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Abstract: The task of modeling and identifying people’s emotions using facial cues is a complex problem in computer vision. Normally
we approach these issues by identifying Action Units (AUs), which have many applications in Human Computer Interaction (HCI).
Although Deep Learning approaches have demonstrated a high level of performance in recognizing AUs and emotions, they require
large datasets of expert-labelled examples. In this article, we demonstrate that good deep features can be learnt in an unsupervised
fashion using Deep Convolutional Generative Adversarial Networks (DCGANs), allowing for a supervised classifier to be learned from
a smaller labelled dataset. The paper primarily focuses on two key aspects: firstly, the generation of facial expression images across
a wide range of poses (including frontal, multi-view, and unconstrained environments), and secondly, the analysis and classification
of emotion categories and Action Units. We demonstrate an enhanced ability to generalize and achieve successful results by using a
different methodology and a variety of datasets for feature extraction and classification. Our method has been thoroughly tested through
multiple experiments on different databases, leading to promising results.
Keywords: Affective computing; GANs; DCGAN; fine-tuning; transfer learning; relabelling; generalization; FACS.

1. INTRODUCTION
Emotion recognition presents a significant and complex

challenge within the field of computer vision. Particularly,
its integration into Human Computer Interaction holds
exceptional significance. The challenge in modelling and
identifying emotions emerge when individuals exhibit sig-
nificant variations in facial features, alongside the extensive
range of expressions observed across diverse individuals,
cultures, and contexts. Emotions are commonly delineated
utilizing individual AUs, which serve as the fundamental
building blocks of facial expressions related to emotions.

The advent of advanced Deep Learning (DL) approaches
in recent years has yielded remarkable advancements in
automatic facial emotion class recognition. Nevertheless,
Deep Neural Networks (DNNs) necessitate a significant
volume of training data. By employing a substantial training
set, the problem of overfitting is mitigated, facilitating en-
hanced generalization and acquisition of superior features.
Furthermore, a larger training set proves to be more efficient
in comprehending intricate relationships and patterns that
exist within the data distribution. Nonetheless, accessing
or having a dataset that has a level of labelled coverage
that is sufficient across several situations and conditions
is a comparatively large challenge. In addition, effectively
producing authentic and dynamic facial expressions that ac-
curately reflect facial AUs remains a formidable challenge,

primarily due to the continued difficulty in automatically
recognizing the intensity of AUs [1].

Facial expression datasets with Action Units and emo-
tion labels are scarce, limited in size, and imbalanced [2]
due to the scarcity in the diversity of certain emotions
and AUs. Furthermore, the process of labelling facial ex-
pressions is challenging, requiring significant effort, cost,
time, and expertise [3]. In certain domains such as remote
sensing, qualified experts are typically needed to perform
this task since publicly available satellite images and their
corresponding ground truth data are often not provided.
The result is that there is not enough data to optimise all
parameters, yet the quantity of labelled data is rarely enough
to constrain numerous parameters. The consequence is that
the models become prone to overfitting and demonstrate an
inadequate ability to generalize when exposed to unseen
subjects, as documented by Han et al. (2016). Research has
conclusively indicated that the effectiveness of Deep Learn-
ing in generalizing improves proportionally with the inclu-
sion of a substantial amount of nonlinear facial variability
factors in the training data. These factors, which comprise
individual distinctions, subject identity, facial morphology,
various backgrounds, illuminations, occlusions, and head
pose, are frequently encountered in unconstrained environ-
ments [4]. Hence, a considerable amount of research in
the field of Deep Learning has been dedicated to various
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Figure 1. This figure showcases the structure of a Deep Convolutional GAN (DCGAN), which integrates the fundamental elements from
Convolutional Neural Networks (CNNs) used in supervised learning alongside the conventional principles of GANs employed in unsupervised
learning models.

aspects such as maintaining balanced batches, utilizing
ReLU activation functions, training on multiple datasets,
implementing dropout regularisation, harnessing GPU ac-
celeration [5], and employing data augmentation techniques.
The main objective of these augmentation techniques is
to increase the size of the training data in order to better
represent the actual distribution of the problem domain. This
leads to a broader range of variations and diversity in the
dataset. The various methods mentioned above contribute
to improving the quality performance of deep NNs and
increasing the quantity of the dataset. However, a limitation
is that they do not sufficiently address the requirement
for non-linear parametric variations in training datasets,
which may not be addressed by traditional augmentation
approaches. In light of this, an alternative option is to utilize
a sizeable unlabelled dataset and employ unsupervised
learning methods. Although there is an increasing amount
of available data from the internet, most are unannotated.
Therefore, one way to exploit the available unlabelled
data, and give an incentive to use unsupervised learning,
is to learn better representations that can be used with
these supervised tasks. Meanwhile, technically, a solution
to alleviate these obstacles is to innovate data models using
synthetic data accompanied by genuine data to train these
models. DCGAN, which stands for Deep Convolutional
Generative Adversarial Network, is an advanced technique
used to generate facial images. This method has gained
significant popularity due to its exceptional performance in
creating realistic and high-quality facial images [6]. This
method provides a balanced approach to tackle a wide

range of computer vision problems. These problems include
modifying facial attributes, exploring reinforcement learn-
ing, translating synthetic images into realistic photos, syn-
thesizing images in different styles, transforming images,
restoring colours, creating textures, augmenting datasets,
generating shop advertisements [7], analyzing sentiments
[3], translating images, editing face generation, editing
human poses [8], processing natural language, colourizing
images, and adjusting poses [9].

Figure 1 gives an overview of the proposed approach.
The proposed model involves the utilization of two deep
neural network models (G & D), namely G and D, wherein
G denotes the Generator and D signifies the Discriminator,
as is typical for GANs. The primary aim of the Generator
is to generate synthetic images with a high degree of
resemblance to genuine ones, thereby effectively deceiving
the Discriminator. The discriminator works as a CNN-based
classification network and its output class probabilities. It
is undertaking a binary classification task, with the actual
training data set considered as positive samples and the
generated data from the generator as negative samples [10].
Both models are trained jointly in a competitive min-max
process at the same rate, on an unlabelled large dataset of
facial images. The persistent confrontation training among
the generator structure and the discriminator structure would
improve both the discriminator’s identification ability and
the accurate extraction of image features. These automatic
features engineering or representation learning are sug-
gested to indicate that the input comes from the training
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Figure 2. A sketch of a basic DCGAN architecture.

dataset [11]. In this context, the adversarial training process
is repeated until a state of Nash equilibrium [12] is reached
between the Generator and the Discriminator to achieve
good images. The process achieves a state of equilibrium
when the Discriminator no longer discerns between genuine
and counterfeit images. The latter part of this architecture
comprises the stages of extracting features and classifying
facial expressions. Once the features are extracted from
the DCGAN discriminator, they are used as input for a
Support Vector Machine (SVM) model to facilitate the final
classification and detection. The images that have been used
for training the SVM are the initial ones from each database,
and that differs from experiment to experiment depending
on the dataset used for training and testing. The traditional
DCGAN model is trained with an aggregation of log loss on
the Discriminator output and ℓ1 loss between the Generator
output and target image. The Discriminator is only trained
with log loss. To interpret the loss when training DCGAN,
the Discriminator and Generator would adjust their weights
with the value function in the equation below. The objective
requires the Generator to produce data that can match the
statistics of the real data. In this case, the Discriminator is
only used to match whichever statistics are identical. The
G and D sub-network’s minimax objective function can be
optimized during training by adjusting the loss function [6]
[13][14]:

min
G

max
D

V(D,G) = Ex ∼ pdata(x)[log(D(x))]+

Ez ∼ pz(z)[log(1 − D(G(z)))]

Following the initial pre-training phase, the Discrimina-
tor network that has been trained is subsequently employed
as a tool for extracting relevant features. These extracted

features are further utilized in training SVM classifiers to
identify emotions and AUs, using a much smaller labelled
dataset. Finally, the trained model will be deployed for the
supervised task for the classification of facial expressions
with the available emotion and AU labels. Figure 2 repre-
sents the DCGAN architecture chart. A question is whether
it is possible to enhance the categorization of emotions
captured in uncontrolled settings by employing Genera-
tive Adversarial Networks, specifically DCGAN. Can the
features extracted from the Discriminator be utilized for
successful facial action unit (AU) and emotion recognition?
Is there a method to achieve consistent generalization across
diverse datasets?

The key findings and achievements of this study can be
outlined in the following manner:

• Utilizing unsupervised Generative Adversarial net-
work models effectively as a feature extraction
method in supervised tasks for recognizing facial
expressions in uncontrolled environments. It exam-
ines the application of DCGAN in extracting facial
characteristics and classifying eight emotions in nat-
ural settings, along with Action Units. A constructive
framework was proposed by using the Discriminator
network as a feature extractor based on video frames
and static images. More precisely, testifying was done
to see whether the features learned from the Discrimi-
nator’s convolutional penultimate layer could provide
information characterizing emotions and AUs.

• The ability of DCGAN to generate arbitrary analo-
gous images from a different perspective (predefined
in front, multi-view settings and from real-life wild
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conditions) was discovered, which was indiscernible
from their versions in unsupervised manner adapta-
tion. A set of four quantitative metrics, namely In-
ception Score (IS), Fréchet Inception Distance (FID),
Structural Similarity Index (SSIM), and the Amazon
Mechanical Turk (AMT), were employed to assess
the quality of the generated samples across all the
datasets. Furthermore, an assessment was conducted
to examine if the generated samples exhibited any
signs of mode collapse. Moreover, a thorough dis-
cussion was provided concerning these observations.

• A manual re-annotation of the images of the Radboud
dataset (emotions relabelled to AUs) was achieved.
Higher quality discriminative representation features
were derived from a large number of examples and
from frontal face images.

• A generalisation across datasets’ evaluation perfor-
mances was presented, using various pre-trained mod-
els to cope with the impact of the restricted number of
the target dataset. Additionally, we examined how the
features trained on a large dataset that is potentially
unlabelled can be experimentally transferred from the
supervised task to a different one.

This work is unique in that it formulates the usage
of unsupervised Generative Adversarial Networks models
as a feature extraction for the supervised tasks. This is
for facial features’ extraction and for classifying the eight
emotion classes (Fearful, Disgusted, Angry, Sad, Happy,
Contemptuous, Neutral and Surprised) in the wild together
with Action Units. Modeling and accurately discerning
individuals’ emotions solely based on their facial expres-
sions is a complex and challenging problem within the
realm of computer vision. Typically, emotions have been
described and categorized by identifying specific Action
Units (AUs), which are the fundamental units comprising
facial expressions. In this context, the proposed system
not only builds upon existing research findings but also
pushes the boundaries of current knowledge by investi-
gating how emotional cues can be effectively learned and
recognized through the exploration of subtle local changes
in facial appearance. Furthermore, the system addresses
the crucial aspect of generalization by studying how these
learned patterns can be extrapolated and effectively applied
to new individuals. This approach stands to contribute
significantly to the advancement of emotion recognition
technologies [15]. Effective facial expression recognition
is crucial in a wide range of practical applications. It
offers numerous benefits in fields like advanced human-
computer interaction, robotic systems, affective computing,
security, machine learning, stress, and depression analysis.
Consequently, machines interacting with people need to
possess reliable facial expression recognition capabilities to
effectively meet the diverse demands of these applications
[16]. The aim of this research is to develop a system using
Artificial Intelligence (AI) and advanced Machine Learning

methods (ML) to automatically identify and recognize the
emotions of individuals in real-time from live broadcasts.
This involves analyzing facial expressions and distinguish-
ing between different Action Units to recognize emotions.
Identifying emotions from facial expressions by analyzing
Action Units (AUs) is a difficult task in computer vision.
Emotions are often characterized by specific AUs, which are
the atomic components of the facial expression of emotions

2. Related work
Generative AI models, also known as deep generative

models or distribution learning methods, are a sophisticated
class of AI methods that can analyze data objects and gen-
erate innovative, structured data objects. This falls under the
umbrella of unsupervised learning, where the models learn
the data distribution and use that knowledge to produce
unique data objects [10]. Numerous high-quality methods
have been proposed and a significant amount of work has
been done on modeling synthesis images in deep learning.
Early research focused on Restricted Boltzmann Machines
and their variations, such as Deep Belief Networks [17]
[18] [19] [20] [21]. More recent advancements in this field
include Auto-Regressive models [22] and Variational Auto
Encoders (VAEs) [23] [24], which are directed graphical
models that use latent variables to create complex generative
models of data. In reference [25], the authors assert that
training a Variational Autoencoder (VAE) is considered eas-
ier than training Generative Adversarial Networks (GANs)
which rely on statistical inference [26]. Despite the reliable
and stable training process of VAEs, they tend to produce
images of lower quality with blurriness being a common is-
sue [27]. In contrast, a combined training approach of VAE
and GANs, with shared parameters of the VAE encoder and
GAN generator [28], allows for utilizing the discriminator’s
learned feature representations in the GAN to enhance VAE
reconstruction objectives, and establish an identity-invariant
information representation [29]. Recent advancements and
pioneering developments have emerged by implementing
cutting-edge techniques based on Generative Adversarial
Networks (GAN) [30]. The seminal work by Goodfellow et
al. [31] introduced a novel framework that has revolution-
ized the field of deep learning. While the initial implementa-
tions of GANs encountered obstacles related to training sta-
bility and image fidelity, ongoing research endeavors have
substantially improved their performance. Notably, GANs
have demonstrated remarkable proficiency in generating
realistic visuals, yet their latent potential in augmenting
classification tasks warrants more scholarly investigation
and theoretical elucidation [32]. Moreover, recent years
have witnessed significant advancements in the field of
Generative Adversarial Networks (GANs), with a plethora
of methodologies [33] [34] [35] [36] [37] [38] proposed
to augment their performance capabilities. Among these,
the Deep Convolutional Generative Adversarial Network
(DCGAN) [39] has emerged as a prominent innovation,
integrating principles from both GANs and Convolutional
Neural Networks (CNNs) to elevate image generation pro-
ficiency. By harnessing the power of CNNs in both the
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Generator and Discriminator networks, DCGAN has not
only improved training stability [40] but also demonstrated
superior generative modeling prowess. In the quest for
a robust GAN framework, recommendations such as the
replacement of pooling operations with strides convolution
and the incorporation of batch normalization [36] have been
put forward to enhance model resilience and efficacy. These
developments underscore the ongoing evolution of GAN
techniques and their potential for impactful applications in
various domains.

Beginning with the original network structure, Genera-
tive Adversarial Networks (GANs) have demonstrated sig-
nificant potential in generating images. Numerous variations
and modifications to the original design have since been
proposed and developed, including CycleGAN [41], Info-
GAN [42], ExprGAN [43], Amgan [44], FF-GAN [45], and
DR-GAN [46], SGAN [47] [48], TP-GAN [49], AC-GAN
[50], CapsGAN [51], LR-GAN [52] model and Wasserstein
GAN (W-GAN) [53]. Other advanced techniques in the
field of synthesis focus on implementing restrictions on
the input data of the generator or incorporating additional
information to enhance the generation process. For example,
a conditional GAN uses conditional data to generate facial
images from random noise. This model is an extension
of the traditional GAN [31], where both the generator
and discriminator are given an extra variable Y as input
[54] [55] [56]. In this framework, the generator’s output
is controlled by this additional variable. The literature of
[57] describes a facial expression transfer model based on
conditional generative adversarial networks, which permits
the transfer of seven distinct facial expressions. This is
accomplished by incorporating domain classification loss
functions to specify expression domain conditions during
training using only a single generator. A more recent study
by Li et al. [58] further enhanced the conditional GAN
by incorporating auxiliary constraints, such as class labels,
to improve the model’s performance in generating images
and predicting classes. Moreover, Mirza and Osindero [55]
rely on supplying the class label to both the generator and
discriminator to generate images that are conditioned on
the class label. Luan et al. [46] and Springenberg [59] ex-
panded on the concept of GAN by training a discriminative
classifier that not only distinguishes between real and fake
images but also classifies the generated images [36] [36].
Info-GAN [25] learns interpretable representations through
latent codes and incorporates information regularization for
optimization. WGAN [53] introduces Wasserstein distance
to address the issue of model collapse in GANs by replacing
the KL divergence, resulting in greater sample diversity
[60]. Odena [61] and Zheng [62] analyze the use of GAN
samples as a distinct class in semi-supervised training [63].
They emphasize the allocation of a unified label distribution
to all existing classes of GAN samples [40]. [64] suggested
a technique that involves a series of convolutional networks
within a Laplacian hierarchical generation framework to
create higher-quality images in a progressive manner. Nev-
ertheless, the outcomes for objects were inconsistent as a

result of the introduction of noise from multiple models
being enforced. GANs can also be used to replicate an
older version of an image, as demonstrated in the study by
Antipov [65]. Although the results were not verified, the
generated images were largely realistic. The effectiveness
of GANs in image processing is evident in other studies
such as synthesizing frontal facial images from rotated
images [49], preserving the identity of subjects in images
by manipulating them [66], and removing excess lighting
in facial images for accurate face identification [67]. The
various training methods of GANs, including supervised,
unsupervised, and semi-supervised learning, have produced
diverse outputs for classifiers [32].

3. Methodology
Ian Goodfellow et al. first introduced the idea of Gen-

erative Adversarial networks (GANs) [31]. To enhance the
training stability and performance of GANs, the DCGAN
framework was developed. This framework has demon-
strated its stability and power by generating synthetic
images that closely resemble real images. This work is
extensively described in the following sections, which out-
line the main steps in more details: The ability of the
DCGAN model was adapted for supervised tasks by deep
facial features, which were extracted and grounded on this
model. After training the model, it was observed whether
the generated images of AUs and emotions have the same
visual fidelity quality of the original images. In terms of
assessing their generalisation ability, the trained models
were validated on more datasets: RPI ISL Enhanced Cohn-
Kanade [68], Large-scale CelebFaces Attributes (CelebA)
[69], Radboud Faces Database (RaFD) [70], Real-world
Affective Faces Database (RAF-DB) [71], Karolinska Di-
rected Emotional Faces (KDEF) [72], and Static Facial
Expressions in the Wild (SFEW) [73] using the transfer
learning approach. The Viola-Jones method suggested by
[74] was used to crop frontal images. Additionally, the
MTCNN [75] approach, which is a state-of-the-art, multi-
task CNN method, was utilized to obtain cropped faces from
multiple viewpoints. This method was employed for both
facial landmark recognition and bounding box delineation.
The images were then downscaled to an initial resolution
of 64 × 64 pixels before being inputted into the network.
The model was then trained for a span of 300 epochs. The
features from the Discriminator’s convolutional penultimate
layer 12 were extracted; this layer gives 512 feature spatial
grid maps of size 64 × 64. Then, the singleton dimensions
of size 1 were reshaped and removed from the shape of a
tensor (4-dimensional tensor).

The nonlinear SVM was used for emotion recognition
and the linear SVM was used for AUs activation detection,
alongside the emotion/AU labels. SVM was straightfor-
wardly applied at the top of these features to predict and
recognise the occurrence of 14 AUs and eight emotion
classes as training end to end. The same steps could be
used to extract the features from the Generator, but this can
be a task for future research.
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TABLE I. Description of all the public datasets of emotions utilized in this article.

Dataset No. of images Participants Annotations Condition

RadFD 8040 67 models 8 emotions acted
KDEF 4900 70 individuals 7 emotions acted

RAF-DB 29672 N/A 7 emotions spontaneous
CelebA 30,000 10,177 40 attribute annotations in the wild

CK+ 327 seq. (10 to 60 frames/seq.) 210 8 emotions posed + spontaneous

From a technical standpoint, DCGAN code execution
prerequisites are required training on the GPU computing
capabilities that necessitate the Parallel Computing Toolbox
and a CUDA (Graphics card) implementation of enabled
NVIDIAGPU. We performed our framework using the
Deep Learning Toolbox 2022a MATLAB implementations
of Deep Convolutional Generative Adversarial Networks
(DCGANs). The execution of the DCGAN model utilised
the MatConvNet library. MatConvNet (CNNs using MAT-
LAB) is an efficient MATLAB toolbox implementation of
the Convolutional Neural Networks (CNNs) models for
the applications of computer vision. It can run, learn, and
implement most state-of-the-art CNN algorithms.

TensorFlow represents a development tool for second-
generation flexible arrangement for both the Google com-
pany and the deployment of numerous machine learning
applications. It can be used to create neural networks.
This setup was made by using the compatible integration
of the Tensor Flow and CUDA toolkit to empower the
parallel calculation and allow better computation execution
times and performance. The experiments were executed on
the workstation, specifically employing the Ubuntu Linux
system. To expedite the training and testing processes, the
utilization of NVIDIA GeForce GTX 980 Ti GPUs was
incorporated.

The model was then trained using the following hy-
perparameter values: the optimization algorithm utilized a
mini-batch SGD with a batch size of 128. The learning rate
for the optimizers was fixed at 0.0002, and a momentum
coefficient term, denoted by β1, was chosen to be 0.9 to
enhance training stability. Furthermore, the Adam optimizer
(Adaptive Moment Estimation) was adopted as the most
suitable choice for minimizing the loss function based
on extensive research in the field of generative models.
The weights were initialized using a zero-centered normal
distribution with a standard deviation of 0.02. To ensure
input normalization for each unit, batch normalization was
employed, resulting in a standardized distribution charac-
terized by zero mean with variance. We depended on using
the DCGAN architecture with the available adjusted hyper-
parameter values as described in their design. These hyper-
parameters have been recommended for the training of
the model. Additionally, cross-validation was conducted to
discover the best hyper-parameters and assess the model’s
performance with the highest accuracy. Figure 3 illustrates
the examination of Generator and Discriminator loss for

each batch during the training of the DCGAN, pertaining
to all datasets utilized in this research. Figure 4 visualizes
all the generated images for all the datasets used in this
work.

4. Datasets
This section offers a comprehensive description of the

datasets utilized in this study.

A. Radboud Faces Database (RaFD)
RaFD is a laboratory-controlled collection of multi-view

and posed facial expression images. A preeminent high
quality faces dataset which includes males, females and
children from Caucasian ethnicity and males of Moroccan
Dutch heritage [76]. It has a total of 4,824 images collected
from 67 subjects for eight emotions: angry, disgusted,
fearful, happy, sad, surprised, neutral and including con-
temptuous [77] [58], in which there are 1,608 frontal images
from the whole number. Varied head poses were shot from
left to right [76]. Each image in the dataset is annotated
and captured by asking the participant to do three different
gaze directions (front, left and right) [78], using five camera
angles at the same time. For the frontal images used in this
experiment, for convenience, the images were cropped, then
rescaled to 256 × 256, to center the faces, and were changed
all the images to greyscale, and then they were resized to
64 x 64, which is the input of the network. In Figure 5,
it can be determined that there are equal examples of each
emotion class in the Radboud-DB [70].

B. Large-scale CelebFaces Attributes (CelebA)
CelebA [69] is currently the largest-scale face recogni-

tion dataset with 202,599 celebrity faces, 10,177 identities,
and 200k colour images with coarse alignment [79]. It
mainly contains frontal faces with various viewpoints and
expressions and is particularly biased towards white ethnic
groups. It presents very controlled illumination settings and
good photo resolution [80]. Each image is annotated with
40 binary labelled attributes which are indicative of gender,
facial and hair colour, and five landmark locations [81]. In
this work, the pre-trained model of the CelebA dataset was
used.

C. Real-world Affective Faces Database (RAF-DB)
RAF-DB [71] is a large-scale real-world affective faces

dataset, comprising of 30,000 face images of great diversity,
collected using different search engines and Flickr [5].
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It was annotated with two subsets: 12 classes of com-
pound emotions and 7 basic emotion categories of facial
expressions annotated by forty independent human coders
[82], with the final annotations determined through crowd
sourcing methods [83]. The images in this dataset were
varied in terms of personal identities such as subject’s age
range, ethnicity, race, gender attributes, facial hair, glasses,
head poses, lighting conditions, and occlusions per image.
In this dataset, images have been labelled with seven basic
emotions (happiness, anger, sadness, disgust, surprise, fear,
and neutral) [84]. It features 15,331 images, and contains
12,271 training samples and 3,068 images in the test set.
The distribution of the data is very disparate [85].

D. Karolinska Directed Emotional Faces (KDEF)
A large dataset was created by Lundqvist et al. [72], at

the Karolinska Institute. It includes a set of 4,900 images in
facial expressions from 70 subjects (35 female and 35 male),
displaying seven emotions (angry, fearful, disgusted, happy,
sad, surprised, and neutral) [86], using faces of subjects
of age between 20-30 years. During the session, intrusive
elements causing any disruption were excluded from their
faces such as earrings, facial hair, moustaches, jewelry,
makeup, beards, or glasses [87]. Each expression was
photographed from five different angles and was recorded
two times. Image resolution was 562 × 762 pixels [88]. The
participants, all amateur actors, were instructed by being
given a description of the expressions that were to be acted
out, to try to express the appropriate emotion. They were
also asked to rehearse these expressions for an hour before
being photographed, in order to create the expression clearly
and decisively [89].

E. Static Facial Expressions in the Wild (SFEW)
SFEW [90] is a very challenging benchmark dataset for

conventional facial expression approaches because it has
complicated scenes in the videos and the spontaneous facial
expressions are more difficult to recognize [91]. It was
developed by gathering static subset frames from AFEW
dataset video clips [92]. It uses a seven classes-expression
semi-automatic labelling process [93]. The database covers
natural, unconstrained, versatile, facial expressions [94],
which are close to a real wild setting environment and
illumination status, varied in head poses [91], with quite
a large age range, occlusions, varied focus, and different
resolutions of the face. In total, SFEW contains 700 images
that have been labelled for seven basic expression cate-
gories, including anger, disgust, fear, happiness, sadness,
surprise and the neutral class and this was labelled by two
independent labellers [95]. The SFEW database is mainly
composed of 1,766 images, divided into three sets (958
images for training, 436 images for validation, and 372
images for testing respectively) [82]. Figure 6, shows image
samples from the SFEW dataset.

F. Enhanced Cohn-Kanade database
CK+ is one of the pertinent comprehensive benchmark

databases, a baseline for comparing the evaluation perfor-
mance of cross datasets and generally for evaluating facial

expression recognition systems, which is used extensively
in the research community. It was introduced by Lucey et
al. [96]. It primarily comprises of controlled, frontal and
posed on command 593 short emotion sequences from 123
subject participants [58][97]. Only 327 videos from 118
subjects have labels of facial expressions based on the Facial
Action Coding System (FACS) [98]. The sequences differ
in duration from 10 to 60 frames, starting with a neutral
expression phase and ending at the apex phase [77][99],
displaying one of the facial emotions: anger, disgust, fear,
happiness, sadness, surprise and a non-basic emotion (con-
tempt) in addition to 14 AUs. All the sequences within
the CK+ dataset were annotated as activation (were FACS
coded) [100] for the expressions up to their peak frame
[97], and for the presence or absence of AUs by two FACS
coders. All the frames were digitized to the size of 640
× 480 pixels, available in both colour and most grayscale
images, and the coordinates of 68 landmarks were provided
to all the images in the CK+ database [101]. Table I
summarises the datasets of emotions and AUs used in this
work.

5. Experiments
Two separate series of experiments were conducted to

evaluate the proposed approach for both emotion recogni-
tion (section 5-A) and AU recognition (section 5-B).

A. Experiments on Emotion Recognition
The primary objective of this experiment is to accurately

identify and classify emotions, as well as produce corre-
sponding facial expression images. This was briefly divided
into eight experiments, to show that the performance gained
whether dependent on the specific dataset or was provided
from different datasets. Training a new DCGAN involves
utilizing the generative model’s capability to produce di-
verse images with varying perspectives, including frontal,
multi-view, and in real-life scenarios. The concept of cross
dataset evaluation was established by considering various
datasets and the fundamental principles of transfer learning
and different pre-training models. This was subsequently
elucidated as outlined below:

1) Testing a pre-trained model of the enhanced CK
dataset (source dataset) on the frontal images of Radboud
dataset (target dataset). The main purpose behind utilizing
a pre-trained model in this study is to counterbalance the
relatively small size of the Radboud dataset. Consequently,
this approach helps in mitigating the potential risk of
overfitting. Therefore, we created a matrix with a size
of 1,608 × 8,192 dimensions, where 1,608 signifies the
quantity of images from the frontal Radboud dataset and
8,192 represents the scope of features, to encompass eight
different emotions.

A multiclass SVM with a Gaussian kernel was used
for the classification of all the experiments related to
emotion recognition, and the parameters were optimised
using the bayesopt optimizer [102] with ten-fold cross-
validation. Eight ROC curves and a confusion matrix for
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TABLE II. Area Under Curve (AUC) values for the eight experi-
ments according to emotion recognition experiments in section 5-A.

.
Emotions Exp1 Exp2 Exp3 Exp4 Exp5 Exp6 Exp7 Exp8

Angry 0.982 0.999 0.959 0.951 0.999 0.937 0.888 0.759
Contemptuous 0.936 0.994 0.897 0.858 0.999 —– —– —–

Disgusted 1 1 0.994 1 1 0.790 0.933 0.823
Fearful 1 0.998 0.977 0.972 0.998 0.925 0.723 0.835
Happy 1 1 0.998 0.993 1 0.833 0.974 0.719
Neutral 0.957 0.994 0.875 0.812 0.999 0.911 0.905 0.737

Sad 0.967 0.998 0.940 0.932 0.999 0.843 0.785 0.683
Surprised 1 0.999 0.991 1 1 0.851 0.943 0.720
Average 0.980 0.998 0.954 0.932 0.999 0.870 0.879 0.754

eight emotions were obtained, representing the performance
of the classifier. Interestingly, this experiment demonstrated
remarkable performance, reaching an accuracy of as high
as 98.57%, which is the best achieved so far. The number
of images was not that extensive in this experiment, and the
results were really promising. This comes as an advantage
for leveraging the previous knowledge embedded inside the
pre-trained model we use. See Exp1 in Table II, the ROC
Curves of Exp1 for eight emotions in Figure 7, and the
first confusion matrix of Exp1 in Figure 8.

2) In Exp2, a model pre-trained on the CelebA dataset
was used to test the frontal Radboud dataset, to examine
whether the model works better when it is trained on a
large amount of data. The performance in Table II shows a
significant improvement compared to Exp1. In experiment
two, we utilized a previously trained model from the CelebA
dataset to evaluate the performance of the frontal Radboud
dataset. The aim was to investigate whether the model’s
effectiveness improves with extensive training on a vast
quantity of data.

3) In Exp3, the performance of DCGAN was examined
between frontal and multi-view images of emotions; a pre-
trained model of the enhanced CK dataset was used to
test the multi-view images of the Radboud. A matrix of
feature vector of size 2,680 × 8,192 was produced. The
recognition performance in Table II is comparatively lower
when compared to only frontal Radboud images.

4) Exp4, another experiment, was conducted but here the
trained model of the multi-view Radboud itself was used to
test the multi-view Radboud images. It was found that the
performance also significantly decreased and fell again.

5) Exp5 was conducted by training and testing on the
frontal Radboud images using DCGAN. This experiment
achieved promising results (an average AUC for all the
emotions = 0.999, and accuracy = 97.64%), even with fewer
images, for the same reasons mentioned above about the
frontal Radboud dataset.

Finally, in 6), 7), 8) DCGAN was trained in the last
three experiments (Exp6, Exp7, and Exp8) on three difficult
datasets in the wild (RAF, KDEF, and SFEW), where facial
expressions are close to the real-world environment. We can
observe that the performance decreased significantly due
to the apparent distortion of faces, low resolution imaging

in the wild, and insufficient training data, specifically the
SFEW image dataset, which limited the capacity to attain
accurate results. This also could be attributed to other
factors such as random background noise, clutter, head
pose diversities, non-relevant variations and illumination
changes, which are difficult to determine and might largely
influence the DCGAN results. Furthermore, the categoriza-
tion of emotions in natural environments is still a challeng-
ing issue that hampers performance. While DCGAN was
not particularly developed for facial attribute extraction and
classification, its outcomes in this context are encouraging.

The present study extensively employed the Receiver
Operating Characteristic (ROC) curve to assess the best
possible performance achieved by the specifically chosen
classifier across different threshold settings in the tested
models. This curve provides a graphical representation of
the trade-off between true positive rates (sensitivity) and
false positive rates (1-specificity), with sensitivity depicted
on the y-axis and false alarm rate on the x-axis. A perfect
classification scenario, wherein no misclassifications occur,
is visually represented by a point in the top left corner of the
plot. Conversely, a random classification yields a 45-degree
diagonal line on the plot. The Area Under Curve (AUC)
serves as a quantitative measure of the classifier’s overall
efficiency, with larger AUC values signifying superior per-
formance. In this study, the ROC curves for each emotion
in all eight experiments can be observed in Figure 7, while
the accompanying AUC values are tabulated in Table II.

The confusion matrices for eight facial expressions in
all experiments were also calculated and shown in Figure 8.
The correct classified unit for each expression is highlighted
in dark blue, while the missclassified units were highlighted
in paler blue. The experiments performed very well in
recognising most of the emotions including: surprise, fear,
disgust, happiness, sadness, anger, contempt and neutral
with a true classification of 94.6% in Exp1 and Exp5.
Also, sadness and disgust in Exp1, Exp2 had a correct
classification of 100%. Anger and fear showed a relatively
low recognition rate in experiments 1, 2, 3, and 4. More-
over, happiness and sadness expressions showed the lowest
recognition rate of 38.5% and 38.8% in Exp8 respectively.
Table III illustrates the accuracy achieved for each dataset in
comparison to the highest performing techniques available.
The values in the table were taken from the papers that
introduced the methods and the experiments were different.
There is a very legitimate and good point to be raised to
explain the novelty of our approach and the advantage of
this system compared to others, but it is mainly a limitation
related to the adopted DCGAN itself, which we do not
claim to propose in this work. The adopted DCGAN model,
introduced by the authors in their original paper [6], is a
powerful and versatile generative model. However, our work
focuses on a different problem, specifically facial expression
recognition in real-world conditions, using Deep Convo-
lutional Generative Adversarial Networks (DCGAN). This
means that there may not be much transferable knowledge
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from their work to ours, as the challenges and objectives are
distinct. Additionally, our research was hindered by the lack
of a sufficiently large and diverse training dataset, as well as
the difficulty of the datasets we chose, which closely mirror
real-world facial expressions. These limitations restrained
our ability to achieve high levels of accuracy in our results.
To improve our method and offer a more equitable compari-
son with the most advanced methods available in Table III,
we suggest two potential factors: the inclusion of large-
scale datasets with comprehensive annotations that capture
a wide range of facial dynamics, expressions, appearances,
identities, and 3D pose variations, and the employment of
a conditional DCGAN with ablation studies to assess the
impact of these two factors on the accuracy of emotion
recognition. This is important because emotion recognition
holds great significance in the fields of computer vision and
artificial intelligence, and it serves as a valuable benchmark
for future research.

TABLE III. Analysis and comparison of the level of accuracy
exhibited by each dataset to the current state-of-the-art approaches.

Dataset Approach Accuracy Dataset Approach Accuracy
Radboud (Ali et al.,2017 [103]) 85.00% SFEW (Zhang et al.,2018 [36]) 26.58%

(Yaddaden et al.,2018 [104]) 97.66% (Dhall et al.,2015 [105]) 35.93%
(Jiang & Jia,2016 [106]) 94.52% (Levi & Hassner,2015 [107]) 41.92%
(Wu & Lin ,2018 [76]) 96.27% (Yao et al.,2015 [108]) 44.04%

(Mavani et al.,2017 [109]) 95.71% (Ng et al.,2015 [110]) 48.50%
(Sun et al.,2017 [111]) 96.93% (Yu & Zhang,2015 [112]) 52.29%

(C.Szegedy et al.,2015 [113]) 95.45% (Mollahosseini et al.,2016[114]) 39.80&
(Zavarez et al.,2017 [7]) 85.97% (Zhang et al.,2018[94]) 55.27&

(Li et al.,2019 [115]) 96.11 % (Mao et al.,2016 [116]) 44.72%
(WANG et al.,2019 [117]) 80.69% (Eleftheriadis et al.,2016 [118]) 24.70 %

ours 98.57% ours 44.52%
KDEF (Shin et al.,2016 [119]) 59.15% RAF (Li et al.,2017 [71]) 82.7%

(Zavarez et al.,2017 [7]) 72.55% (Li et al.,2018 [120]) 74.2%
(Samara et al.,2019 [121]) 81.84% (Fan et al.,2018 [5] ) 76.73%

(Yaddaden et al.,2018 [104]) 79.69% ( Lin et al.,2018 [122]) 75.73%
(Ali et al.,2017 [103]) 78.00% ( Ghosh et al.,2018 [123]) 77.48%

ours 60.44% ours 61.87%

B. Experiments on Action Units (AUs)
In another set of experiments, we assessed how well the

GAN features performed in recognizing individual AU.

1) Action Units on the Enhanced Cohn-Kanade Dataset
The objective of this experiment is to ascertain whether

the features that have been acquired through learning, by the
layer of a DCGAN and the Discriminator, can effectively
capture and convey information that characterizes Action
Units. To address this aim, the enhanced CK dataset, which
offers comprehensive AU labeling, was employed. Figure
4, (a) and (b) indicate the original and generated images of
the enhanced CK dataset. In this experiment (Exp.1), the 4D
matrix was flattened and combined, resulting in dimensions
of 8,422 × 8,192. These dimensions indicate that there were
8,422 images in the enhanced CK dataset with 8,129 feature
vectors. We then trained and tested on the enhanced CK
images using the linear SVM by the LibSVM [124] to
identify the presence of 14 specific AUs (AU1, 2, 4, 5, 6,
7, 9, 12, 15, 17, 23, 24, 25, 27); the findings from Exp.1,
which can be found in section 5-B1, have been recorded
in Table IV. In this table, you can see 14 different values
for Areas Under the ROC Curve (AUC) corresponding to
14 different Action Units (AUs). The AUC values for the
AUs from all the experiments in section 5-B1, 5-B2, and
5-B3 can also be found in Table IV. Additionally, Table V

provides information on the pre-trained models that were
utilized along with their respective datasets for evaluating
the performance of cross dataset for AUs.

TABLE IV. AUC values for all the experiments regarding AUs
shown in section 5-B.

AUs Exp1 Exp2 Exp3 Exp4 Exp5 Exp6 Exp7 Exp8
AU1 0.998 0.994 0.961 0.909 0.896 0.996 0.890 0.896
AU2 0.918 0.999 0.948 0.744 0.633 0.998 0.705 0.677
AU4 0.788 0.993 0.887 0.515 0.656 0.990 0.519 0.663
AU5 0.982 0.996 0.991 0.676 0.808 0.980 0.624 0.767
AU6 0.895 1 0.908 0.574 0.518 1 0.568 0.542
AU7 1 0.984 1 0.757 0.649 0.979 0.642 0.601
AU9 0.990 1 0.997 0.668 0.546 1 0.683 0.565

AU12 1 0.990 0.980 0.515 0.633 0.967 0.549 0.615
AU15 0.932 0.992 0.963 0.510 0.659 0.990 0.518 0.647
AU17 0.785 0.986 0.873 0.708 0.807 0.984 0.623 0.748
AU23 0.882 0.980 0.927 0.865 0.828 0.979 0.775 0.814
AU24 0.948 0.984 0.902 0.849 0.688 0.979 0.822 0.721
AU25 0.998 0.999 0.992 0.799 0.929 0.999 0.755 0.894
AU27 0.672 1 0.669 0.668 0.541 0.999 0.678 0.519

Average 0.913 0.993 0.928 0.697 0.699 0.989 0.668 0.691

2) Radboud Emotions Relabelled to AUs
This experiment aims to evaluate whether features

trained on a large (potentially unlabelled) dataset can be
transferred for supervised training to a different one. This
experiment was designed to confirm the results obtained
on the CK dataset on a different dataset, namely by Rad-
boud, since Radboud is only annotated for the eight basic
emotions, and not for AU. The dataset was re-annotated
according to the rules in [60].

While there have been numerous studies on AU detec-
tion, there is still limited research on effective approaches
for associating AUs with emotions. The way to map emo-
tions of the frontal Radboud dataset to AUs is summarised
in Table VI. We utilized a pre-trained model from the en-
hanced CK dataset to extract the features of the frontal Rad-
boud dataset. Following that, a linear SVM was employed
for classification. The findings are highly intriguing; how-
ever, there were notable omissions in the crucial annotations
concerning specific action units. These include AU10 (upper
lip raiser), AU11 (nasolabial deepener), AU14 (dimpler),
AU20 (lip stretcher), AU22 (lip funneler), and AU26 (jaw
drop), which are commonly interpreted as an indication of
happiness [125]. Furthermore, since contemptuous emotion
(featuring AU 12 and 14 on one side of the face) is not
recognized as one of Paul Ekman’s six primary emotions,
the Radboud dataset lacks specific guidelines for mapping
it to action units. Instead, it represents a fusion of disgust
and anger emotions. Also, there is no action unit to do lip
corner tightening raised on only one side of a face. The
results of Exp. 2, section 5-B2, in Tables IV and V, show
the improvement in the results for all the AUs even with the
imbalance and lowest occurrence activations in the dataset.

3) Transfer Learning on AUs
The last experiment was conducted to evaluate the

performance of cross-dataset evaluation research. More
specifically, this involves using one dataset to train models
and a different dataset to test them [120]. Transfer learning
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TABLE V. Summaries all the pretrained models obtained from
the DCGAN network with the related training and testing datasets
regarding AUs.

Experiments Pretrained models Training Testing
Exp.1 enhanced CK enhanced CK enhanced CK
Exp.2 enhanced CK Radboud Radboud
Exp.3 CelebA enhanced CK enhanced CK
Exp.4 CelebA enhanced CK Radboud
Exp.5 CelebA Radboud enhanced CK
Exp.6 CelebA Radboud Radboud
Exp.7 enhanced CK enhanced CK Radboud
Exp.8 enhanced CK Radboud enhanced CK

TABLE VI. A mapping between emotions and AUs based on rules
according to the FACs [126].

Emotions AUs
Happy {AU6,AU12,AU25}

Sad {AU1,AU4,AU17,AU15}
Fearful {AU1,AU2,AU5,AU15,AU25}

Surprised {AU1,AU2,AU5,AU25,AU27}
Angry {AU4,AU5,AU7,AU17,AU23,AU24}

Disgusted {AU9,AU15,AU17,AU25}
Contemptuous {AU12}

refers to the application of pre-trained models to address
the inherent challenges stemming from the scarcity of data
in a target dataset and to alleviate biases originating from
uneven training sample sizes. A pre-trained model signifies
a model that has been trained on an extensive benchmark
dataset to tackle a different problem, albeit with a task that
exhibits similarity and relevance to the specific problem
being addressed. As the computational cost of training these
models is substantial, it is customary in the field to adopt
and employ models that have been rigorously documented
and published in the literature. A pretrained model from
the CelebA dataset, which means that the features in the
DCGAN network were already learned (pre-training refers
to the features in the DCGAN network), was utilized to
train and test on the CK dataset. Subsequently, a pretrained
model from the CelebA dataset was used to train and
test on both the CK dataset and the Radboud dataset in
a reciprocal manner. More information can be found in
Experiments 3, 4, 5, 6, 7, and 8 (section 5-B3) in Table
IV, Table V, and Figure 9. It is anticipated that the model
achieved impressive outcomes when trained and evaluated
on the same dataset, as demonstrated in Experiments 2
and 6 in Table IV. The performance of the cross-dataset
was satisfactory, as shown in experiments 2, 3, and 6. For
instance, the nose wrinkle (AU9) is commonly associated
with disgust and occurs frequently, resulting in high areas
under the curve (AUC) values of 1, 0.997, and 1 for these
experiments respectively. Similarly, for lip parts (AU25),
the AUC values are 0.999, 0.992, and 0.999. Additionally,
the AUC value for lid lightener (AU7). In the cross-dataset
performance of the CNN model, however, training and
testing on two different datasets dropped the performance
drastically because one of the datasets is quite different and
fails to deal with new tasks and further operating settings

that have not yet been seen during the training process
and development. Notably, the results are encouraging for
transferring some AUs. As we can observe from Table IV,
AU1(inner brow raiser), AU23(lip tightened), AU24(lip
pressor), and AU25 are transferred and generalized well
for all experiments, while for the AU2 (outer brow raiser),
and the AU17 (chin raiser) the performance is similar for
all the values of AUCs in Exp.4, Exp.5, Exp.6, and Exp.8.
The worst transfer appeared for AU4 (brow lowerer), with
AUC = 0.515 in Exp.4 and AUC = 0.519 in Exp.7; AU4
is a common feature of confusion that happens on some
occasions in our life, as well as AU6 (cheek raiser), AUC
= 0.518 in Exp.5, AU12 (lip corner puller), AUC = 0.515 in
Exp.4, AU15 (lip corner depressor), AUC = 0.510 in Exp.4,
AUC = 0.518 in Exp.7, and AU27 (mouth stretch), AUC =
0.519 in Exp.8. The model exhibited optimal generalization
performance in Experiments 2 and 6, achieving an average
best prediction of 0.993 across all AUs. The second-highest
prediction accuracy observed was 0.989.

A smaller set of positive samples from the CK dataset,
specifically AU7 (lid tightener), was used in an additional
experiment to train the DCGAN. However, the performance
of the model decreased, with an AUC of 0.58 for testing
and 0.842 for training. This could be because AU7 is chal-
lenging to detect and distinguish from other AUs. Figure
10 in the paper displays some image samples of AU7 from
the improved CK dataset.

Finally, one commonly employed qualitative method to
assess the quality of generated samples in GANs is through
human evaluation by visually examining the produced
images. In our research, we have demonstrated that the
DCGAN model offers significant improvements in training
stability and effectively addresses the problem of mode
collapse, all without introducing additional model com-
plexity or compromising image quality. This improvement
is discernible in Figure 4, which displays the generated
facial expression images at varying resolutions using dif-
ferent datasets. In addition, the effectiveness of training
the DCGAN model also relies on various factors such as
the dataset’s size, quality, quantity, and clarity. This study
utilized the challenging RAF, KDEF, and SFEW datasets,
all of which pose their difficulties. The chosen method has
not suffered from such problems and can produce detectable
images. Table VII presents a comprehensive analysis of the
performance of generated image data samples using four
prominent quantitative metrics: FID, IS, SSIM, and AMT.
These metrics are considered state-of-the-art in evaluating
the quality of samples on the RAFD dataset. The values re-
ported in the table are sourced from diverse methodologies.

Another important factor is the selection of diverse
training data. By including a wide range of samples that
cover different modes and variations, we provide more
opportunities for the generator to learn and reproduce the
desired diversity in the generated outputs. Furthermore,
choosing an appropriate architecture for the generator net-
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TABLE VII. A quantitave comparsion with the state of the art on
RAFD dataset using IS, FID, SSIM and AMT metrics.

Model IS (maximum is better) ↑ FID (lower is better) ↓ SSIM ↑ AMT ↑
Pix2Pix [37] —— 12.84 0.629 41.3%

pix2pixHD [127] 0.875 75.376 —– —–
StarGAN [78] 1.036 56.937 0.8563 24.7%

GANimation [8] 1.112 34.360 0.8686 —–
AF-VAE [128] 1.237 25.069 —– —–
LEED [129] —– 38.20 0.8833 —–

LGG + LS + TP [130] —– 12.30 0.705 74.9%
CycleGAN [35] 1.6942 52.8230 —– 19.5%

Ours 1.874 22.318 0.8942 76.72%

work is crucial. A well-designed network architecture can
enhance the generator’s ability to capture and express the
complex and varied patterns present in the data. Overall,
mitigating mode collapse requires a multi-faceted approach
that combines diverse training data, multiple generators,
and careful network architecture design. By considering and
addressing these factors, we can enhance the overall quality
and diversity of the produced images, ultimately promoting
better generalization capabilities when dealing with unseen
data. Figure 11, exemplifies an instance of mode collapse.
The figure provided illustrates that although the model does
not achieve perfect image generation, it exhibits the capacity
to generate images which are perceptually discernible and
recognizable by human observers.
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Figure 3. The logistic loss and convergence of the G and D during training DCGAN under multiple iterations on the datasets used in this work:
(a) frontal Radboud, (b) Enhanced CK, (c) multi Radboud, (d) RAF, (e) SFEW, (f) KDEF dataset.
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Figure 4. Comparison of the selected samples of the generated facial expression images using DCGAN on different datasets: (a) & (b) enhanced
Cohn-Kanade original and generated images, (c) original frontal and multi-view Radboud images, (d) frontal Radboud generated images, (e) multi-
view Radboud generated images, (f) & (g) RAF original and generated images, (h) & (i) KDEF original and generated images, (j) & (k) SFEW
original and generated images.
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Figure 5. Emotion classes’ distribution in the Radboud dataset are equal.

Figure 6. Some image samples from the SFEW dataset, image source from [90].
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Figure 7. Receiver Operating Curves (ROC) for eight emotions and eight experiments; each figure depicts ROC curve of eight dissimilar experiments.
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Figure 8. The average recognition rate of a Confusion matrix is obtained from SVM classifier for the eight experiments.
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Figure 9. Receiver Operating Curves (ROC) for fourteen Action Units (AU) and eight experiments, each figure depicts ROC curve of eight dissimilar
experiments.
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Figure 10. Images from the enhanced CK dataset represent AU7.

Figure 11. An example of mode collapse of the generated images.
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6. Conclusions
The DCGAN network has been utilized as a highly

efficient method for pre-training in the field of emotion
recognition. The proposed identification method has been
experimentally validated on six standard datasets, effec-
tively showcasing its advantageous performance across
datasets of diverse sizes. This study concluded that training
unsupervised DCGAN on a large-scale dataset produces
powerful discriminative representation features for predict-
ing and detecting AUs/emotions from frontal face images
which is better than representing the multi-view of facial
images. Additionally, it demonstrates that the suggested
model possesses the capability to generalize. Future en-
deavors could encompass training a conditional DCGAN to
separate the subject’s facial expression from their identity.
Furthermore, we intend to extend the current (2D) model
to a (3D) counterpart by employing a conditional 3D-GAN,
enabling the generation of videos.
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