiple samples by considering a suitable
step-size, ‘h’.

The computations are performed at every sample, to get
the armature current and speed as output by taking the
armature voltage as input and the algorithm is given below:

 Formulate the system matrix, ‘A’, using (14) or
(17), where (14) is for BE and (17) for TRZ.

 Read the armature voltage, 𝐸𝑎 , at current sample,
and the armature current 𝑖𝑎, and angular velocity
𝑤𝑚 from the previous sample.

 Formulate the vector ‘b’ using the above
mentioned values.

 Use LU decomposition technique to solve the
armature current and angular velocity.

 Decompose ‘A’ to ‘LU’ where ‘L’ is the unit lower
triangular matrix and ‘U’ is the upper triangular
matrix.

 Apply forward substitution technique and then the
backward substitution technique to determine the
armature current and angular velocity.

 Store the armature current and angular
velocity at current sample, for the next time-
step.

 Determine the speed. Make available the
armature current and speed at the output.

The algorithm can be represented as flowchart as shown in
Fig. 4.

4

Figure 3. Block diagram for the closed loop speed control of DC

servomotor with PID controller

Figure 4. Flow chart for the computational algorithm

4. IMPLEMENTATION ON FPGA

The DC Servomotor is implemented on Xilinx’s
PYNQ FPGA board using Vivado tools. PYNQ board
features Programmable Logic (PL) with an ARM Cortex-
A9, 666 MHz Processing System (PS) [35].

The computational program is written in ‘C’ code, as
explained in section-3, converted to HDL, and
corresponding intellectual property (IP) is generated using
Vivado HLS tool [25]. Similarly, ‘C’ code is written for
the discrete PID controller implementation, using (19) to
(21), which is converted to HDL and then IP using the
HLS tool. Here, both DC servomotor and PID controller
IPs are instantiated in the PL for the closed loop speed
control.

In this design, error signals are generated in the PS by

comparing the input reference speed with the actual speed

from the DC servomotor IP. The PID controller IP in PL

takes error as input and generate control signal for the DC

servomotor IP. The DC servomotor IP take this control

signal as input directly from the PID controller in PL

through AXI4-Stream interface (axis). It transfers data in

a sequential streaming manner, and thus AXI4-Stream

Data FIFO is also included, which provides a buffer

between AXI4-Stream data master and slave in the design.

Then the speed output of the DC servomotor is given back

to the PS for calculating the error.
Since the input port of PID control IP and output port

of DC servomotor IP need to be communicated with the
PS, AXI4-Lite slave interface (s_axilite) is used during the
IP design, which will allow the PS to access the respective
port in the IP through the memory-mapped instructions.
However as mentioned before, AXI4-Stream interface
(axis) is used for the outport port of PID and input port of
DC servomotor IPs. The main advantage of this streaming
implementation is that it reduces memory-mapped
communications and thus reduces the communication
latency. The top-level function code for the PID controller
IP, with the interface mentioned, are shown below.

void PID_IP(float error, float CS)

{

 #pragma HLS INTERFACE s_axilite port=error

 #pragma HLS INTERFACE axi port=CS

 #pragma HLS INTERFACE s_axilite port=return

 Similarly in the case of DC servomotor IP, the top-
level function code, with the interface mentioned, are

void DC_SM_IP(float CS, float Speed, float Ia)

{

 #pragma HLS INTERFACE axi port=CS

 #pragma HLS INTERFACE s_axilite port=Speed

 #pragma HLS INTERFACE s_axilite port=Ia

 #pragma HLS INTERFACE s_axilite port=return

Both of these customized IPs are integrated with other
hardware libraries such as ZYNQ-PS, AXI-fabric etc.
available in the Vivado HLx environment to implement
the overall hardware system in FPGA. The corresponding
block design using Vivado HLx is as shown in Fig. 5.

5

Figure 5. Block Design using Vivado HLx for the closed loop speed
control of DC servomotor with PID controller

Then the HDL wrapper is created for the designed
system and generated the bit-stream for the FPGA, after
the synthesis and implementation on the specified FPGA
hardware. Then exports the design to the Xilinx’s
Software Development Kit (SDK) to develop the
application program in the on-chip processor. Application
program in ‘C’ includes the memory read and write
operations and the input-output operation for the
communication between the PS and the PL [27].

In our implementation, at every sample, the generated
error signals are passed into the PID_IP in PL using the
memory-mapped instructions. The instruction Xil_Out32
(u32Addr, u32Value) perform an output operation by
writing the 32-bit error value to the address specified.
Similarly, 32-bit servomotor outputs, speed and Ia, are
read from the address specified using the instruction
Xil_In32 (u32Addr). The snippets of our application
program code for writing into and read from the
implemented hardware with the signal ‘1’ for starting the
communication is shown below:

Xil_Out32(PID_IP_BASEADDR+0x10, error);

Xil_Out32(PID_IP_BASEADDR+0x00,1);

while(0==(2 & Xil_In32(DC_SM_IP_BASEADDR+0x00)));

Speed=Xil_In32(DC_SM_IP_BASEADDR+0x20);

Ia=Xil_In32(DC_SM_IP_BASEADDR+0x24);

Here, 0x10, 0x20 etc. are the offset addresses created

during the IP generation in Vivado HLS, which is

available at SDK with the exported design. 0x10 offset

address is for the handshaking signal between PL and PS.

Signal ‘1’ indicates the ‘start’ operation for the PL and ‘2’

indicates output is ready by the PL. Once it is ready, the

output can be read from the respective address. Then it is

stored in the DDR available at the PS or to make it

available at the output pins. Now the next iteration starts

and it continue till reaching the final desired time.
The above mentioned application program need to

build to generate the ‘elf’ file. Configure the FPGA board
with the generated bit-stream and then load the ‘elf’ file
for running the overall system. Flow chart for the

implementation on FPGA using Vivado tools, for the
closed loop speed control with PID controller is shown in
Fig. 6.

5. RESULTS AND DISCUSSIONS

The DC Servomotor is modelled using ‘C’ code with
both BE and TRZ methods and the performance is
compared with the TF model in MATLAB. Following
parameters [9][10] are considered for the modelling of DC
Servomotor. Ra = 2.45Ω, La = 0.035H, Kb = Kt

=1.2volt/(rad/sec), Jm =0.022Kg-m2/rad, Dm=0.5*10-3 N-
m/(rad/sec).

Total time of 0.25 sec is considered as the simulation
time for both BE and TRZ methods using ‘C’ and for TF
in MATLAB. Step-size, ‘h’, is varied from 20msec to
0.6µsec, compared and analysed the performance of BE
and TRZ methods with the TF model. The speed at 0.12
sec for all the three models with change in step-size is
shown in Table I.

Figure 6. Flow chart for the implementation on FPGA, using Vivado

tools, for the closed loop speed control with PID controller.

It is clear from the table that, when the step-size is
20msec, speed at 0.12 sec corresponds to BE is much
deviated from the transfer function model. However, TRZ

6

method gives more accurate result as compared to the BE
method. When the step-size decreases, the accuracy of
both the discretized models improves. At a step-size of 100
µsec, TRZ result becomes same as that of TF and at 0.6
µsec step-size, the result corresponds to BE method also
matches with the TF model.

It indicates that being a second order approximation,
TRZ model is more accurate as compared to the BE
method and the accuracy increases with the reduction in
step-size. However, for a real-time implementation, all
communications between the input-output devices with
the model, and all the computations in the model need to
be completed in the selected step-size. So need to be
compromised for the selection of the step-size, and thus
second order TRZ method is more advantageous as
compared to the BE method.

Dynamic response for all the three models are plotted
in Fig. 7 to 9 with different step-size. It is clear from Fig.
7 that, with a step-size of 10mse, initial dynamics with
both BE and TRZ experiences considerable deviations
from that of the TF model, but, TRZ follows more closely
to the TF model, as compared to BE.

Fig. 8 shows that, when the step-size is decreased to
5msec, the error reduced considerably, however, still the
TRZ result is more nearer to the TF model than the BE.

Now by reducing the step-size further to 6µsec, both
the BE and TRZ becomes accurate, which is clear from
Fig. 9. Only a small deviation is present in the dynamics,
which can be seen only by zooming the initial portion, and
is shown as a separate rectangle along with the normal
view in Fig. 9.

Figure 7. Comparison of TRZ and BE methods with TF for a step-size

of 10msec

TABLE I: MEASURED SPEED AT 0.12 SEC FOR ALL THE THREE

MODELS FOR VARIOUS STEP-SIZE.

Step-size
Speed Measured at 0.12 sec

BE method
TRZ

method
Transfer
Function

20 msec 1568.1 1613.9 1611.4

10 msec 1586.5 1613.2 1611.4

5 msec 1598.1 1612.3 1611.4

2 msec 1605.8 1611.7 1611.4

100 µsec 1611.3 1611.4 1611.4

20 µsec 1611.3 1611.4 1611.4

6 µsec 1611.3 1611.4 1611.4

0.6 µsec 1611.4 1611.4 1611.4

Figure 8. Comparison of TRZ and BE methods with TF for a step-size

of 5msec

Figure 9. Comparison of TRZ and BE methods with TF for a step-size

of 6µsec

Discrete PID controller with Kp=20.875, Ki=0.2138,
and Kd=0.2195 [9] is also modelled using ‘C’ and
connected in closed loop with the DC servomotor model
for its speed control. Reference speed considered for the
analysis is 1500 rad/sec. In this case also, compared the
performance of both BE and TRZ modelled DC

7

servomotor and the observations are shown in Fig. 10 and
11, with the step-size varying from 50µsec to 6 µsec.

Fig. 10 and 11 clearly shows that, similar to the
previous cases, for higher step-size, TRZ gives better
performance. However, when the step-size is reduced, BE
is also in par with the TRZ. This shows that, TRZ is a
better method of discretization especially with a larger
step-size.

Also, analysed the performance by changing the
reference speed from 1500 rad/sec to 1600 rad/sec at
2.5msec and the corresponding plot is shown in Fig. 12.

Fig. 10 and 11 clearly shows that with less than 2 msec
both BE and TRZ models is able to achieve the reference
speed. Similar conclusion can be inferred from Fig. 12,
also with change in speed.

Figure 10. Comparison of TRZ and BE methods for the closed loop

speed control with a step-size of 50µsec

Figure 11. Comparison of TRZ and BE methods for the closed loop

speed control with a step-size of 6µsec

 Figure 12. Tracking performance of both TRZ and BE method with

speed changed from 1500 rad/sec to 1600 rad/sec at 2.5msec

These analysis shows that by including the discrete PID

controller with proper tuning, in loop with the FPGA based

DC servomotor, as expected, a faster dynamic with zero

steady state error could be achieved. This strategy can be

used for testing and development of various control

algorithms for DC servomotor, for diverse applications,

without involving the physical motors of numerous

possible specifications.

6. CONCLUSION

The Trapezoidal (TRZ) and the Backward Euler (BE)
methods are two implicit methods commonly used for time
discretization in the numerical solution of ordinary
differential equations (ODE). Relative accuracy of these
methods can vary depending on the specific ODE being
solved, the step-size chosen, and other numerical
considerations. This paper compares these two
discretization methods for the modelling of DC
servomotor implemented on FPGA with that of the widely
used transfer function method using MATLAB. Step-size
is changed from 20msec to 0.6 µsec and observed that,
TRZ method gives more accurate results as compared to
BE method especially with larger step-size. However,
shows that the designed FPGA based models of DC
servomotor is as accurate as the TF model, thus can be
used for further design purposes.

Speed control performance of DC servomotor is also
analyzed by connecting the models of DC servomotor in
closed loop with a properly tuned discrete PID controller
for a step-size variation from 50 µsec to 6µsec. In this case
also, with 50µsec, TRZ was superior, however at 6µsec,
the performance of BE is well matched with the TRZ.
These analysis explains in detail the effect of step-size on

8

discretization techniques which will help us to choose the
method and the step-size.

With a properly decided step-size and the
discretization method, FPGA based DC servomotor model
can be developed which can be effectively utilized for the
design and testing of robust and optimized control systems
without involving the physical systems. Same hardware
model can be used for numerous applications of DC
servomotor even with different specifications because of
the reconfigurable property of the FPGA.

REFERENCES

[1] Baballe Muhammad, Bello Mukhtar, Abdullahi Umar Abubaka, "A

Look at the Different Types of Servo Motors and Their
Applications," Global Journal of Research in Engineering &
Computer Sciences,vol.2, no. 3, pp. 1-6, 2022.

[2] Blanger, P. Venne, and J. N. Paquin, “The what, where and why of
real-time simulation,” in Proc. IEEE PES General Meeting,
Minneapolis, MN, USA, Jul. 25–29, 2010.

[3] OPAL-RT Technologies, “Real-time solutions for every industry.”
[Online]. Available: https: //www.opal-rt.com/

[4] X. Guillad et al., “Applications of real-time simulation technologies
in power and energy systems,” IEEE Power Energy Technol. Syst.
J., vol. 2, no. 3, pp. 103–115, Sep. 2015

[5] Liu, Jianying & Zhang, Pengju & Wang, Fei. (2009). Real-Time
DC Servo Motor Position Control by PID Controllers Using
Labview. 1. 206 - 209. 10.1109/IHMSC.2009.59.

[6] A. Rai, D. K. Das and M. M. Lotha, "LabVIEW Platform based
Real-time Speed Control of a DC Servo Motor With Fuzzy-PI
Controller," 2019 International Conference on Electrical,
Electronics and Computer Engineering (UPCON), Aligarh, India,
2019, pp. 1-4, doi: 10.1109/UPCON47278.2019.8980036.

[7] Zainab B. Abdullah, Salam Waley Shneen, Hashmia S. Dakheel,
“Simulation Model of PID Controller for DC Servo Motor at
Variable and Constant Speed by Using MATLAB”, Journal of
Robotics and Control, Volume 4, Issue 1, January 2023.

[8] N.M. Zakaria and A. O. Elnady,"Implementation of Position
Control Servo DC Motor with PID Controller to Humanoid Robot
Arm,"5 th IUGRC International Undergraduate Research
Conference, Military Technical College, Cairo, Egypt, Aug 9th –
Aug 12st, 2021.

[9] Bindu R., Namboothiripad M. K. Tuning of PID controller for DC
servo motor using genetic algorithm” International Journal of
Emerging Technology and Advanced Engineering, Volume 2, Issue
3, March 2012.

[10] Neenu Thomas, Dr. P. Poongodi,” Position Control of DC Motor
Using Genetic Algorithm Based PID Controller”, Proceedings of
the World Congress on Engineering 2009 Vol II, WCE 2009, July,
2009.

[11] Munadi, M. Amirullah Akbar, “Simulation of Fuzzy Logic Control
for DC Servo Motor using Arduino based on Matlab/Simulink”,
2014 International Conference on Intelligent Autonomous Agents,
Networks and Systems Bandung, Indonesia, August 19-21, 2014.

[12] H. S. Dakheel, Z. B. Abdullah, N. S.Jasim, S.W. Shneen,
"Simulation model of ANN and PID controller for direct current
servo motor by using Matlab /Simulink, "
Telecommunication Computing Electronics and Control , v ol. 20,
no. 4, pp. 922-932, 2022.

[13] E. H. Abdelhameed, T.H. Mohamed and G.El-saady,"Design of
Hybrid Fuzzy and Position-Velocity Controller for Precise

Positioning of a Servo System," International Journal of Applied
Energy Systems, vol. 2, no. 2,pp. 111-115,202

[14] Kumar, A., Goswami, M. “Performance comparison of instrument
automation pipelines using different programming languages”. Sci
Rep 13, 18579 (2023).

[15] emertxe “ Why is C the most preferred language for embedded
systems?”, Sep 21, 2017, https://www.emertxe.com/c-
programming/

[16] Ruiz-Rosero, Juan, Gustavo Ramirez-Gonzalez, and Rahul
Khanna. 2019. "Field Programmable Gate Array Applications—A
Scientometric Review" Computation 7, no. 4: 63.

[17] Sadrozinski H.F.W., Wu. J., “Applications of Field-Programmable
Gate Arrays in Scientific Research”, 1st ed.; Taylor & Francis, Inc.,
Bristol, PA, USA, 2010.

[18] Rajne, P.A. and Venkataramanan Ramanarayanan. “Programming
an FPGA to emulate the dynamics of DC machines.” 2006 India
International Conference on Power Electronics (2006): 120-124.

[19] Matar, Mahmoud and Reza Iravani. “Massively Parallel
Implementation of AC Machine Models for FPGA-Based Real-
Time Simulation of Electromagnetic Transients.” IEEE
Transactions on Power Delivery 26 (2011): 830-840.

[20] V. Ramakrishnan, Nalamwar Sanchit Gopal, R. Ashok and S.
Moorthi, "FPGA based DC servo motor control for remote
replication of movements of a surgical arm," TENCON 2011 - 2011
IEEE Region 10 Conference, Bali, Indonesia, 2011, pp. 671-675,
doi: 10.1109/TENCON.2011.6129192.

[21] Y.J. Zhou, T.X. Mei, “FPGA Based Real Time Simulation for
Electrical Machines”, IFAC Proceedings Volumes,Volume 38,
Issue 1, 2005,Pages 256-261.

[22] asicNorth, “ASIC vs. FPGA: What to Consider for Your Next
Design Project”, web document available at
https://www.asicnorth.com/blog/asic-vs-fpga-difference/

[23] Sova, V., Grepl, R. (2014). Hardware in the Loop Simulation
Model of BLDC Motor Taking Advantage of FPGA and CPU
Simultaneous Implementation. In: Březina, T., Jabloński, R. (eds)
Mechatronics 2013. Springer, Cham. https://doi.org/10.1007/978-
3-319-02294-9_18

[24] Tavana, Nariman Roshandel and Venkata R. Dinavahi. “A General
Framework for FPGA-Based Real-Time Emulation of Electrical
Machines for HIL Applications.” IEEE Transactions on Industrial
Electronics 62 (2015): 2041-2053.

[25] M. K. Namboothiripad, M. J. Datar, M. C. Chandorkar, and S. B.
Patkar,“FPGA accelerator for real-time emulation of power
electronic systems using multiport decomposition,” inProc. Nat.
Power Electron. Conf., 2019, pp. 1–6.

[26] T. Ould-Bachir, H. F. Blanchette, and K. Al-Haddad, “A network
tearing technique for FPGA-based real-time simulation of power
converters,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3409–
3418, Jun. 2015.

[27] M. K. Namboothiripad, M. J. Datar, M. C. Chandorkar and S. B.
Patkar, "Accelerator for Real-Time Emulation of Modular-
Multilevel-Converter Using FPGA," 2020 IEEE 21st Workshop on
Control and Modeling for Power Electronics (COMPEL), Aalborg,
Denmark, 2020, pp. 1-7, doi:
10.1109/COMPEL49091.2020.9265684.

[28] M. B. Patil ,V. Ramanarayanan ,V.T. Ranganathan, “Simulation of
Power Electronic Circuits”, Narosa series in power and energy
systems.

[29] Tihamér, Ádám & Dadvandipour, Samad & Futás, József.
“Influence of discretization method on the digital control system
performance”, Acta Montanistica Slovaca. Vol. 8. No. 4 , pp-197-
200. December 2003.

[30] Vatansever, Fahri & Hatun, Metin. (2021). s-to-z Transformation
Tool for Discretization. Gazi Üniversitesi Fen Bilimleri Dergisi

9

https://www.emertxe.com/c-programming/
https://www.emertxe.com/c-programming/
https://www.asicnorth.com/blog/asic-vs-fpga-difference/
https://doi.org/10.1007/978-3-319-02294-9_18
https://doi.org/10.1007/978-3-319-02294-9_18

Part C Tasarım ve Teknoloji. 9. 773 - 784.
10.29109/gujsc.1003694.

[31] B.M. Joshi and M.C. Chandorkar, “Time Discretization Issues in
Induction Machine Model Solving for Real-time Applications ”,
conf. rec., IEEE Electric Machines and Drives Conference,
IEMDC, 15-18 May 2011, Niagara Falls, Canada, pp. 675-680.

[32] M. Comanescu, "Influence of the discretization method on the
integration accuracy of observers with continuous feedback," 2011
IEEE International Symposium on Industrial Electronics, Gdansk,
Poland, 2011, pp. 625-630, doi: 10.1109/ISIE.2011.5984230.

[33] Xilinx, “Introduction to FPGA Design with Vivado High-Level
Synthesis”, UG998 (v1.0) July 2, 2013.

[34] Ogata, K. (1995) Discrete-Time Control Systems. Pearson, New
York.

[35] Xilinx, “PYNQ-Z2 Reference Manual v1.0”, May 17, 2018.

Mini K Namboothiripad

received the B.Tech. degree in

electrical and electronics

engineering from Govt.

Engineering College Thrissur,

University of Calicut, Kerala,

India in 1995, and the M.Tech.

degree in 2011, and the Ph.D.

degree in 2021, both in

Electrical Engineering from the

Indian Institute of Technology

Bombay, Mumbai, India. She has been working as an Assistant

Professor with the Department of Electrical Engineering, Fr. C.

Rodrigues Institute of Technology, Navi-Mumbai, India, since

2001. Her research interests include FPGA-based Fast

Computing, Real-Time Simulation, Mathematical Modelling,

and Control of Electrical Systems.

10

