
1	  
2	  
3	  
4	  
5	  
6	  
7	  
8	  
9	  
10	  
11	  
12	  
13	  
14	  
15	  
16	  
17	  
18	  
19	  
20	  
21	  
22	  
23	  
24	  
25	  
26	  
27	  
28	  
29	  
30	  
31	  
32	  
33	  
34	  
35	  
36	  
37	  
38	  
39	  
40	  
41	  
42	  
43	  
44	  
45	  
46	  
47	  
48	  
49	  
50	  
51	  
52	  
53	  
54	  
55	  
56	  
57	  
60	  
61	  
62	  
63	  
64	  
65	  

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. , No. (Mon-20..)

http://dx.doi.org/10.12785/ijcds/XXXXXX

Multi-Sensor Data Fusion using DarkNET - CNN
Vinodh S1 and Ramakanth P2

1,2Department of Computer Science, R V College of Engineering, Bengaluru, India

Received Mon. 20, Revised Mon. 20, Accepted Mon. 20, Published Mon. 20

Abstract: Multi-sensor data fusion is ubiquitous; therefore, the associated research is significant. There are several instances in the
day-to-day activities where data fusion can be observed. The present generation autonomous driving system requires a thorough
understanding followed by a voluminous dataset for training the model. The experimental data of imagery and proximity sensors are
significant for the model’s performance. The projection of the camera to LiDAR proves ineffective as the semantic density of the
camera is suppressed in the process. The present work attempts to enhance the conventional point-level fusion techniques by allocating
prime importance to semantic density. This is facilitated by performance optimization by identifying the hindrances and enhancing the
transformation of the view by the Bird’s-eye-View pooling. The object tracking is facilitated through the Extended Kalman Filter(EKF)
by fusing the LiDAR data with the camera detections. The detection precision is found to be 0.9546, and the detection recall is 0.9344,
while the mAP is evaluated to be 71.2%

Keywords: sensor fusion, LiDAR, multi-sensor data, DarkNET, Convolutional Neural Network(CNN)

1. Introduction
Autonomous driving has observed increased complex-

ity recently due to several sensors involved in the act.
The inevitable usage of camera and LiDAR-based sensors
mounted on the vehicle demonstrates the significance of
the Multi-Sensor Data Fusion(MSDF). The LiDAR sensor
provides data in three-dimensional space, while the camera
generates two-dimensional data. For a reliable and precise
perception of the data, the semantic information from the
camera and spatial information of the LiDAR should be
mapped. Hence, MSDF forms the crucial aspect of au-
tonomous driving.
There have been several efforts to develop reliable three-
dimensional object detection systems for autonomous driv-
ing cars. Laser-based sensors perform exceptionally well in
relation to the depth of information, while cameras provide
semantic information to a greater depth. Therefore, a fusion
of camera and LiDAR-based sensors complement each
other, permitting the development of a formidable three-
dimensional detection system for a safe and exceptional
autonomous driving experience.
However, there are associated challenges due to the differ-
ence in modalities generated by the data of each sensor.
In order to achieve a multi-modal and multi-task fusion,
there is a need for a unified representation of the data from
different sensors. In the earlier studies, the perception in
two-dimensional space has been a great success, which is
extended through the projection of spatial LiDAR data onto
the semantic camera data. The distortion of the geometry
observed when the LiDAR data is projected onto the cam-

era(Fig.1a) rendered the process less effective in terms of
object detection in three-dimensional space[1].
Some of the recent efforts in sensor fusion aim at enhanc-
ing the LiDAR point cloud data with CNN features[2],
semantic labels[3], [4] and two-dimensional image-based
virtual points[5]. Though there is a commendable detection
performance on large-scale benchmarks, the point-level-
based fusion is less impressive on tasks of semantic nature
such as BEV-Segmentation[6], [7], [8], [9], which can be
attributed to the semantically-lossy behavior of the projec-
tion of camera to LiDAR(Fig.1b). Further, the differences
in density are more pronounced for sparser LiDAR data.

2. Literature Survey
Over a decade, immense efforts have been put forth

to develop a reliable and robust method for the fusion
of sensors with different modalities. However, there is a
great scope for developing more sophisticated and accurate
models, as the existing models are identified with few
challenges in overcoming the projection accuracy through
reduction in geometric and semantic losses.
The earlier works to achieve three-dimensional perception
based on LiDAR-only data include the single-stage
3D Object detectors[10], [8], [11], [12], [13], which
provided the platform for the evolution of many robust
and sophisticated models. The model is enhanced by
using PointNets[14] and SparseConvNet[15] for extracting
the flattened point-cloud features. Nevertheless, the
restriction offered through the bounding box in the
earlier models is overcome by introducing the anchorless
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(a) Geometric-lossy (b) Semantic-lossy

Figure 1. Projection losses[1]

models[16], [17], [18], [19]. Further investigations have
led to the development of two-stage models through the
amalgamation of the Region-based Convolutional Neural
Network(R-CNN) architecture with the existing one-stage-
based object detection model[20], [21], [22], [23], [24],
[25]. The most crucial task for the offline construction of
HD maps is the three-dimensional segmentation of the
semantic features. The models[15], [26], [27], [28], [29]
developed to address the seminal task, analogous to U-Net,
are note-worthy.

The LiDAR sensors are expensive, paving the way
for exploring cheaper means of 3D object detection.
Commendable efforts are made to achieve three-
dimensional perception based only on Camera data.
The FCOS3D[30] model utilizes three-dimensional
regression branches suitably coupled with the image
detectors[31], which is later enhanced to achieve greater
depth in detection[32], [33]. Irrespective of perspective
view-based object detection, models that learn from the
object queries in the three-dimensional space coupled with
the Deformable Transformer(DETR)[34] detection model,
viz. DETR3D[35], PETR[36] and Graph-DETR3D[37], are
also developed. The view transformer-based camera-only
three-dimensional perception models explicitly transform
camera data to perspective bird’s eye view[6], [38],
[39], [7]. The state-of-art models such as BEVDet[40]
and M2BEV[41], utilize Lift-Splat- Shoot(LSS)[7] and
Orthographic Feature Transform(OFT)[39] for three-
dimensional object detection. Also, the three-dimensional
object detection models through time-dependent cues using
multiple cameras viz. BEVDet4D[42], BEVFormer[43] and
PETRv2[36] are some salient developments in single-frame
methods. However, the models such as BEVFormer[43],
CVT[9], and EGO3RT[44] also perform exceptionally well
through multi-head attention for view transformation.
Lastly, there are efforts put forth to study the models for
multi-task learning. Simultaneous detection of objects and
instant segmentation form the key aspects of multi-task
learning[45], [46]. Further, the simultaneous detection and
segmentation is extended to human-object interaction[42],
[47], [48], [49]. The models that perform detection
of object and instance segmentation simultaneously
are M2BEV[41], BEVFormer[43] and BEVerse[50].
However, there are a couple of challenges associated

with the models specified. Firstly, the models have not
considered multi-sensor data fusion, and secondly, the
computational time and hardware requirement to carry
out the activities simultaneously significantly add to
the computational cost. The MMF model[51] though
performs detection and segmentation simultaneously,
it is object-centric, which cannot be extended to BEV
Segmentation. The most recent attempts aim to significantly
improve the detection performance by fusing sensors of
different modalities. The methods can be categorized into
proposal-level and point-level. The proposal-level methods
are object-centric and therefore do not support map
segmentation effectively, whereas point-level techniques
are both object-centric and geometric-centric. Some of the
exceptional contributions towards proposal-level techniques
include MV3D[52], F-PointNet[53], F-ConvNet[48],
CenterFusion[54]. FUTR3D[55] and TransFusion[56],
while point-level techniques include PointPainting[2],
PointAugmenting[3], MVP[5], FusionPainting[57],
AutoAlign[58], DeepContinuousFusion[51], Deep
Fusion[4], and FocalSparseCNN[59]. Not all techniques
can be incorporated to process the camera and LiDAR data.
LiDAR data processing can be carried out very effectively
through input-level decoration models viz. PointPainting[2],
PointAugmenting[3], MVP[5], FusionPainting[57],
AutoAlign[58], and FocalSparseCNN[59], while
camera images require feature-level decoration viz.
DeepContinuousFusion[51], Deep Fusion[4]
The present study attempts to develop a model for three-
dimensional object detection through data from multiple
sensors(three cameras and three LiDAR). Further, the
geometric and semantic information from the sensors are
granted equal weightage.

3. Methodology
The methodology adopted for the present study is dis-

cussed in this section.

A. Dataset
The dataset comprises three Camera RGB Images and

three LiDAR data. The camera images are well-nourished
with semantic information, while the LiDAR data precisely
provide the spatial information. The samples three monoc-
ular images from the camera, covering 180◦ field of view,
and three 32-beam LiDAR data scans.
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Figure 2. Framework

B. Framework
The framework followed for the present study is de-

picted in Fig.2, where three cameras and LiDAR sensor
data are input to the respective encoders. The encoders are
convolutional and follow the DarkNET-CNN architecture
depicted in Fig.3. The features of the camera images are
extracted and transformed, which forms the key aspect to
achieve higher accuracy. LSS[7] and BEVDet[60] mod-
els are followed to achieve the transformation of camera
images. The transformed images are filtered through an
Extended Kalman Filter(EKF) before the data is fused. EKF
processes the transformed, inherently non-linear LiDAR and
Camera data. Therefore, EKF generates a system matrix
and evaluates noise-covariance by compensating for the
quadratic effects of the data.
The filtered data is mapped by estimating the error through

the update-and-predict of the EKF input state. The root
mean squared error estimated during the present study for
a single target is around 0.32. EKF predicts the model’s
state, while Mahalanobis distance(MD) matches the states
of multiple sensors[61] and the EKF updates the state based
on the error generated by the MD calculation. Eq.1 is used
to evaluate the MD, where x is the observations to be made,
Xi is the calibration data set for the corresponding ith sensor,
while Xi is the mean and Mi is the root-mean-squared-error
of the ith sensor calibration data.

D2(x) = (x − Xi) × Mi(x − Xi) (1)

C. Model
DarkNet-CNN generates the feature map by fusing the

multi-scale camera images, which are down-sampled to
256×704. The LiDAR data is handled using VoxelNET[10]
model, with the data down-sampled to 0.075 and 0.1 for
detection and segmentation, respectively. The three crucial

activities that have direct implications on the accuracy are
listed in the section 3-C1, section 3-C2 and section 3-C3.

1) Unified Representation
Distinct qualities may be present in various viewpoints.

LiDAR and radar features, for example, are usually in the
three-dimensional bird’s-eye view, whereas camera features
are in the perspective view. Every camera function, such
as front, back, left, and right, has a unique viewing angle.
Due to this perspective mismatch, feature fusion becomes
challenging because the same element may correspond to
entirely different spatial locations in distinct feature tensors
(naı̈ve element-wise feature fusion will not operate in this
scenario). Thus, it is imperative to identify a shared repre-
sentation that is easily convertible to it without sacrificing
information and appropriate for various purposes[1].

2) To Camera
One option is to project the LiDAR point cloud onto the

camera plane and display the 2.5D sparse depth driven by
RGB-D data. This conversion is geometrically lossy. In the
3D space, two neighbors on the depth map may be very far
apart. For activities like 3D object detection that rely on the
geometry of the item or scene, this reduces the effectiveness
of the camera view.

3) To LiDAR
The majority of cutting-edge sensor fusion techniques

[2], [5], [4] embellish LiDAR points with the matching cam-
era features (e.g., virtual points, CNN features, or semantic
labels). But this projection from the camera to LiDAR
is semantically lossy. Because of the stark differences in
densities between LiDAR and camera features (for a 32-
channel LiDAR scanner) < 5% of camera features match
a LiDAR point. On semantic-oriented tasks (such as BEV
map segmentation), the model’s performance is significantly
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Figure 3. DarkNET-CNN Architecture

(a) IoU = 0.954(Excellent) (b) IoU = 0.739(Good) (c) IoU = 0.453(Poor)

Figure 4. Intersection over Union

affected by giving up the semantic density of camera
features. More modern fusion techniques in the latent space,
including object query, have comparable demerits[56], [18].

4) To BEV
The lossy identified and explained through Fig.1a and

Fig.1b are considered during the transformation. The pro-
jection of LiDAR data to BEV evens out the sparse features
in the height dimension, thereby eliminating the aspect

(a) Detected Signal (b) Tracking Signal

Figure 5. Treatment of detection and tracking signals
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(a) Intersection Over Union (b) X-Error in Signal

(c) Y-Error in Signal (d) Z-Error in Signal

Figure 6. Evaluation of Object Detection Performance

of geometric lossy. On the contrary, the transformation of
camera images to BEV is non-trivial due to the inherent
depth associated. The depth distribution of the pixels of the
camera images is predicted using LSS[7] and BEVDet[40],
[60]. The features are re-scaled upon scattering of the pixels
of each feature to D discrete points along the ray of the
camera. A cloud of the feature points is generated with a
size of NHWD, where N is the number of the cameras(in
the present study, it is 3 numbers), while, H and W are
the height and the width of the image, respectively. The
grid size considered in the cartesian coordinate system is
0.35m × 0.35m, which is evened out in the z-direction.
The transformation of camera-to-BEV consumed a compu-
tational time of ≈ 465ms with a Quadro P6000 Graphics
processing. This can be attributed to the large number of
grid points generated per frame of the camera feature. The
LiDAR features are, therefore, less dense and computation-
ally inexpensive. Nevertheless, curtailing the computational
time for the camera features demands a pre-computation

and reduction in the interval considered earlier.
The Pre-computation involves the association of the camera
features to BEV grid points. From the calibration of the
camera, the intrinsic and extrinsic stay the same, permitting
to locate coordinates of the feature cloud of the camera. The
task facilitates the pre-computing of the indices of BEV
grid points, thereby reducing the grid-association latency
by ≈ 65%.
The Interval Reduction entails aggregation of the grid-
points generated during the precomputation through sym-
metric functions viz. mean, maximum, and summation,
within the BEV grid.

D. Multi-tasking
Practically, the majority of the 3D perception activity is

carried out under detection and segmentation. The object
center is evaluated based on the size, velocity, and rotation,
which is based on the earlier 3D detection articles[56], [16],
[5]. On the other hand, the segmentation is carried out by
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(a) Accuracy (b) Loss

Figure 7. Performance of DarkNET-CNN based MSDF model

treating the features classwise and associating the binary
segments to each of them. The training of the segmentation
head is carried out through CVT[9], with the focal loss
being treated using Lin et.al model[62].

E. Training
The training of the model is carried out end-to-end

to avoid camera-encoder freezing, as observed in earlier
models[2], [3], [56]. The weight decay is ≈ 0.001, and
optimization is achieved through AdamW[63] model.

F. Metrics
The evaluation of the model is made based on the

following parameters discussed in section 3-F1 and sec-
tion 3-F2.

1) Intersection over Union(IoU)
The accuracy with which the data is predicted can be

obtained through Intersection over Union(IoU), which is
defined as the percentage of overlap between the actual
value(ground-truth) and the predicted value(Fig.4), math-
ematically represented by Eq.2.

IoU =
|A ∩ B|
|A| ∪ |B|

(2)

where A is the ground truth and B is the predicted value.
IoU can be given by Eq.3 for binary data classification.

IoU =
T P

T P + FP + FN
(3)

where T P is the True Positive, FP is the False Positive and
FN is the False Negative

2) Mean Average Precision(mAP)
The mAP is calculated based on the Average Preci-

sion(AP) obtained from the area under the precision-recall

curve. The AP is averaged for N samples as indicated by
Eq.4 to obtain mAP.

mAP =
1
N

N∑
i=1

APi (4)

4. Results and Discussion
Based on the methodology defined in the earlier section,

LiDAR signals are processed for detection and tracking. The
predicted signal generated through the EKF is compared
with the measured signal, which is corrected based on the
root-mean-squared error(RMSE) represented in percentage.
The standard deviation between measured and predicted
data for the detected and tracking signals is ≈ 9%, which is
corrected to achieve a standard deviation between measured
and corrected signal as ≈ 5%(Fig.5a). Also, for tracking
signal, the RMSE for predicted values ≈ 5%, which is
corrected to achieve an error of ≈ 4.8% Fig.5b).
Fig.6a represents the IoU for the model, which demonstrates
a good performance with a minimum score of 70%, while
most of the distribution is within the range of 85−98%. The
error plots Fig.6b, and Fig.6c show symmetricity about zero
with the maximum distribution close to zero, whereas in the
case of error plot in the Z-direction, the range is between
0.5 to 1, with maximum peaks between to 0.8−1. The mean
position errors in X, Y, and Z directions are 0.0049, 0.0453,
and 0.8247, respectively.
The detection performance can be evaluated through accu-

racy and loss data plots as depicted in Fig.7a and Fig.7b,
respectively. The model’s accuracy is ≈ 72% while the loss
is calculated to be ≈ 51%. The detection precision and recall
are ≈ 0.9546 and ≈ 0.9344, respectively, and mAP is 71.2.
The results are compared with the existing models, as
demonstrated in Table.I. It can be observed that the model’s
performance is marginally better than the BEVFusion,
which is ≈ 1.4%. However, for the present study, three
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Models Modality mAP
BEVDet[40] C 42.2
M2BEV[41] C 42.9

BEVFormer[43] C 44.5
BEVDet4D[60] C 45.1
PointPillars[8] L -
SECOND[64] L 52.8

CenterPoint[16] L 60.3
PointPainting[2] C+L −

PointAugmenting[3] C+L 66.8
MVP[5] C+L 66.4

FusionPainting[57] C+L 68.1
AutoAlign[58] C+L −

FUTR3D[55] C+L −

TransFusion[56] C+L 68.9
BEVFusion[1] C+L 70.2

DarkNET-CNN model(present work) C+L 71.2

TABLE I. Comparison with the existing models

cameras and three LiDAR data are used, unlike 6 Cameras
and 1 LiDAR data in the case of BEVFusion model[1].

5. Conclusion
It is evident from the earlier discussion that many MSDF

models have demonstrated greater accuracy in the recent
past. However, challenges persist that can be attributed
to the environmental or operating conditions that induce
errors in the data as discussed in section 1. A formidable
correction has to be incorporated, which otherwise can
affect the accuracy of the model. The model presented
in this paper attempts to fuse the multi-modal data from
different sensors in order to enhance object detection for
future autonomous driving purposes.
The model demonstrates performance that is fairly well
placed against the existing models, particularly BEVFusion.
The BEVFusion model was developed by considering six
cameras and one LiDAR data, while the present model
considers three cameras and three LiDAR data for fusion.
Hence, there are differences in the modalities handled in
the course of development of the model. However, the
present model is observed to have an accuracy of 72%
with detection precision and recall of 0.9546 and 0.9344,
respectively. The mean Average Precision is 71.2%, which
is marginally better than BEVFusion by ≈ 1.3%.
There is still great scope for developing multi-modal 3D
object detection models, with inherent challenges associ-
ated with accurate depth estimation. The model can be
improved by utilizing ground-truth to supervise the view-
transformer[65], [66] that can be considered for future
developments.
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