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Abstract: Breast cancer is the most common kind of cancer diagnosed worldwide and the leading cause of cancer-related deaths among
women. Therefore it presents a significant public health risk. Therefore, early identification and diagnosis of malignant breast tumors can
significantly increase patient survival rates and facilitate effective treatment. Imaging is one of the key procedures in decision-making for
diagnosing breast cancer. For instance, mammography is the most efficient and highly recommended imaging technique by radiologists
in identifying many types of breast abnormalities. However, with the daily growth in mammography, it is still challenging for specialists
to give correct and consistent interpretations, which can lead to potential misinterpretations and unneeded biopsies. Statistics show
that substantial portions, ranging from 10% to 30% of incorrect diagnoses in medical image analysis are the result of human error.
Various researchers have looked into the use of mammography and Deep Learning (DL) approaches for accurate early breast cancer
diagnosis. Utilizing these approaches in clinical settings can increase diagnosis accuracy, save time, lower the likelihood of mistakes
and errors, increase patient satisfaction, and streamline radiologists’ workloads. This paper presents a comprehensive examination
of breast cancer issues, discussing the important role of the mammography examination for early cancer detection and how these
image examinations can be used through Deep Learning (DL) approaches for accurate early breast cancer diagnosis. We describe the
fundamental architectural deep learning components of the commonly used systems employed for breast cancer diagnosis, present the
main publicly available datasets, and discuss the constraints, difficulties, and avenues for future research in the realm of breast cancer
diagnosis and classification. Finally, issues and potential research objectives in this developing field are outlined. Approaching this
topic, we intend to inspire and direct medical professionals, researchers, scientists, and other healthcare workers interested in creating
cutting-edge applications for early breast cancer diagnosis using mammography image processing in the right direction.
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1. Introduction
Breast cancer is a prevalent form of cancer among

women on a global scale. Recent statistics from the Global
Cancer Observatory (GCO), a partner organization of the
World Health Organization, indicate a noteworthy change in
global cancer trends in 2020. According to these statistics,
female mammary carcinoma is becoming the preeminent
most identified type, surpassing lung malignancy on the
global scale [1]. These estimates indicate that approximately
2.3 million new cases of breast cancer were reported,
accounting for 11.7% of all cancer cases. Lung cancer
came in second place with 11.4% of cases, followed by
colorectal cancer with 10%, prostate cancer with 7.3%,

and stomach cancer with 5.6%. In addition, breast cancer
accounts for 685,000 cancer-related deaths globally, and
by 2070, it is projected to affect 4.4 million women [2].
In 2020, breast cancer was the first cause of mortality
and the most prevalent newly diagnosed cancer in most
countries, presenting over 24.5% of all cancer diagnoses
and 15.5% of cancer-related fatalities in women [1]. Breast
cancer is an imminent threat for all women, in general, and
is also related to ageing. Being female and getting older
are the two primary elements that increase the chances of
developing breast cancer. There are various lifestyle factors
(e.g., alcohol consumption, obesity, sedentary lifestyle) and
hormonal issues (e.g., first menstruation at an early age,
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late menopause, late primiparity, use of contraceptives)
increasing the susceptibility to developing breast cancer.
Consequently, breast cancer is a serious illness, although
it typically has a fair prognosis when diagnosed early.
To enhance the prognosis, elevate the patient’s chance
of survival by 50% [3], and reduce the potential side
effects from some treatments, it is essential to diagnose
this life-threatening condition as early and accurately as
possible. The early-stage breast cancer diagnosis currently
relies on various widely recognized imaging techniques,
including mammography with X-rays [4], Ultrasonography
[5], computerized tomography, also known as CT [6], and
MRI, which stands for magnetic resonance imaging [7].
Mammography continues to be the modality that radiol-
ogists utilize the most frequently to diagnose this illness
[8] appropriately. Radiologists should, in practice, identify
aberrant lesions on mammograms during the diagnosing
process to differentiate between masses, calcifications, and
other frequently occurring abnormalities. Extraction of spe-
cific information about suspicious lesions (size, shape,
contour, etc.) is another activity carried out by medical
professionals. This information enables doctors to assess
the severity of suspicious tumor regions and establish if
they are benign or malignant. Finally, experts should decide
how to proceed in cases of tumors with a clear indication
of the level of tumor suspicion [9] and in accordance
with the classification protocol outlined by the American
College of Radiology (ACR), known as Breast Imaging
Reporting and Data System (BI-RADS)for reporting and
interpreting breast imaging findings. Unnecessary biopsies
raise the expense of healthcare, exacerbate patient anxiety,
and increase morbidity. However, with the daily growth in
mammography, it is still challenging for radiologists and
doctors to give reliable and consistent analysis, leading
to diagnostic blunders and pointless biopsies. Typically,
False-Positive (FP) and False-Negative (FN) error types are
the two main sorts of mistakes that might happen. Since
benign areas are mistaken for malignant ones, the case of
false positives has undesirable outcomes. False negatives are
more significant when they put the patient’s life in peril, and
this happens when the radiologist misses an abnormality.
Additionally, studies have shown that lesions with a greater
than 2% potential of being malignant will be advised for
biopsy to decrease the likelihood of FN diagnosis. Only
15–30% of those who get a biopsy are ultimately found to
have cancer. Sophisticated algorithms, categorized as CADe
for computer-aided detection and CADx for computer-
aided diagnosis systems, are developed to assist medical
specialists with interpreting medical images. These systems
are used to reduce the likelihood of misunderstandings and
ensure early breast cancer diagnosis. Recently, scientific
researchers, technology specialists, and clinicians have been
continuously developing and evaluating CADe/CADx sys-
tems based on Deep Learning (DL) methods. CADe/CADx
systems were developed to help doctors categorize tumors
into various classifications, such as ductal cancer within
situ, cancer that is invasive, lobular cancer, etc., and to
help them determine whether the growth is healthy or

cancerous. Additionally, these computer programs assist in
preventing unneeded biopsies and preserve a lot of time for
human professionals who would otherwise have to review
medical images manually. The concept of CAD systems
was originally developed in the 1960s to screen for breast
cancer using mammograms. Currently, it is among the most
important study areas for clinical image processing [10].
CADe uses computed findings to pinpoint the exact location
of the lesions concerned while leaving the radiologist to
make sense of these anomalies. In contrast, CADx produces
quality information that assists the radiologist in making
decisions regarding the observed anomalies, in particu-
lar, to further identify and classify lesions [11]. Recent
considerable advancements and exceptional performance
of deep learning (DL) methods have encouraged several
researchers to leverage the power of DL in the diagnosis of
breast cancer. The usage of DL within (CAD) systems is
growing, replacing more established machine learning (ML)
techniques [12]. This shift towards deep learning-based
CAD offers several advantages, including the capability to
discern malignant from normal breast lesions without the
necessity of segmenting breast lesions, computing image
features, or employing a selective approach [13]. Machine
learning often requires the manual extraction of character-
istics, whereas deep learning is totally automatic.

A. Research objectives and contributions
Our study aims to explore the current trends in utilizing

deep learning (DL) systems for pre-symptomatic identifica-
tion and precise classification of breast carcinomas through
the analysis of mammography images. This research aligns
with our broader goal of contributing to ongoing efforts
in breast cancer research and diagnosis. Our multifaceted
research objectives address key aspects of breast cancer
detection and classification using deep learning techniques.
Firstly, we aim to provide a comprehensive understanding
of breast cancer, its fundamental concepts, and the signifi-
cance of mammography in early detection and diagnosis.
By synthesizing existing literature and analyzing current
trends, we seek to elucidate the fundamental components of
such systems employed for breast cancer diagnosis, laying
the groundwork for subsequent research and development.
Additionally, our study endeavours to survey the landscape
of deep learning architectures and algorithms commonly uti-
lized in breast malignancy diagnosis systems. Through eval-
uating their performance and identifying prevailing trends,
we aim to offer insights into the potential of deep learning
in enhancing diagnostic accuracy and efficiency. A primary
contribution of our study lies in compiling publicly acces-
sible datasets containing mammography images, facilitating
collaboration and reproducibility in breast cancer research
and advancing diagnostic methodologies. Furthermore, we
examine the evaluation metrics presently employed to assess
the performance of breast cancer diagnosis and detection
systems, aiming to identify opportunities for refinement
and enhance the rigour and comparability of future studies.
Finally, our study highlights existing constraints, difficulties,
and avenues for future research in breast cancer diagnosis
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and classification, aiming to inspire innovative solutions
and guide future research directions to improve patient
outcomes and reduce the global burden of breast cancer.
In summary, our study offers a comprehensive review
of current deep learning-based approaches to early breast
cancer diagnosis, aiming to inform future research efforts
and accelerate progress towards more effective detection
and treatment strategies.

B. Research questions
In the attempt to investigate the main objectives as

mentioned earlier, our research focused on the following key
research questions (RQs), which also served as the guiding
framework for this article:

• RQ1: What constitutes breast cancer?

• RQ2: What is the role of breast mammography in this
context?

• RQ3: What are the fundamental architectural compo-
nents of systems employed for breast cancer diagno-
sis?

• RQ4: What are the prevailing deep learning archi-
tectures and algorithms commonly utilized in breast
malignancy diagnosis system development?

• RQ5: What are the various publicly accessible
datasets containing mammography images?

• RQ6: What evaluation metrics are presently employed
to assess the performance of breast cancer diagnosis
and detection systems?

• RQ7: What are the existing constraints, difficulties,
and avenues for future research in the realm of breast
cancer diagnosis and classification?

C. Research methodology
For our research methodology, we conducted a com-

prehensive review of research studies published in English
between 2016 and early 2024. The search process involved a
thorough examination of bibliographic literature to identify
relevant studies, employing keywords such as ’breast can-
cer’, ’breast tumor’, ’breast cancer diagnosis’, ’breast can-
cer detection’, ’breast cancer classification’, ’breast cancer
segmentation’, ’mammography’, ’mammogram analysis’,
’computer-aided detection (CADe) systems for breast can-
cer’, ’computer-aided diagnosis (CADx) systems for breast
cancer’, ’deep learning’, ’deep learning in mammography’,
and ’convolutional neural networks (CNNs) in mammogra-
phy’. Searches were conducted across various databases,
including PubMed, ArXiv, IEEE Xplore Digital Library,
Web of Science, Science Direct, Medline, and Google
Scholar. Additionally, statistics pertaining to breast cancer
mortality rates were gathered from the Global Cancer Ob-
servatory. Our search criteria aimed to include studies where
mammography served as the primary modality for breast

cancer detection, screening, and diagnosis. Papers were
excluded if they incorporated data from screening meth-
ods other than mammography, such as Ultrasonography,
Computerized Tomography (CT), and Magnetic Resonance
Imaging (MRI), or if they did not meet specific criteria
such as being written in English, presenting full research pa-
pers, utilizing mammographic datasets, or addressing breast
cancer detection, segmentation, or classification/diagnosis.
This process resulted in a total of 90 papers meeting our
inclusion criteria.

D. Paper structure
The remainder of this study is structured in the following

order: In Section 2, several fundamental ideas connected to
this study are briefly introduced. Section 3 briefly explores
the background of cancer diagnosis and detection system
architecture and highlights the current State-Of-The-Art
(SOTA) for breast cancer diagnosis utilizing deep learning
algorithms on mammography. Moving on to Section 4, we
compile a summary of publicly accessible mammography
datasets. Section 5 enumerates the prevalent evaluation
metrics often employed for the experimental assessment
of CAD systems in the existing literature. Section 6 then
lists the limitations of CAD systems that employ deep
learning methods and recommendations for future research.
Lastly, Section 7 concludes the paper with a discussion and
summary of our findings.

2. Basic concepts
This section presents the following concepts: normal

female breast tissue, breast cancer, mammography, and deep
learning.

A. Normal female breasts tissue
It’s interesting to understand the types of tissue the

normal breasts comprise to understand breast cancer diag-
nosis. In general, female breasts are glandular organs that
produce milk. They are located in front of the pectoral
muscles that support them. The structure of the female
breast is complex and includes fat, glandular, and connective
tissue. The breast lobes and breast ducts are parts of the
glandular tissue. There are between 15 and 20 lobes in
each breast. These lobes split into smaller lobules, each
producing several tiny milk-secreting bulbs (alveoli). Milk
ducts connect the lobes and lobules that gather the milk.
These lead to the areola, which is the nipple in the middle
of a pigmented region. Breast tumors frequently start in the
lobes and ducts. Additionally, there is fatty tissue in the
breast, which fills up the spaces left by the various breast
structures and essentially regulates breast size. Doctors refer
to all non-fatty tissue as fibro-glandular tissue. Ligaments
are bands of elastic connective tissue that go from the
skin to the chest wall and provide support. Blood vessels,
lymph vessels, nodes, and nerves are found in each breast
[14]. With age, the ratio of fat relative to glandular tissue
often rises. According to studies, 33% of women aged
between 75 and 79 years old and 66% of premenopausal
women have breasts that are 50% or more dense [15]. Dense
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breast tissue, a silent storm within the breast, independently
amplifies The vulnerability of developing this complex
disease. This increased density poses challenges in breast
cancer diagnosis due to its masking effect, which lowers the
sensitivity of mammography; it also restricts the evaluation
of breast cancer by medical professionals and inhibits the
detection of early-stage tumors [15].

B. Breast cancer
Breast cancer is an extremely diverse disease that differs

from woman to woman in terms of the location of the
tumor’s origin, its stage of development, how quickly it
grows, and its propensity for metastasizing. Breast lumps or
tumors are the result of aberrant cells growing out of control
and causing breast cancer. To begin therapy, the specialist
must be able to identify between two forms of breast cancer
during the diagnosis. Both benign and malignant breast
tumors fall into these two categories. Because they are
less prone to spread, benign lumps are thought to be non-
cancerous. Fluid-filled sacs, fibrous glandular tissue, leaf-
like growths, abnormal cell overgrowth, lipid tissue death,
and glandular tissue changes are a few examples of nodular
formations or harmless nodules [16]. Non-invasive breast
cancers (also known as in situ), invasive (also known as
infiltrating), and metastatic are all examples of malignant
tumors, which are cancerous growths [16], [17]. Breast
tissue (e.g. lobules, ducts, intermediate tissue) can be the
origin of breast cancer. Adenocarcinomas are the most
prevalent type of breast cancer. These tumors develop from
the epithelial layer of the breast, which is made up of the
cells that line the milk-producing lobules and terminal ducts
[16]. We speak of lobular carcinoma and ductal carcinoma,
respectively. Other forms of malignant breast cancer exist.
These cancers are called medullary, papillary, tubular, and
mucinous carcinomas. They are much rarer than lobular
or ductal cancers. Most often, they are tumors with a
good prognosis. When the cancer cells are contained within
the lobule or duct, it is called ”in situ” cancer. In situ,
cancer can progress and invade the surrounding tissues;
breast cancer is said to be ”invasive.” The ”in situ cancer”
can exist for a long time before evolving into invasive
cancer which becomes potentially metastatic, that is to say,
capable of releasing cancerous cells to distant sites from
the breast through lymph or blood vessels to lymph nodes
or other organs in the body and developing new tumors
called metastases, these being the main cause of death by
breast cancer. When a breast tumor becomes in this stage,
it becomes challenging to treat. Hence, the timing of the
tumor’s diagnosis is one of the key factors in the treatment
of breast tumors. The chances of survival can significantly
increase, and more effective treatment alternatives can be
made available if the disease is discovered early. This
underscores the importance of early diagnosis of breast
tumors.

C. Mammography
Mammography utilizes minimal-dose X-rays, providing

a non-invasive diagnostic procedure to look for any breast

abnormalities. It is regarded as the most accurate method for
diagnosing breast cancer in women, even before symptoms
appear. Breast masses and calcifications are the two main
abnormalities that can be detected by mammography. Breast
lumps can be malignant or non-cancerous; malignant tumors
appear in mammograms as irregularly shaped masses with
spikes projecting from them. The non-cancerous masses
usually have well-defined, circular, or oval borders. [18].
Both macrocalcifications and microcalcifications of the
breast can occur [19]. Macrocalcifications, which look like
sizable white dots randomly dispersed across the breast
on mammography, are considered benign cells. In contrast,
in mammography, microcalcifications manifest as minute
calcium deposits resembling tiny bright dots and frequently
occur in groups. Microcalcification is frequently thought
of as the primary sign of early-stage malignancy in the
breast or as an indication of the presence of cells at risk of
developing into cancer. Every breast is imaged twice using
the top-to-bottom (CC) and side-to-side oblique (MLO)
projections, as shown in Fig. 1. While the top-to-bottom
mammography obtains the image from above, the MLO
perspective provides the image from a level that emphasizes
the pectoral muscle’s side view. Two primary forms of
mammography are Film-based mammography and digital
mammography (DMM), which are used for different tasks
in breast cancer analysis, such as classifying and identifying
breast lesions. The three primary subcategories of DMM are
contrast-enhanced digital mammography (CEDM), breast
tomosynthesis imaging (BTI), as well as comprehensive
digital mammography (CDM)[20]. Present practices need a
third radiologist to evaluate the mammography if an agree-
ment cannot be reached between the initial two radiologists.
This highlights the difficulties even professionals encounter
when spotting possible abnormalities in a mammogram.

Figure 1. An illustration of the various points of view from a breast
mammogram: (A) Right CC view, (B) Left CC view, (C) Right MLO
view, and (D) Left MLO view are the four possible views

D. Deep learning
Deep learning (DL) automatically derives feature repre-

sentations from input data [26]. Unlike conventional ML
methods, DL has the ability to self-learn these features.
In the past, manual feature extraction techniques were em-
ployed to isolate and choose features like ”colors,” ”shapes,”
”edges,” and ”textures.” However, this traditional approach
to handcrafted feature extraction is labour-intensive and
consumes significant processing time. On the other hand,
DL algorithms allow for the automatic extraction of high-
level attributes from image data. The availability of exten-
sive datasets enables the use of these algorithms, as they
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TABLE I. OPEN ACCESS TO MAMMOGRAPHY IMAGES: A VALUABLE RESOURCE FOR BREAST CANCER RESEARCH. CATEGORIES:
TINY DEPOSITS OF CALCIUM IN THE BREAST TISSUE (CAD), ROUNDED DISTINCT LUMPS WITH CLEAR BOUNDARIES (MASS-
C), LUMPS WITH IRREGULAR EDGES RESEMBLING SPIKES OR BRANCHES (MASS-S), LUMPS WITH UNCLEAR OR IRREGULAR
BORDERS (MASS-I), ABNORMAL CHANGES IN THE BREAST TISSUE PATTERN (ARCH), UNEVENNESS IN THE BREAST TISSUE
BETWEEN SIDES (ASYM), NO ABNORMAL FINDINGS DETECTED (NORM), NON-CANCEROUS (BEN), CANCEROUS (MAL), NON-
CANCEROUS AND DOES NOT REQUIRE FURTHER (BENWC). DATASET NAMES: THE STUDY DRAWS UPON MAMMOGRAPHIC
DATA FROM RENOWNED REPOSITORIES, INCLUDING MIAS, BCDR, DDSM, INBREAST, AND THE CURATED SELECTION OF CBIS-
DDSM, COVERING A WIDE SPECTRUM OF BREAST IMAGING FINDINGS).

Dataset Title Quantity
of Images Type Categories Image

Presentation View Image quality

MIAS [21] 322 FM
CaD, Mass-C, Mass-S,
Mass-I, Arch, Asym,
Norm, Ben, Mal, BenWC

.PGM MLO 1024×1024
pixels

CBIS-DDSM [22] 10239 FM NORM, B, M . .DICOM MLO/CC 16 bit
DDSM [23] 10480 FM B, C, NORM, BWC .JPEG MLO/CC 8-16 bit
INbreast [24] 410 DM B, M, NORM .DICOM MLO/CC 14 bit

BCDR [25]
7315
3703 FFDM
3612 FM)

DM NORM, B, M .TIFF MLO/CC 8-14 bit

demand substantial volumes of training data. Deep learning
(DL) models acquire hierarchical attributes within the image
data domain. DL models are structured with multiple layers
that delve into the details of an image, encompassing
Low-Level Features, Mid-Level Features, and High-Level
Features [27]. The adoption of DL techniques has found
application across a spectrum of medical specializations,
most notably in radiology and pathology [28]. Deep learn-
ing, as an emerging technique, is surpassing traditional
machine learning methods and is increasingly integrated
into Computer-Aided Diagnosis (CAD) systems [29]. Deep
learning techniques have recently showcased their potential
in diagnosing breast cancer approximately one year ear-
lier than traditional clinical methods [30]. Convolutional
Neural Networks (CNNs) are widely utilized as one of the
predominant architectures in deep learning. With enough
training data, CNNs can grasp intricate and well-structured
hierarchical attributes within an image. They are widely
favoured for neural network-based image classification and
have demonstrated impressive performance for medical im-
age analysis and categorization [31]. As depicted in Fig. 2,
a basic CNN architecture involves integrating one or more
layers for convolution and pooling, subsequently comple-
mented by one or more layers that are fully connected [32].

Figure 2. An illustration of a basic CNN architecture used for image
diagnosis and classification

After establishing the foundational concepts of normal
female breast tissue, breast cancer, mammography, and deep
learning in the previous section, it becomes evident that
the practical application and advancement of these concepts
heavily rely on the availability of suitable datasets. In the
following section, we delve into the landscape of publicly
available mammography datasets, which serve as crucial
resources for training and evaluating models in breast cancer
detection and diagnosis.

3. Public available mammography datasets
Within this section, we try to give a succinct summary of

the most frequently used publicly accessible mammography
datasets for breast cancer detection and diagnosis (e.g.,
Kaggle, Amazon, UCI ML repository, etc.). These datasets
vary in terms of their dimension, visual quality, presentation
format, and the technology used to capture the images,
including digital mammography (DM) or film mammog-
raphy (FM), as well as the categories of abnormalities they
contain. The MIAS, CBIS-DDSM, DDSM, INbreast, and
BCDR datasets are integral to breast cancer research, par-
ticularly in advancing deep learning models for diagnosis.
The MIAS dataset comprises 322 mammography images,
each sized at 1024x1024 pixels, categorized into normal and
abnormal classes. Within the abnormal class, further dis-
tinctions are made between benign and malignant cases, to-
talling 115 images. Each image includes details on the type
of abnormality detected, such as calcifications, masses, and
asymmetries. The CBIS-DDSM dataset, a subset of DDSM,
encompasses 10239 mammography images from 1644 pa-
tients, ensuring a balanced representation of benign and
malignant cases. DDSM, on the other hand, is a substantial
database featuring 10480 digitized mammography studies
from 2620 patients, spanning both normal and abnormal
cases. INbreast presents 410 mammography images from
115 patients, maintaining equilibrium between benign and
malignant cases and offering a mix of digital and digitized
mammography images. Similarly, BCDR comprises 7315
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mammography images, evenly distributed between benign
and malignant cases and supplemented with clinical data
like patient age and menopausal status. These datasets serve
as pivotal resources for various deep learning endeavours in
breast cancer diagnosis, including classification, segmenta-
tion, and detection. For instance, studies utilizing CBIS-
DDSM and MIAS achieved remarkable accuracies of 96.6%
and 98.88%, respectively, employing deep convolutional
neural networks (DCNN) and improved marine predators
algorithm (IMPA) coupled with ResNet50 models [33].
Overall, these datasets play a vital role in shaping the
landscape of deep learning applications in breast cancer
diagnosis, significantly advancing the field’s understanding
and capabilities. Table I displays a quick description of
these collections.

In the previous section, we explored the landscape
of publicly available mammography datasets. It is now
crucial to understand how these datasets contribute to the
development of systems for mammography-based breast
cancer diagnosis. In the coming section, we examine the
utilization of deep learning techniques in the creation and
optimization of such systems, highlighting their pivotal role
in enhancing diagnostic accuracy and efficiency.

4. Systems for mammography based breast cancer diagno-
sis using deep learning

In this section, we attempt to briefly present the typical
CAD system architecture and cover some recent efforts
related to DL applications in breast cancer diagnosis using
mammography.

Figure 3. Illustration of the general layout of a CAD system for
diagnosing breast cancer

A. CAD in breast cancer: An architectural exploration
CAD systems can differentiate between different tumor

types, including mass, calcification, architectural distortion,
and asymmetry, as well as classify tumors into two groups:
benign or malignant. According to Fig. 3, the general frame-
work of an automated system for diagnosing breast cancer
through mammograms commonly consists of four main
stages: initial image preprocessing, image segmentation,
extraction of relevant features, and classification of lesions.
Furthermore, these tools not only significantly reduce the
time that human experts spend manually reviewing mam-
mography images but also assist in preventing unnecessary
biopsies.

Table II presents the key steps of a CAD system.

B. Deep learning models for mammography based breast
cancer diagnosis
Several recent review studies have explored various

deep learning methods for mammogram-based breast cancer
diagnosis, classification, identification, and segmentation
[44], [45], [46], and [47]. This section outlines the main
deep learning approaches, encompassing CNNs and RNNs
(recurrent networks), and we present transfer learning meth-
ods. The CNN comprises several layers where convolutions
and max-pooling operations are applied [48]. In a recent
study [49], researchers proposed the BMC system for breast
mass classification into benign, malignant, and normal cate-
gories. This system combines various techniques, including
clustering, recurrent network (RNN), Convolutional Neural
Network (CNN), and random forest. The researchers con-
ducted model training using the DDSM and MIAS datasets.
Their algorithm reaches an accuracy of 96% using DDSM
and 95% using MIAS. Another study [50] proposes an
algorithm known as CNNI-BCC, which yielded impressive
results, including a sensitivity of 89.47%, an accuracy rate
of 90.50%, an AUC of 0.901 ± 0.0314, and a specificity of
90.71%. The utilization of this algorithm has the potential
to be beneficial in classifying mammogram images into
non-cancerous, cancerous, and normal classes, even without
previous knowledge about the presence of a cancerous
lesion. Moreover, in a different study [51], researchers
introduced a Two-perspective mammogram classification
model that combines a CNN with an RNN to classify breast
masses in mammographic images. Their approach achieved
a classification accuracy of 94.7%, recall of 94.1%, and an
AUC value of 0.968. In separate research inquiries [52],
[53], models based on CNNs were employed to classify
mammogram abnormalities. It used the MIAS dataset.
CNN-based models have demonstrated encouraging out-
comes, improving the accuracy of CAD systems for breast
cancer diagnosis. A deep belief network (DBN) is another
important DL-based method used for breast cancer classifi-
cation. It operates as an unsupervised graphical model with
generative capabilities. The DBN is a stack of restricted
Boltzmann machines (RBM)[54]. It is an effective tool for
breast cancer diagnosis for several reasons. They can be
used to reduce the input feature vector dimensionality. In
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TABLE II. SUMMARY OF THE MAIN STAGES IN THE AUTOMATED DIAGNOSTIC SYSTEM FOR BREAST CANCER USING
MAMMOGRAMS.

Stages Description

Image
pre-processing

Most automated image analysis systems depend on the pre-processing stage. Basically, this is done
to improve image quality, reduce noise, also remove unnecessary, unwanted artifacts [34]. At this
stage, image contrast enhancement methods are used based on the equalization of the histogram and
noise reduction techniques (mean and median filters, among others). In addition, other operations can
be carried out during the pre-processing phase, covering tasks such as image resizing, data
augmentation, and normalization.

Image
segmentation

One crucial step is the segmentation procedure. By separating the breast area from the background
and emphasizing the suspicious area, also known as the region of interest (ROI) within the larger
breast region, breast image segmentation seeks to decrease the impact of the background and facilitate
the identification of anomalies within the breast area. The search space for abnormalities is reduced
when the backdrop is removed [35]. There are several works approaching breast segmentation by
using different methods based on thresholding, active contour, edge-based and region-based, gradient
weight map, conditional network, support-pixel correlation, and statistical method.

Feature extraction

Basically, the process of extracting feature sets from mammogram images is employed to classify the
considered lesions, specifically to discriminate malignant from benign breast cancer lesions. Generally,
three categories of features are utilized in this process: handcrafted features, deep features, and
patient-related features, encompassing factors like age and medical history. Handcrafted features
encompass a variety of options for extracting information from breast mammograms [36], [37], [38],
including texture, morphological aspects, and descriptors, as well as shape, intensity, and hybrid
features. Additional possibilities include curvelet-based statistical features and local and global features.
Other methods involve using histogram of gradients (HOG), SIFT, and wavelets. Moreover, features
encompass contrast, geometrical aspects, location data, context, and patient-related information.
Deep feature extraction is an entirely automated process that employs deep learning-based models to
automatically extract high-level features by utilizing convolutional layers. Various architectures like
deep CNN with transfer learning
is proposed for feature extraction.

Classification

Following feature extraction, the final phase involves the breast lesions classification [39], [40],
contributing to the categorization of mammograms and aiding medical decision-making through the
utilization of the extracted features within an effective classification model. Various classification
approaches apply to classifying breast cancer tissue, primarily including binary classes classification
(distinguishing between cancerous and non-cancerous), multiple classes classification (encompassing
categories like healthy tissue, non-cancerous lesions, in situ malignancy, and invasive malignancy),
and the one-class classification (OCC) approach. Statistical ML-based Classifiers and DL-based
Classifiers are the two basic classification model types used to diagnose breast cancer. Pathologists
and doctors can utilize artificial intelligence-based algorithms to diagnose breast cancer to aid in their
decision-making. Statistical machine-learning techniques are commonly used for the classification of
breast cancer images. Convolutional networks are one of the most effective models for image
analysis. There are several DL architectures based on pre-trained models such as AlexNet [41],
VGG-16, ResNetXt50 [42], and Google Inception-V3 architecture [43].

[55], a novel and efficient CAD system was introduced,
incorporating DBN. This system was designed to categorize
mammographic masses into four evaluation sorts based
on the BI-RADS classification, including not harmful (2),
likely harmless (3), suspicious (4), and extremely suspicious
(5). Trained on 500 DDSM images, the model reached
84.5% accuracy. Creating systems that accurately identify
lesions in mammography images holds significant value
for healthcare professionals. Consequently, researchers in
[56] devised a system for mass detection utilizing the
Faster R-CNN framework. The INbreast dataset and CBIS-
DDSM (curated breast imaging subset of the DDSM)
were used to evaluate the approach’s performance. The
study’s findings showed that the true positive rate for CBIS-
DDSM was 0.9345, with 2.2805 false positives per picture,
while the true positive rate for INbreast was 0.9554, with

0.3829 false positives per image. The You Only Look Once
(YOLO) detector has greatly enhanced classification model
performance, resulting in encouraging breast lesion diagno-
sis outcomes [57]. The YOLO effectiveness was assessed
in [58] for detecting lesions in the breast. Subsequently,
they made modifications to and evaluated a traditional
Multi-Layer Perceptron, 50-Layer Convolutional Model, as
wellInception ResNet Version 2 (InceptionResNet-V2). The
architectures were subject to evaluation using the DDSM
and INbreast datasets. The detection reached the accuracy
of 99.17% for DDSM and 97.27% for INbreast, along with
F1-scores of 99.28% and 98.02%, respectively. For the clas-
sification in DDSM, the three models reached accuracies of
94.50%, 95.83%, and 97.50%, and for the INbreast dataset,
88.74%, 92.55%, and 95.32%. In addition, Samuel et al.
[59] devised a model aimed at aiding radiologists in mass
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screening for breast abnormalities and prioritizing patients.
Their approach integrates an ensemble of EfficientNet-based
classifiers with YOLOv5, a method for detecting suspicious
masses, to identify abnormalities. Incorporating YOLOv5
detection is pivotal for explaining classifier predictions
and enhancing sensitivity, especially in cases where the
classifier fails to detect abnormalities. To further improve
the screening process, the researchers also introduced an
abnormality detection model. The classifier model achieves
an F1-score of 0.87 and a sensitivity of 82%. By integrating
suspicious mass detection, sensitivity increases to 89%,
albeit with a slightly lower F1-score of 0.79. For dataset
construction, the study utilized two primary sources. The
first source, VinDr-mammo [60], comprises approximately
5000 studies of four-view mammography exams, provid-
ing breast-level assessments and finding annotations. The
second source includes a locally prepared dataset consist-
ing of 3123 breast scans from 1028 patients. Addition-
ally, the Mini-DDSM [61] dataset was utilized for model
evaluation, containing 679 CC and MLO scanned breast
mammography views from 679 unique cancer cases, along
with 2408 images from 602 unique patients with normal
mammography readings. Transfer learning has become a
widely adopted technique, and it addresses the challenge
of insufficient data, particularly when dealing with small
datasets. Additionally, it offers advantages such as reduced
computational costs and shorter model training times [62].
Recent studies have increasingly embraced this approach, as
an example, authors in [63] introduced a modified AlexNet
architecture for mammogram classification of masses as
benign/malignant. MIAS testing yielded 95.70% accuracy
for the final model. In their study, researchers [64] devised
an effective Deep Learning Architecture (DLA) coupled
with a Support Vector Machine (SVM) for diagnosing breast
cancer using mammograms. They utilized the state-of-the-
art Visual Geometric Group (VGG) architecture with 16
layers to extract dominant features crucial for breast cancer
classification. Subsequently, SVM was integrated into the
output layer to enhance classification outcomes. The results
indicate that the VGG-SVM model exhibits significant
potential for classifying images from the Mammographic
Image Analysis Society (MIAS) database, achieving an ac-
curacy of 98.67%, sensitivity of 99.32%, and specificity of
98.34%. Another study [65] employs MobileNetV2, a low-
computational Deep Convolutional Neural Network (Deep-
CNN) model, for binary classification of mammography
images into malignant or benign categories. Two methods,
transfer learning and scratch learning, are explored. Mo-
bileNetV2 is employed with three transfer learning vari-
ants, including transfer learning without fine-tuning, transfer
learning with fine-tuning, and fixed feature extraction, to
achieve binary classification, and a seven-layer CNN archi-
tecture is developed to accomplish mammography image
classification through scratch learning. The best results
are achieved by combining MobileNetV2 with a Random
Forest classifier using fixed feature extraction, yielding an
accuracy of 99.4% in 63.87 seconds compared to the other
transfer learning variants. On the other hand, a seven-layer

CNN model developed using scratch learning achieved a
classification accuracy of 96%, but it required a longer
training period of 7980 seconds. Utilizing MobileNetV2 and
Random Forest reduces trainable parameters and training
time, making it suitable for low-cost embedded platforms.
The researchers conducted model training using mammog-
raphy images from the DDSM dataset. Additionally, a
hybrid technique for the quick and precise classification of
breast cancer using mammogram images was proposed and
tested in a separate study [66]. This approach employed
three different Deep Learning (DL) Convolution Neural
Network (CNN) models, including Inception-V3, ResNet50,
and AlexNet as feature extractors. The effectiveness of this
method for classification was evaluated using the MIAS
image database. Results indicate that the average classifica-
tion accuracy was 97.81% for 70% of training data, 98%
for 80% of training data, and reached its optimal value
for 90% of training data. In [67], DL models, including
AlexNet, ResNet18, and ResNet34, were utilized for ac-
curate detection and characterization of microcalcifications
on mammography. The dataset employed for model eval-
uation comprised 1,986 mammography images from 1,000
patients aged 21 to 73 years. This dataset included 611
benign lesions and 389 histologically proven breast cancers.
AlexNet demonstrated superior performance, achieving a
sensitivity of 98%, specificity of 89%, and AUC of 0.98
for microcalcifications detection and a sensitivity of 85%,
specificity of 89%, and AUC of 0.94 for microcalcifications
classification. For microcalcifications detection, ResNet18
and ResNet34 achieved sensitivities of 96% and 97%,
specificities of 91% and 90%, and AUCs of 0.98 and 0.98,
respectively. Regarding microcalcifications classification,
ResNet18 and ResNet34 exhibited sensitivities of 75% and
84%, specificities of 85% and 84%, and AUCs of 0.88
and 0.92, respectively. Additionally, a separate study [68]
presents a breast X-ray mammography image classification
model utilizing Convolutional Neural Networks (CNN).
The model distinguishes between benign and malignant
classes in mammography images, modifying the VGG
16 network architecture and conducting experiments on
datasets sourced from the Medical Imaging Department of
Ganzhou People’s Hospital and The Sixth Affiliated Hos-
pital of Jinan University. Experimental findings highlight
the model’s exceptional classification capabilities, achieving
an average accuracy rate of 96.945%. Moreover, in an
alternate study [69], researchers utilized CNN-based pre-
trained architectures such as modified VGGNet and SE-
ResNet152 to improve their ability to differentiate between
normal and suspicious mammography regions. They also
employed hybrid deep neural network approaches, including
CNN+LSTM and CNN+SVM, for breast lesion classi-
fication. These models were trained using mammogram
images sourced from both public and private databases.
Their algorithms exhibited a sensitivity of 99% and an
overall AUC of 0.99, representing substantial enhance-
ments in mammogram analysis. In another investigation
[70], researchers introduced a Mammo-Light convolutional
neural network (CNN) model designed for mammogram
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classification. This model features a reduced number of
layers and parameters compared to conventional CNNs.
The effectiveness of the proposed approach was evaluated
using two widely used publicly accessible datasets, CBIS-
DDSM and MIAS. Mammo-Light achieved test accuracies
of 99.17% and 98.42%, respectively, for the CBIS-DDSM
and MIAS datasets, surpassing the performance of ten
state-of-the-art transfer learning (TL) models in terms of
accuracy and other evaluation metrics. Notably, Mammo-
Light demonstrated exceptional performance with fewer
parameters and computational time due to its lightweight
design, potentially contributing to advancements in early
breast cancer diagnosis and facilitating prompt treatment.
Researchers in a study [71] introduced a semi-automatic
real-time detection approach employing deep learning to
differentiate between microcalcifications and masses within
a breast cancer dataset. The primary objective was the de-
tection of microcalcifications, which may act as precursors
to breast cancer. The proposed architecture utilized SAE
(Hierarchically Stacked Autoencoders). The SAE model
utilized a training technique based on a greedy search to ex-
tract low-level characteristics linked to microcalcifications.
The approach encompassed two scenarios: (1) identifying
microcalcifications and (2) simultaneously identifying mi-
crocalcifications and masses. Their method shows a discrim-
inative accuracy in distinguishing calcifications using the
SVM classifier. In an independent study [72], researchers
introduced a DL approach to handle the availability of
limited and imbalanced data. The approach employed an in-
filling technique to generate synthetic mammogram patches
using generative adversarial networks (GAN). First, a mul-
tiscale GAN generator was trained to produce synthetic
elements within the designated image. This generator used
a refinement process to produce multiscale features and
guarantee stability at higher resolutions. Importantly, the
GAN was confined to infill exclusively lesions, including
both masses and calcifications. A ResNet-50 classifier was
employed to assess the quality of the images generated.
The study compared the classification performance of data
enhancement using GANs and traditional methods, reveal-
ing that synthetic augmentation enhances classification ac-
curacy. Lately, several investigations have adopted the End-
To-End (E2E) training approach, which has demonstrated
promising outcomes for breast cancer detection [73]. In
this context, researchers in [74] introduced a CNN model
based on an E2E training strategy. The primary objective
is to label mammographic images as normal or malig-
nant. The proposed model is based on two components:
contextual features and classification. It utilizes a Multi-
level CNN for deep high and low-level feature extraction.
The experiments achieved 96.47% of accuracy and a 0.99
AUC score using the mini-MIAS dataset. Full-field digital
mammography (FFDM) is a common screening method for
breast cancer (BC). Still, its effectiveness in dense breast
regions is limited, reducing BC detection sensitivity due to
mammographic breast density (MBD). Contrast-enhanced
spectral mammography (CESM), a newer FFDM variant,
offers enhanced contrast resolution, facilitating lesion as-

sessment and detecting multicentric and multifocal lesions.
CESM is increasingly used for a comprehensive investiga-
tion of suspicious cases and as a cost-effective alternative to
MRI in certain clinical scenarios, providing morphological
information comparable to FFDM. Comparative studies
have shown CESM’s superiority in background suppression,
reduced background parenchymal enhancements (BPE), and
higher positive-predictive values (PPV) compared to MRI.
Additionally, CESM shows promise in classifying micro-
calcifications, determining cancer volume, and facilitating
precise biopsy localization. For instance, Zheng et al. [75]
developed a fully automated pipeline system (FAPS) using
contrast-enhanced mammography (CEM) to segment and
classify breast lesions. The model, combining RefineNet
and Xception + Pyramid pooling module (PPM), was
evaluated on a dataset of 1912 women with single-mass
breast lesions. Results showed FAPS achieved Dice simi-
larity coefficients (DSCs) of 0.888 ± 0.101, 0.820 ± 0.148,
and 0.837 ± 0.132 for segmentation in internal, pooled
external, and prospective testing sets. For classification,
FAPS achieved AUCs of 0.947, 0.940, and 0.891, outper-
forming radiologists in classification efficiency (6 seconds
vs. 3 minutes). The study demonstrates FAPS’s potential
for segmenting and classifying breast lesions with high
efficiency and generalization. The research conducted in
[76] explores the feasibility of a computationally efficient
computer-aided diagnosis (CAD) system for breast lesion
classification using contrast-enhanced spectral mammog-
raphy (CESM). Additionally, the synthesis of contrast-
enhanced (SynCESM) images is investigated to eliminate
the need for intravenous contrast agents. The study collected
504 pairs of low-energy (LE) and CESM images from
160 female subjects. Lesion segmentation was performed
using a semi-automatic active-contour method, followed
by feature extraction. To enhance computational efficiency,
the wavelet packet transform (WPT) was applied. Results
showed that using LE images, a sigmoid-kernel SVM
classifier achieved 90.20% accuracy, while CESM images
yielded 93.26% accuracy. Interestingly, SynCESM images
still provided reasonable performance with 92.14% accu-
racy. The combination of LE and CESM images resulted in
the best performance, with 96.87% accuracy. The proposed
system demonstrated clinical feasibility, lower complexity,
and reduced reliance on contrast agents through synthetic
data generation. Deep Learning models have emerged as
indispensable tools in addressing complex challenges like
cancer detection, owing to their exceptional ability to pro-
cess vast datasets with precision and efficiency. Recent
strides in medical research emphasize the significance of
identifying molecular subtypes in breast cancer, crucial for
tailoring personalized treatment strategies due to varied
responses to different therapies. For instance, in [77], MOB-
CBAM, a novel lightweight dual-channel attention-based
deep learning model, was introduced for precise breast
cancer detection and subtype prediction. By leveraging
the MobileNet-V3 architecture and incorporating a Convo-
lutional Block Attention Module (CBAM), MOB-CBAM
showcased remarkable performance in discerning various
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breast cancer features, including masses, calcifications, and
molecular subtypes such as Luminal A, Luminal B, HER-
2 Positive, and Triple Negative. Through rigorous evalu-
ations on the Chinese Mammography Dataset (CMMD)
[78], MOB-CBAM demonstrated outstanding accuracy in
both coarse-grained and fine-grained classifications. No-
tably, coarse-grained classification achieved 99% accuracy,
while fine-grained tasks like mass and calcification identifi-
cation boasted an impressive 98% accuracy rate. Further
validation through cross-validation on MIAS and CBIS-
DDSM datasets affirmed MOB-CBAM’s effectiveness, with
accuracies of 97% and 98%, respectively. This study under-
scores MOB-CBAM’s potential as a reliable tool for breast
cancer diagnosis and subtype prediction, offering enhanced
precision through its innovative attention mechanism. Fur-
thermore, Panambur et al. [79] explored the classification of
luminal subtypes in full mammogram images. They utilized
transfer learning from a breast abnormality classification
task to fine-tune a ResNet-18-based model for distinguish-
ing between luminal and non-luminal subtypes. Results
obtained from the CMMD dataset showcased substantial
enhancements over the baseline, achieving a mean AUC
score of 0.6688 and a mean F1 score of 0.6693 on the test
dataset.

Table III summarizes studies focusing on breast cancer
diagnosis from mammogram images using DL techniques,
along with their respective performance metrics.

Existing review articles on breast cancer diagnosis-based
deep learning techniques using mammography have sig-
nificantly advanced the field by offering thorough insights
into diverse methodologies, datasets, and challenges. These
reviews meticulously analyze individual studies, delving
into the architectures, datasets, and performance metrics
employed, thus providing a nuanced understanding of each
approach’s strengths and limitations. Moreover, they fre-
quently delve into the datasets utilized across different
studies, encompassing both publicly available datasets like
MIAS and CBIS-DDSM, as well as proprietary ones,
which are crucial for validating findings. Despite these
contributions, certain limitations persist. Some studies have
narrowly focused on binary classification tasks, neglecting
more nuanced classifications. Additionally, the variability
in DL model performance across datasets underscores the
need for robust validation across diverse datasets. Further-
more, existing reviews often concentrate on specific aspects,
such as microcalcification detection or mass classification,
limiting the broader perspective needed for comprehen-
sive benchmarking. Moreover, discrepancies in reporting
performance metrics like accuracy, sensitivity, specificity,
and AUC pose challenges in identifying the most effective
approaches for breast cancer diagnosis. Another supposed
problem with this analysis is that the researchers do not
compare the results of the classifier with those collected by
the clinician to determine whether the classifier is more reli-
able. Additionally, several publications lack explicit disclo-
sure of experimental approaches, complicating reproducibil-

ity and evaluation. Addressing these issues is imperative to
foster advancements in breast cancer diagnosis and enhance
the efficacy of deep learning techniques in clinical settings.
In this review article, we endeavour to enhance the existing
body of work by offering a comprehensive examination of
deep learning (DL) methods employed in mammography-
based breast cancer diagnosis, classification, and segmenta-
tion. By synthesizing a diverse array of tasks and the latest
emerging techniques, our aim is to furnish readers with in-
sightful comparisons and a more exhaustive presentation of
available details. Our study encompasses a broad spectrum
of DL architectures, ranging from Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs)
to Deep Belief Networks (DBNs), YOLO, and pre-trained
models like VGG and MobileNet. Additionally, we delve
into transfer learning and end-to-end training approaches,
ensuring a thorough exploration of the deep learning land-
scape in breast cancer diagnosis. Furthermore, our review
expands its purview to include various tasks such as clas-
sification (normal/cancerous/non-cancerous), segmentation
(lesion boundaries), detection (mass/calcification), and even
subtype prediction, providing a holistic view of the appli-
cations of DL in this domain. Moreover, we emphasize the
diverse performance metrics utilized in the studies, ranging
from accuracy and sensitivity to specificity, Area Under the
Curve (AUC), and F1-score. This comprehensive approach
allows for a nuanced understanding of the effectiveness of
different models and methodologies.

With an understanding of the development and uti-
lization of deep learning systems for mammography-based
breast cancer diagnosis, it is essential to establish robust
evaluation metrics to assess their effectiveness and relia-
bility. In the following section, we delve into the various
metrics employed to evaluate the performance of these
systems, providing insights into their accuracy, sensitivity,
specificity, and other key measures crucial for assessing
diagnostic efficacy.

5. Evaluation metrics
This section presents the evaluation measures employed

to assess the performance of methods for diagnosing and
detecting breast cancer.

A summarized overview of the calculation formulas and
explanations for the most frequently employed evaluation
metrics in the literature can be found in Table IV.

To calculate various evaluation metrics, several key
terms are employed:

• True Negative (TN): Cases where both the actual and
predicted outcomes are negative.

• True Positive (TP): Cases where both the actual and
predicted outcomes are positive.

• False Negative (FN): Cases where the actual outcome
is positive, but the prediction is negative (missed
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TABLE III. COMPREHENSIVE ANALYSIS OF STATE-OF-THE-ART RESEARCH IN BREAST CANCER DIAGNOSIS ON MAMMOGRAPHY
UTILIZING DEEP LEARNING. ACCURACY (ACC); SENSITIVITY (Sn); SPECIFICITY (Sp); AREA UNDER THE CURVE (AUC);
DETECTION (DET); SEGMENTATION (SEG); CLASSIFICATION (CLA).

Paper Year Application Model Dataset Evaluation Metric

[49] 2021 Classification
k-means + LSTM + RNN

CNN + Random Forest
DDSM
MIAS

DDSM: Acc=96%
MIAS: Acc=95%

[50] 2019 Classification CNNI-BCC MIAS
Sn = 89.47% Acc = 90.5%
AUC = 0.90 Sp = 90.7%

[51] 2021 Classification CNN-RNN DDSM Acc = 94.7% Recall = 94.1% AUC = 0.968
[52] 2021 Classification GNN + CNN MIAS Acc = 96.1%

[53] 2021 Classification
CNN with

Knowledge transfer MIAS
Acc = 98.87%
F1-score = 99.3%

[55] 2020 Classification DBN DDSM Acc = 84.5%

[56] 2020
Mass

Segmentation Faster R–CNN
CBIS-DDSM

INbreast
CBIS: TP = 0.93
INbreast: TP = 0.95

[80] 2022 Lesions Segmentation CNN DDSM Dice = 65%

[58] 2020
Lesions Segmentation

Classification
YOLO CNN ResNet-50

InceptionResNet-V2
DDSM

INbreast

SEG DDSM: F1-score = 99.28%
SEG INbreast: F1-score= 98.02%
CLA DDSM: Acc = 97.5%
CLA INbreast: Acc = 95.32%

[59] 2024 Detection YOLOv5
VinDr-mammo
Private dataset
Mini-DDSM

F1-score = 87%
Sn = 82 %

[63] 2020 Classification AlexNet (Augmentation) MIAS Acc=95.70%
[64] 2022 Classification VGG16 + SVM MIAS Acc = 98.67% Sn = 99.32% Sp = 98.34%

[65] 2023 Classification
MobileNetV2 + Random Forest

CNN DDSM
MobileNet Acc=99.4%
CNN Acc=96%

[66] 2023 Classification
Inception-V3 + ResNet50

+ AlexNet MIAS
Acc = 97.81% (70% training)
Acc = 98% (80% training )
Acc ∼optimal value (90% training)

[67] 2023
Microcalcifications

Detection
and classification

AlexNet
ResNet18
ResNet34

Private

DET AlexNet Sn = 98% Sp = 89%
AUC = 0.98
DET ResNet18 Sn = 96% Sp = 91%
AUC =0.98
DET ResNet34 Sn = 97% Sp = 90%
AUC =0.98
CLA AlexNet Sn = 85% Sp = 89%,
AUC = 0.94
CLA ResNet18 Sn = 75% Sp =85%
AUC =0.88
CLA ResNet34 Sn = 84% Sp =84%
AUC =0.92

[68] 2024 Classification VGG16 Private Acc = 96.945%

[69] 2024 Classification CNN VGGNet
SE-ResNet152 Public and private Sn = 99%

AUC = 0.99

[70] 2024 Classification Mammo-Light CNN model CBIS-DDSM MIAS Acc = 99.17% (CBIS-DDSM)
Acc = 98.42% (MIAS)

[71] 2016
Microcalcification Detection

and classification Stacked autoencoder Private Acc =87%

[72] 2018
Microcalcification Detection

and classification GAN + ResNet50 DDSM AUC = 0.896

[74] 2020 Classification CNN mini-MIAS
Acc = 96.47%
AUC = 0.99

[75] 2023
Segmentation

and classification
RefineNet

Xception with PPM Private SEG DICE = 0.888
CLA AUC = 0.947

[76] 2023
Classification

LE + CESM Images SVM Private

LE Acc= 90.20%
CESM Acc=93.26%
SynCESM images: Acc=92.14% ,
LE + CESM images Acc =96.87%

[77] 2024
Detection

and subtype prediction
MobileNet-V3
with CBAM

CMMD MIAS
CBIS-DDSM

DET Acc=99%
SubType Acc=98%
MIAS Acc=97%
CBIS-DDSM Acc= 98%

[79] 2023 Classification ResNet-18
(transfer learning) CMMD

Mean AUC = 0.6688
Mean F1score=0.6693
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positives).

• False Positive (FP): Cases where the actual out-
come is negative, but the prediction is positive (false
alarms).

Having examined the evaluation metrics used to assess
the performance of mammography-based breast cancer di-
agnostic systems, it’s imperative to acknowledge the chal-
lenges encountered in their implementation and consider the
future directions of research in this domain. The subsequent
section delves into the various obstacles faced and outlines
potential avenues for advancement, emphasizing the need
for innovative solutions to address emerging challenges and
propel the field forward.

6. Challenges and future directions
This section discusses some of the challenges and re-

search directions in DL-based systems diagnosing breast
malignancies. Effectiveness in utilizing DL systems for
diagnosing and detecting malignancies in the breast might
be greatly impacted by the limited data problem in medical
imaging analysis. A number of models have been put
up to use X-ray mammography pictures to automate the
diagnostic procedure for breast cancer. Many researchers
have trained their deep learning architectures using publicly
available breast imaging datasets. On the other hand, it is
commonly recognized that DL architectures need a large
quantity of training data. Regretfully, in order to train these
models successfully, many of the current existing publicly
accessible datasets, including MIAS and INbreast, might
need to be improved. Training on datasets this tiny, usually
only a few hundred samples in size, may cause problems
like overfitting. In the existing literature, two commonly
adopted approaches are employed to tackle the issue of
limited data and enhance the robustness and accuracy of
such a proposed DL model. The primary and widely used
method involves expanding the training dataset size through
data augmentation, which generates multiple slightly altered
versions of the original images. This data augmentation
technique encompasses various methods, such as rotating
images within specific angle ranges, adjusting image sizes
within specified factors, shifting and flipping images in
different orientations, cropping images, and producing im-
ages with transformed shapes and intensities using various
techniques. When all augmented image versions are pre-
generated and integrated with the original dataset before the
training, Offline data augmentation. The model then utilizes
this dataset in randomized Mini-Batches during training.
Conversely, Online augmentation is designed to execute
operations (e.g., affine transformation) as part of the DL
model pipeline. Users may configure the input parameters
for each form of augmentation in this arrangement, includ-
ing the likelihood and range. This way, every picture in
a Mini-Batch is randomly altered according to the given
probabilities, using the initial training set as input. The
selection between Offline and Online approaches for aug-
mentation is based on the dataset size. Offline augmentation

is the preferred choice for smaller datasets, while Online
augmentation is better suited for larger datasets, particularly
if the augmentation process can be implemented on a
GPU. It’s worth noting that Offline augmentation demands
more memory, while the Online approach consumes more
computational time. Extensive research has demonstrated
that data augmentation effectively mitigates the risk of over-
fitting when dealing with small training sets, as evidenced
by studies like [82] and [83]. Another effective strategy
involves utilizing transfer learning, which has demonstrated
significant success in analyzing mammography images, as
exemplified in [84]. Initially undergo training on extensive
image datasets from a diverse range of domains, essentially
encompassing any general imaging dataset. Subsequently,
these models undergo refinement using a dataset specific
to breast images, which typically pertains to the targeted
domain. ImageNet frequently employs a general imaging
dataset for this purpose [85], serving as a foundational
resource. Numerous deep models based on transfer learning
have undergone pre-training on this dataset, including VGG-
16, ResNet, Inception-V3, and others. Moreover, a sig-
nificant limitation observed in mammography datasets for
breast cancer diagnosis pertains to the substantial imbalance
between negative and positive classes. Specifically, breast
mammography image datasets, as evidenced in [86], exhibit
a pronounced class imbalance, with approximately 97% of
examples belonging to the negative class and only around
3% representing the positive class. An ideal classification
scenario would entail a balanced rate that achieves equiva-
lent accuracy in predicting both the majority and minority
classes within the dataset, ideally reaching 100% accuracy
for both. However, practical classification outcomes reveal a
substantial imbalance, with precision rates of 100% for the
majority class and ranging from 0% to 10% for the minority
class. To put this into perspective, a 10% precision rate for
the minority class implies that 2% of patients with cancer
may be erroneously classified as noncancerous. In the
medical domain, such an error is considerably more costly
than classifying a cancerous patient as noncancerous. Im-
balanced datasets, particularly in terms of class distribution,
are a recurring challenge encountered in addressing real-
world classification scenarios like breast cancer diagnosis.
Imbalanced datasets are characterized by a skewed class
distribution, where one or more groups have a significantly
larger number of examples than others. In medical diagnosis
datasets, it’s common to have an imbalance, where there
are many more instances of benign (normal/healthy) cases
recorded than malignant (abnormal/cancerous) cases. When
a dataset exhibits such an unequal distribution, it tends
to be biased toward the majority class, which may not
be of primary interest. Consequently, when deep learning
algorithms are trained on imbalanced datasets, they also
tend to be biased by the majority class. This poses sig-
nificant challenges in learning from severely imbalanced
datasets, a topic called imbalanced learning. For instance,
in a simulation study conducted to address this issue [87],
researchers examined how well a CNN could classify breast
masses into malignant or benign categories. They used a

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/


Int. J. Com. Dig. Sys. 16, No.1, 1643-1661 (Oct-24) 1655

TABLE IV. EVALUATION METRICS COMMONLY USED FOR BREAST CANCER DIAGNOSIS [81].

Metrics Description Formula

Accuracy (Acc)

It is computed by taking the proportion
of correct predictions and dividing it by
the overall predictions generated. Essentially,
provides insight into the proportion of the
model’s predictions that were accurate.

Acc = T P+T N
T P+T N+FP+FN (1)

Precision (Pr)

It evaluates the correctness of the positive
predictions. It is computed by dividing the
number of true positive results by the total
number of actual positive cases, which
includes both correctly identified cases and those
erroneously labelled as positive by the classifier.

Pr = T P
T P+FP (2)

Sensitivity (Sn)
Recall (R)
TPR

It quantifies the fraction of real positive instances
that the classifier should have accurately identified
as true positives. Maintaining high values for both
Sn and Pr is essential in medical image diagnosis
to reduce the chances of misdiagnosing patients
with malignancies.

S n = T P
T P+FN (3)

Specificity (Sp)
It is calculated by considering the ratio of accurately
identified instances from the negative class to the
overall count of negative instances.

S p = T N
T N+FP (4)

F1-score

It is typically employed when dealing with imbalanced
datasets, especially those with significant class
imbalances. It assesses the model’s accuracy for each
class and is calculated based on precision and recall.

F1 − score = 2×R×Pr
R+Pr (5)

ROC-AUC (FPR)

Receiver Operating Characteristics (ROC) curve holds
significance as a vital performance measure for CAD
systems, depicts the relation between True-Positive
Rate (TPR) and False-Positive Rate (FPR) across
various decision points. The Area Under the ROC
Curve (AUC) indicates the system’s capability
to differentiate between positive and negative classes.

FPR = FP
FP+T N (6)

potentially corrupted training set, with corruption levels
ranging from 0% to 50% of samples. The findings showed
that although classification performance might reach 100%
on the training set, as the degree of training label corruption
rose, it became less effective when applied to unseen test
samples. In the literature, two frequently employed methods
are discussed to address the aforementioned issue, namely
oversampling and undersampling. Some studies suggest that
in the case of oversampling, there is a potential risk of
overfitting [88], which could affect model generalization.
Conversely, another study [89] has indicated that undersam-
pling may be more effective than oversampling, but it does
come with the drawback of discarding valuable samples
from the dataset. In addition to these well-established
techniques, recent years have seen the emergence of the
One-Class Classification (OCC) technique, particularly in
identifying abnormal samples in comparison to known
class instances. This approach offers a promising solution
to address challenges associated with severely imbalanced
datasets [90], which are particularly prevalent in large-scale
data scenarios. While conventional classification techniques,
whether binary or multi-class, aim to assign a data object

to one of the several existing classes, there is an approach
that aims to determine whether a data instance belongs
to a specific class or not, named One-Class Classification
(OCC). It trains the model exclusively on samples from a
single class, referred to as the target class, and treats all
other samples as outliers. This approach proves valuable in
situations where samples from other classes are either scarce
or entirely unavailable. Such scarcity of samples can arise
from various factors, including the challenges associated
with data collection, high computational requirements, rare
events, and more. Consequently, it is suggested that future
research endeavours should consider the utilization of Deep
Learning-based One-Class Classification models to increase
the accuracy of a cancer diagnosis on breast images. More-
over, most research articles focus largely on the accuracy
measure when evaluating the performance of their model,
frequently ignoring other important aspects. This approach
proves inadequate because the accuracy metric fails to
differentiate between errors in the positive and negative
classes specifically. It is recommended that forthcoming
studies incorporate, at the very least, AUC and F1 Scores
as part of their evaluation criteria to gauge the effectiveness
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of each model comprehensively. A notable discovery is that
there is currently a limited number of DL models that inte-
grate clinical Data (such as patient age, menopausal status,
medical history, etc.) with image data. Future researchers
may find it worthwhile to conduct additional investigations
and develop more hybrid algorithms utilizing DL-based
approaches that merge clinical data with image data.

As we reflect on the challenges and potential avenues
for advancement in mammography-based breast cancer di-
agnosis, it becomes evident that addressing these challenges
is paramount for the continued progress of the field. In
the final section, we consolidate our findings, providing
a comprehensive discussion of the implications of our
research and offering concluding remarks on the current
state of the art and avenues for future exploration.

7. Discussion and conclusion
Breast cancer, a prevalent malignancy among women

globally, necessitates accurate diagnosis for tailored treat-
ments that enhance outcomes and survival rates. Collabora-
tive efforts within the medical community aim to innovate
early diagnosis technologies for breast cancer. However,
the lack of interdisciplinary information and understanding
among medical professionals, researchers, scientists, and
healthcare workers poses challenges in developing novel
diagnostic tools. This review aims to impart crucial insights
into breast cancer, emphasizing the importance of multidis-
ciplinary collaboration to drive the creation of more effi-
cient diagnostic tools. While existing reviews predominantly
focus on DL-based methods for breast cancer diagnosis,
lacking comprehensive disease explanations, this review
distinguishes itself by consolidating information on normal
female breast tissue anatomy, core breast cancer concepts,
and established diagnostic modalities like mammography.
Our study aims to advocate for adopting deep learning
approaches among field specialists, including medical pro-
fessionals, researchers, scientists, and healthcare workers,
for accurate breast cancer diagnosis and evaluation. By
providing an overview of various deep learning algorithms
employed for breast cancer detection, segmentation, and
classification using mammography, this article contributes
to bridging the gap between traditional diagnostic methods
and cutting-edge technologies. In recent years, the field
of deep learning for diagnosis has experienced significant
advancements, with numerous works contributing to the
state-of-the-art. This paper presents a comprehensive review
of the latest developments, offering novel insights and
contributions that distinguish it from existing literature.
Our review comprehensively explores a range of recent
deep learning architectures utilized in breast cancer diag-
nosis. This includes supervised models such as Convolu-
tional Neural Networks (CNN), Recurrent Neural Networks
(RNN), Recurrent Convolutional Neural Networks (RCNN),
and You Only Look Once (YOLO), as well as specific
models like CNNI-BCC End-to-End CNN. Additionally,
we delve into unsupervised models like stacked autoen-
coders and Generative Adversarial Networks (GAN). We

also examine the relevance of pre-trained models such
as ResNet 50, Inception V2, and AlexNet in the context
of breast cancer diagnosis. Furthermore, machine learn-
ing classification techniques employed in breast cancer
diagnosis are discussed. The review delves into various
stages of image processing, including image pre-processing,
segmentation, feature extraction, and classification. These
are crucial for analysing mammography images for breast
cancer diagnosis and detection. Our analysis, based on
the reviewed studies, highlights a significant trend where
most existing studies focus on various modalities-based
deep learning approaches for breast cancer diagnosis, such
as Ultrasonography, Computerized Tomography (CT), and
Magnetic Resonance Imaging (MRI). In contrast, there is a
notable gap in the comprehensive and systematic analysis
of mammography-based deep learning techniques, with
limited coverage in the literature. This review uniquely
centres solely on mammography for breast cancer diagnosis,
recognizing it as the most commonly utilized imaging
modality for assessing breast abnormalities and emphasiz-
ing its effectiveness in early breast cancer detection. While
numerous researchers have made substantial contributions
to the field of breast cancer diagnosis, this study aims to
provide valuable insights to radiologists and the medical
community, facilitating the development of new and ef-
ficient diagnostic techniques for early-stage breast cancer
detection. Moreover, the paper provides a summary of the
most frequently used publicly accessible mammography
datasets to facilitate future research. It explores the most
widely used metrics for evaluating computer-aided breast
cancer detection and diagnosis systems. The findings of the
current review underscore the Convolutional Neural Net-
work (CNN) as the most accurate and prevalent model for
breast cancer detection, with accuracy metrics emerging as
the predominant method for performance evaluation. CNNs
have gained widespread adoption due to their capability
to extract intricate features from mammographic images
effectively. For instance, research by Malebary et al. [48]
introduced the BMC system, RNN, CNN, and random forest
techniques for breast mass classification, achieving notable
accuracies of 96% and 95% on DDSM and MIAS datasets,
respectively. Similarly, the CNNI-BCC algorithm proposed
by Ting et al. [49] exhibited high sensitivity, accuracy,
and AUC values, showcasing its potential for classifying
mammogram images into non-cancerous, cancerous, and
normal categories. Furthermore, the integration of CNNs
with RNNs in the Two-perspective mammogram classifi-
cation model [50] yielded promising results, achieving a
classification accuracy of 94.7%. These studies underscore
the efficacy of DL models in accurately identifying breast
abnormalities from mammography images. DL techniques
have also been found to be applicable to specific tasks
such as mass detection and lesion classification. For in-
stance, researchers in [55] developed a Faster R-CNN-
based system for mass detection, demonstrating high true
positive rates and low false positive rates. Similarly, the
YOLO detector [56] exhibited promising results in breast
lesion diagnosis, achieving high accuracy and F1-scores.
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Transfer learning has emerged as a valuable approach to
mitigate data scarcity issues in DL models. Studies such
as [62] and [63] leveraged transfer learning with modified
AlexNet and MobileNetV2 architectures, respectively, for
mammogram classification, achieving accuracies exceeding
95%. These findings underscore the effectiveness of transfer
learning in enhancing model performance with limited data.
Another significant finding from the review is the increasing
preference for Contrast-enhanced mammography (CEM)
over full-field digital mammography (FFDM) in classi-
fying mammography images. This shift is driven by the
limitations of mammography, particularly in dense breasts
where gland shielding and overlapping affect diagnostic
performance. CEM, integrating intravenous iodine-contrast
enhancement with digital mammography, emerges as a
promising technology endorsed by the American College
of Radiology for breast cancer diagnosis. Studies indicate
that CEM’s sensitivity is comparable to that of magnetic
resonance imaging (MRI), with a notably higher positive
predictive value than MRI. However, challenges persist,
including variations in technique influencing radiologists’
assessments and interobserver variability in interpretation.
Moreover, despite its promising potential, the relatively
recent development of CEM means that diagnostic expe-
rience is still evolving. In addition, a key finding of the
review is the growing emphasis on radiomics in classi-
fying mammography images. Radiomics, which leverages
advanced image analysis techniques to extract quantitative
data from medical images, holds significant promise in pre-
cision medicine, particularly for breast cancer diagnosis and
prognosis. As an integral component of cancer management,
medical imaging provides rich information on regions of
interest without invasive procedures. Radiomics facilitates
the utilization of this data to develop predictive models for
both diagnosis and prognosis, tailored to individual patients
for optimal outcomes. This multidisciplinary approach is
poised to revolutionize breast cancer care, enhancing the
accuracy and precision of mammography imaging. Recent
advancements in DL algorithms, coupled with vast imaging
datasets, have yielded promising models for radiomics
applications in breast cancer. While patient acceptance
of DL in clinical practice is growing, it is viewed as a
supportive tool for radiologists rather than a replacement.
Radiomics has demonstrated utility in various aspects of
breast imaging, including distinguishing between malignant
and benign lesions, assessing tumor subtype and grade, pre-
dicting therapy response and recurrence risk, and potentially
replacing physical breast biopsies in the future. The research
highlights the essential need to leverage various open-access
mammography datasets to validate segmentation, detection,
and classification outcomes, ultimately contributing to effec-
tive diagnosis. Also, based on our analysis, it is clear that
there is an urgent requirement for a substantial volume of
annotated, balanced clinical data and the development of a
unified, fully automated framework capable of accurately
diagnosing breast cancer with minimal human interven-
tion. Additionally, establishing a standardized repository,
accompanied by ground truth annotations for the images, is

essential to address these needs effectively. Therefore, estab-
lishing substantial public databases emerges as a crucial step
for future research endeavours. This study also succinctly
explores the challenges and future directions in deploying
deep learning (DL) systems to diagnose breast malignancies
through mammography images. Future research endeavours
may prioritize the following areas:

• Advancing DL models to provide transparent insights
into their classification or segmentation decisions,
fostering trust among healthcare professionals in AI-
assisted diagnosis.

• Tackling the challenge of generalizability by refining
models to perform effectively across datasets with
diverse ethnicities, breast densities, and imaging pro-
tocols, employing techniques like domain adaptation
and data augmentation.

• Developing models capable of predicting breast can-
cer subtypes to tailor personalized treatment strate-
gies, integrating clinical data with mammogram im-
ages for a comprehensive approach.

• Designing user-friendly interfaces and integrating AI
models seamlessly into clinical workflows to stream-
line and expedite breast cancer diagnosis processes.

• Creating models specifically tailored to detect cancers
that manifest between routine mammogram screen-
ings, enabling earlier detection and potentially im-
proving patient outcomes.

• Implementing mechanisms for continuous learning
and model updates to ensure ongoing accuracy and
adaptability to evolving medical knowledge as new
data becomes available.

• Exploring federated learning approaches to facilitate
model training on distributed datasets from different
hospitals, maintaining patient privacy while advanc-
ing AI capabilities in breast cancer diagnosis.

The strength of the paper lies in its comprehensive and
detailed explanation of the application of deep learning
techniques in the early-stage study of breast cancer, offering
valuable insights that can contribute to advancements in
women’s health. One primary limitation of this study is
its exclusive focus on journals discussing breast cancer
detection, diagnosis, and segmentation in mammography
using DL techniques. To ensure the relevance of the
included research papers, irrelevant publications were
identified and excluded based on predefined search criteria.
While this approach ensured the suitability of the selected
papers for the investigation, it is acknowledged that the
inclusion of additional sources, such as supplementary
textbooks and conference articles, could have enriched the
review.
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