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Abstract: Generative Adversarial Networks are artificial neural networks that pit two different sets of neural networks against one
another in order to generate data that isn’t part of the training set. The Generative Adversarial Network (GAN) produces good outcomes
when they are trained on image data that comes from the actual world. The generator and the discriminator make up the Generative
Adversarial Network (GAN), which stands for ”generative adversarial network.” The parameters that were utilized to generate the
data are completely arbitrary. The information is evaluated, and erroneous information is distinguished from true information by
the discriminator. GAN has proven to be useful in various domains, such as object recognition, text synthesis, face ageing, image
manipulation, image overpainting, image stitching, human pose synthesis, visual salience prediction, stenographic applications, and
many more. Several researchers have investigated various types of GANs but comprehensive analysis and comparison of different types
of recent GAN’s like Deep Convolutional GAN, Wasserstein GAN,Auto Enocoder, Cycle GAN,Progressive GAN and Super Resoultion
GAN have not been published so far in the literature. In this article, quantitative and qualitative analysis are carried on to evaluate
their suitability of the GAN for a particular application.Examples of applications encompass texture production, facial reconstruction,
facial recognition, high-resolution imaging, music composition, drawing creation, cosmetic enhancements, image transformation, voice
synthesis, medical diagnostics, and video editing. No single GAN cannot fulfil the desired requirements for all the applications. The
article concludes with a discussion of the possible uses of GANs as well as how these applications constitute a fascinating new area of
research and prospective expansion.

Keywords: Artificial Intelligence, Image Inpainting, Deep leaning, Generative Adversarial Networks (GAN), Generator, Discriminator,
Neural Networks, Unsupervised Learning.

1. INTRODUCTION
Unsupervised learning is a cornerstone of modern re-

search in the field of artificial intelligence and complements
the dominance of supervised machine learning methods. In
this field, Generative Adversarial Networks (GANs) have
proven to be a groundbreaking example that demonstrates
the fusion of generative modelling and deep learning tech-
niques, enabling advances in unsupervised learning. Wang
et al. (2024) was a pivotal moment in demonstrating the
effectiveness of GANs and led to their widespread appli-
cation in supervised and unsupervised learning domains
[1]. GANs work on the principle of adversarial training, in
which two networks, the generator (G) and the discriminator
(D), engage in strategic competition [2]. The discriminator
learns to distinguish between real and synthetic data and
thus acts as a binary classifier, while the generator attempts
to generate data that can deceive the discriminator as shown
in Fig:1. Since the pivotal work by Wang et al. in 2024,
GANs have found widespread applications in various super-

vised and unsupervised learning domains. This paper aims
to provide a comprehensive analysis and comparison of
different types of recent GAN architectures, which has been
lacking in the existing literature. The main objectives of this
study are to investigate the mathematical foundations, ad-
vantages, and limitations of various GAN variants, includ-
ing Variational Auto Encoder (VAE), Deep Convolutional
GAN (DCGAN), Wasserstein GAN (WGAN), Progressive
GAN (Pro GAN), Super Resolution GAN (SRGAN), and
Cycle GAN providing insights into their potential appli-
cations and areas for future research and development.
This research quantitatively evaluates and compares the
performance of these GAN architectures in terms of losses,
convergence, and computational time requirements and to
qualitatively assess the suitability of each GAN variant
for specific applications, such as image generation, image-
to-image translation, super-resolution, and style transfer.
The paper is structured as follows: Section 2 provides an
overview of the different GAN architectures investigated
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Figure 1. Structure of Generative Adversarial Network

in this study. Section 3 presents the experimental results,
including quantitative analyses of losses and computational
times, as well as qualitative evaluations of the generated
outputs. Section 4 concludes the paper by summarizing the
findings, highlighting the potential applications of GANs
and discussing future research directions in this field.

2. VARIOUS TYPES OF GAN
Machine learning practitioners are increasingly using

generative adversarial networks to enhance image process-
ing. Applications that greatly benefit from the use of Gener-
ative Adversarial Networks include generating artistic and
photographic representations based on textual descriptions,
enhancing the resolution of pictures, moving images be-
tween distinct domains (such as transitioning from daytime
to nighttime settings) and several more applications. In
order to get such outcomes, many enhanced GAN archi-
tectures have been devised, each possessing distinct char-
acteristics to address certain image processing challenges.

A. Variational Auto Encoder (VAE)
Data compression is a crucial step in the process of

training a network. Data compression is the process of
reducing the number of bits required so that equivalent data
may be shown while maintaining the same level of data
quality. This also mitigates the issue of the curse of di-
mensionality. Training a dataset with several characteristics
poses a challenge due to its tendency to produce overfitting
in the model. Hence, it is necessary to use dimensionality
reduction methods prior to using the dataset for training
purposes. The Autoencoder and the Variational Autoencoder
are relevant in this context. The Autoencoder and the
Variational Autoencoder are both used to compress data by
converting it from a higher-dimensional space to a lower-
dimensional one. [3]. The Variational Autoencoder tackles
the issue of uncontrolled latent space in Autoencoders,
allowing it to create data by sampling vectors from the latent
space in a random manner. The encoder in AE generates
latent vectors as output. The vectors in latent space are
not generated directly by the VAE encoder in this regard.
Instead, it determines, for each input, the parameters of a
pre-defined distribution in latent space and applies those
parameters to the model. This underlying distribution is
then subjected to a limitation that is imposed by VAE,
which forces it to conform to a Gaussian distribution.

Figure 2. Architecture of variational auto encoder

Figure 3. Architecture of DCGAN (Deep Convolutional Generative
Adversarial Networks)

This limitation helps to guarantee that the latent space is
properly controlled [4]. The encoder processes a picture
and generates two vectors, which respectively reflect the
average (µx) and variability (x) shown in Fig:2. The mean
vector and the standard deviation vector are added together,
with the standard deviation vector first being multiplied
by a tiny random value () as noise. This results in a
modified vector (Z) (eq.1) that has the same size. The loss
function for a Variational Autoencoder typically comprises
two components: the reconstruction loss (Eq. 2), which is
similar to the loss used in traditional autoencoders, and the
Kullback–Leibler divergence loss (KL). The difference be-
tween the input that was originally provided and the output
that was generated by the decoder may be quantified using
reconstruction loss [5]. The KL divergence loss (Eq. 4)
quantifies the discrepancy between the learned probability
distribution and the predefined reference distribution.

z = µx + σxε, ε ∼ η(0, 1) (1)

Reconstructionloss = ∥x − y∥2 = | x = d∅(µx + σxε)∥2 (2)

Where x is input and y‘ is reconstructed output

µx, σx = eθ(x), ε ∼ η(0, I) (3)

S imilarityLoss = KLDivergence = DK L((x,x )||(O, I)) (4)

Loss = ReconstructionLoss + S imilarityLoss (5)

B. Deep Convolutional Generative Adversarial Networks
(DCGAN)
DCGAN is a network design for Generative Adversarial

Networks that has received a lot of attention for its effi-
ciency shown in Fig:3. The architecture mostly comprises
convolutional layers, excluding max-pooling or fully linked
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Figure 4. Architecture of wassertain GAN

layers [6]. The method employs convolutional stride and
transposed convolution to reduce and increase the reso-
lution, respectively. Generator and Discriminator loss are
calculated using equation 6 and equation 7. The architec-
ture of DCGAN involves the following steps: i)Replacing
every occurrence of max-pooling with convolution stride.
ii)Utilize transposed convolution for the purpose of up sam-
pling. iii) Remove the layers that are fully interconnected.
iv)Apply batch normalization to all layers of the generator,
except for the output layer. For the discriminator, employ
batch normalization for all levels, except for the input layer.
v)Utilize the hyperbolic tangent (tanh) activation function
specifically for the output layer, while using the Rectified
Linear Unit (ReLU) activation function for the remaining
layers in the generator. vi)Use the Leaky Rectified Linear
Unit activation function in the discriminator.

L(Generator) = min[log(1 − D1(G1(Z)))] (6)

L(Discriminator) = min[−log(D1(x)) + log(1 − D1(G1(Z)))]
(7)

C. Wasserstein GAN(WGAN)
WGAN provides increased stability in training the

model as compared to basic GAN designs [7]. The use
of the loss function in WGAN(shown in Fig:4) provides
a termination condition for assessing the model. Despite
the lengthier duration of the instruction, it remains one of
the superior choices for achieving more effective outcomes.
Nevertheless, the use of the basic GAN approach encounters
issues related to gradient manipulation, which might result
in precarious training. Hence, we use Wasserstein distance
to tackle these persistent issues [8]. The mathematical
formula is shown in equation 8.

Icritic(ω) = maxE(X ∼ Pr)[ fω(x)] − E(z ∼ Z)[ fω(gθ(Z))]
(8)

The greatest value in the equation indicates the limi-
tation imposed by the discriminator. Within the WGAN
framework, the discriminator is referred to as the critic.
One rationale for this practice is the absence of a sigmoidal
activation function that restricts values to either 0 or 1,
representing genuine or false. Contrarily, the discriminator
networks in WGAN produce a value within a certain range,
enabling them to function with less strictness as critics.
The latter half of the equation represents data generated
by the generator, while the former component represents
the actual data. In order to effectively differentiate between

Figure 5. 4. Progressively adding layers in Generator and Discrimi-
nator

the generated data and the authentic data, the discriminator
(or critic) in the aforementioned equation aims to maximize
the disparity between the two data sets. The objective of the
generator network is to minimize the discrepancy between
the real data and the artificially generated data in order to
enhance the genuineness of the generated data.

D. Progressive GAN (Pro GAN)
This research introduces a progressive picture creation

model that utilizes multi-level characteristics to cater to the
need for high-quality visual goods [9].

The method divides the work of picture production into
many phases, with each step dedicated to producing the
characteristics of a certain level of abstraction. Commence
with the overarching characteristics, and thereafter add
the more detailed characteristics gradually via the training
process. The iterative generation technique enables the
model to initially emphasize abstract high-level semantic
knowledge and enormous scale of structural information.
Subsequently, it progressively redirects its attention to ever
smaller sizes without acquiring knowledge of all scales con-
currently. The algorithm’s design is based on the method-
ology used by painters while making a painting. The artist
begins by sketching a rough outline inside the image region,
then subsequently renders intricate textures based on the
colors of the reference image, resulting in a cohesive and
harmonious overall composition. The incremental genera-
tion method enhances the organization of the generation
process and simplifies the current stage’s task by leveraging
the completion of previous abstract level generation [10].
The incremental generation approach (Fig:5) may use prior
learning from completed subtasks to speed up the process
of learning new subtasks.

E. Super Resolution (SR GAN)
Low-resolution (LR) images may be made to seem as

good as high-resolution (HR) ones by a technique called
Single Image Super-Resolution (SISR). Medical imaging,
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Figure 6. Architecture of Super Resolution (Generator and Discrim-
inator

satellite imaging, security and surveillance, astronomy and
image processing includes the critical Single Image Super-
Resolution issue.

Due to the growing volume of high resolution pho-
tographs and videos available online, there is a significant
need for efficient storage, transmission, and sharing of this
material while minimizing storage and bandwidth costs.
Furthermore, the high resolution photos are often resized
to conveniently accommodate various display displays with
varying resolutions.

lS R = lS R
x + 10−3.lS R

gen (9)

lS R
gen = −

N−1∑
n=1

logDθD(GθG(ILR) (10)

lS R
VGG(i, j) =

1
Wi, j.Hi, j

Wi, j∑
x=1

Hi, j∑
y=1

.(ϕi, j(IHR)x,y−ϕi, j(IS R)x,y)2 (11)

lS R
MS E =

1
r2W.H

rW∑
x=1

rH∑
y=1

.(IHR
x,y −GθG(IS R)x,y)2 (12)

The super-resolution issue involves the removal of noise
and degradations caused by the use of a low-resolution
acquisition method, ultimately leading to photographs of
superior visual quality. A GAN-based technique inspired
by the single image SR method (Fig:6), is developed and
evaluated to improve the resolution [11]. One potential
option is to acquire low resolution pictures and use the
Super Resolution GAN to generate a high-resolution version
[12],[13]. This is done after using a group of generative
adversarial networks to enhance the quality of the data
and training them with various adversarial goals [14]. An
efficient Generative Adversarial Network powered Super
Resolution model was used to produce undesirable content.
The discriminator of the model was constructed using the
Least Square Loss function [15]. Generator and VGG loss
are calculated using equations 10, 11 and 12.

Figure 7. Architecture of Cycle GAN

F. Cycle GAN
In order to construct a mapping between the image

distributions or to transfer the features of one picture to
another, cycle GAN is utilized. In Cycle GAN, the issue is
approached as an image reconstruction task. Initially, we get
a picture (p) as input and transform it into a reconstructed
image using the generator G0. Subsequently, a generator F
to invert this procedure are used to transform the rebuilt
picture back into the original image.

Next, computing the mean square error loss by com-
paring the actual picture with the reconstructed image. The
key characteristic of this cycle GAN is its ability to carry
out image conversion for unpaired images, where there is
no inherent correlation between the input and output images
[16]. Cycle GAN’s design distinguishes itself from previous
GANs by using two mapping functions (G0 and G1) as
generators, along with their respective discriminators (Dp
and Dq). The functions for mapping the generator are G: P
→ Q, F : Q→ P.

Losscyc(G, F, P,Q) =
1
m

m∑
i=1

[F(G(pi)) − pi] + [G(F(qi)) − qi]

(13)

P,Q represent the distribution of the input picture and the
distribution of the intended output respectively. The related
discriminators are: Dp: differentiate between G0 (Generated
Output) and Q (actual Output). Dq: Differentiate G1(Q)
(Generated Inverse Output) from P (Input distribution). Cy-
cle GAN is a computational framework used to transfer the
unique characteristics of one picture to another or to map
the image distribution to a new distribution(Fig:7). Within
the framework of Cycle GAN, the issue is addressed as a job
of reconstructing images. The first stage involves taking an
input picture (p) and transforming it into the reconstructed
image using the generator G1. Afterwards, the previously
described process is reversed by using a generator G1 to
convert the reconstructed picture back to its original state.
Subsequently, the mean squared error loss is calculated
by juxtaposing the actual picture with the reconstructed
image. The remarkable characteristic of this cycle GAN is
its ability to perform image translation on unpaired images,
where there is no inherent association among the input and
as well as output images. The distinguishing feature of
Cycle GAN’s design is in its incorporation of two mapping
functions, labelled as G0 and F, which operate as generators.
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Figure 8. Flowchart of Cycle GAN training process

Furthermore, there are also Dp and Dq discriminators that
correlate to these. The generator is mapped by the P, Q
functions. The discriminator is responsible for distinguish-
ing between the produced output (G0(P)) and the genuine
output (Q). Cyclic and adversarial losses are calculated
using equations 15 and 16.

Losscyc(G, F, P,Q) =
1
m

m∑
i=1

[F(G(pi)) − pi] + [G(F(qi)) − qi]

(14)
Loss f ull = Lossadv + λLosscyc (15)

Lossadv(G,Dq, P) =
1
m

m∑
i=1

(1 − Dq(G(pi)))2 (16)

Lossadv(F,Dp,Q) =
1
m

m∑
i=1

(1 − Dp(F(q)))2 (17)

In this context, it is important to differentiate between
the generated inverse output of the function G0(Q) and the
input distribution P. Even though the training loop looks
complicated, it consists of four basic steps shown in fig:8.

3. Results and Discussion
The Python language and PyTorch framework were

utilized to implement all the different variations.The models
underwent online training in the Google Colab environment
with GPU acceleration enabled. All three datasets photos
are scaled to dimensions of 64×64×3. The batch size for
each variant is set to 128 for all datasets. For all datasets,
the value of Striding is consistently 2 in every experiment.

The dimension of the latent vector is set to 100. The
different versions were trained for a total of 20 epochs
using all of the datasets. The MNIST dataset is utilized
for training the variational autoencoder. The MNIST dataset
comprises handwritten digits and their corresponding labels.
The dataset is divided into two segments: the training seg-
ment, which contains 60,000 samples, and the test segment,
which has 10,000 cases.

The images in the MNIST dataset are shrunk to di-

Figure 9. Output image generated by Variational Auto Encoder

Figure 10. Latent space plot of Variational Auto Encoder trained for
20 epochs on MNIST dataset.

mensions of 28×28×1. The activation function used is
RELU with a filter size of 3×3 and a buffer size of 1024.
The use of Variational Autoencoders (VAE) enables the
creation of generative models and the representation of
latent space (as shown in Fig:10). VAEs are also less
prone to overfitting. In epoch 20, the VAE has produced
a variety of distinct digits. Fig:9 demonstrates that superior
outcomes have been achieved after epoch 15. Put simply,
this implies that the generator has acquired knowledge
of the distribution and can be understood as the model
reaching a state of convergence. The value of the loss
function at epoch 1 is 217.7, while at epoch 5 it is 165.4.
One drawback of VAEs is that, due to the introduced
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Figure 11. Sample images of Celeba dataset to train the DCGAN
for face generation

Figure 12. Generator and discriminator loss plot of Deep Convolu-
tional GAN

noise and incomplete reconstruction, the generated samples
using the conventional decoder are significantly fuzzier
compared to other GANs.The Celeba dataset, specifically
Fig:11 is utilized for training the DCGAN. The dataset has
200,000 photos that are resized to dimensions of 64×64×3.
The discriminator employs Leaky ReLU as the activation
function in all layers, except for the last layer which utilizes
the sigmoid function. The generator employs the ReLU
activation function in all layers, except for the final layer
which utilizes the Tangent Hyperbolic activation function.
During the sixth epoch, the discriminator loss was 1.782 and
the generator loss was 0.65. At epoch 55, the discriminator
loss is 0.7 and the generator loss is 1.05, as depicted in
Fig:12. DCGAN has demonstrated superior stability, ease

Figure 13. Samples images of Celebahq dataset to train WGAN

Figure 14. Discriminator and Generator loss plot of WGAN

of training, and, notably, the ability to generate high-quality
outputs. Nevertheless, it continued to encounter the issues
of mode collapse and non-convergence. The WGAN is
trained using the Celeba dataset, which is known for its
high quality (see Fig:13). The dataset has 25,056 photos
that have been resized to dimensions of 64×64×3. Within
the discriminator, the loss curve of the WGAN (Fig:14)
demonstrates convergence in contrast to the DCGAN loss
curve. The discriminator loss for Epoch 6 is -9.59, whereas
the generator loss is -2.93. At epoch 50, the discriminator
loss is -6.4 and the generator loss is 10.56. It addresses the
issues of the vanishing gradient and mode collapse. Exhibits
a higher rate of convergence compared to DCGAN. WGAN
was determined to exhibit much slower performance in
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Figure 15. Sample images of emotion data set

comparison to the other GANs.

The performance improvement of the model compared
to the DCGAN in terms of generated outcomes is not
evident. Weight clipping is employed to restrict the capacity
of the models to acquire intricate distributions. The emotion
dataset is utilized for training the Pro GAN model (Fig:15).
The dataset has 6800 photos that have been resized to
dimensions of 256×256. By employing this progressive
training approach (Fig:16), the model is able to attain
unparalleled outcomes while maintaining superior stability
throughout the whole training procedure.

Progressive GAN training necessitates substantial mem-
ory capacity and abundant resources. Output of proGAN is
shown in Fig:17 The duration of the initial epoch was 27
seconds and the loss was 0.1770 as per Fig:18. The accuracy
of the Pro GAN model was 0.9260 and the top-k accuracy
was 0.9858 as shown in Fig:19.

The SRGAN model is trained using the Celebahq
dataset, which consists of 30,000 images. The photos in the
dataset collection are downsized to dimensions of 256 by
256. The number of epochs used is 20, and the kernel size is
3. The activation layer employed is the hyperbolic tangent
(tanh), the batch size is set to 128, and the image has a form
of 64x64x3. The duration of the first epoch is 110 seconds,
with a discriminator loss of 0.5162 and a generator loss of
0.3425. The duration of the 5th epoch is 422 milliseconds,
with a discriminator loss of 0.0393 and a generator loss
of 0.164. The output of super resolution GAN is shown in
Fig:20 along with low and high resolution images.

The Cycle GAN model is trained using a face mask
dataset(Fig:21) consisting of 5000 images. The number
of epochs required is 200. The image can be resized to

Figure 16. Progressive growing layers of ProGAN

Figure 17. ProGAN output

64x64x3 dimensions. The chosen activation function is
ReLU and the batch size is set to 128. During the initial
epoch, the time required is 47 seconds. The generator loss
for masked data is 10.1713, and for unmasked data it is
10.1601. The discriminator loss for masked data is 0.7018,
and for unmasked data it is 0.6790. During the 5th epoch,
the time required is 25 seconds. The generator loss for
masked data is 7.5927, and the generator loss for unmasked
data is 7.6371. On the other hand, the discriminator loss
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Figure 18. Model loss plot of ProGAN

Figure 19. Model accuracy plot of ProGAN

for masked data is 0.5121, and the discriminator loss for
unmasked data is 0.5203. Cycle GAN transition for face
mask removal application is shown in Fig:22.

Tab:1 presents a quantitative examination of several
types of GANs in terms of their losses and the time required.
A qualitative study of several types of GANs, focusing on
their applications, advantages, and limitations presented in
Tab:2.

4. Conclusion and Future work
The appeal of GANs lies not just in their capacity

to produce lifelike patterns, but also in their promise for
future progress in the discipline. The progress in deep
learning methods may be attributed to subtle alterations
made to the architectures of different GAN’s. Generative
Adversarial Networks have significant promise in both
theoretical and computational domains, particularly when
integrated with Deep Learning algorithms. In order to
achieve training stability and address these issues, numerous
derivative models of GANs with enhanced loss functions
have continuously arisen. New variations of loss functions

Figure 20. Low and high resolution output of SRGAN

Figure 21. sample inputs of face mask dataset
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TABLE I. Quantitative analysis of different types GAN’s in terms of losses and time taken for epoch

Type of GAN Discriminator loss(for epoch 1) Generator loss Time taken for first epoch (seconds)

Variational auto encoder 217.77 217.77 5
DCGAN 1.9 0.4 20
WGAN -10.8 -4 239

Pro GAN 0.177 0.177 27
SR GAN 0.34 0.51 110

CYCLE GAN 10.17 0.7 47

TABLE II. Qualitative analysis of different types GAN’s

DIFFERENT GAN’s ADVANTAGES DISADVANTAGES APPLICATIONS

Variational auto encoder

The main goal is to obtain hid-
den representations of data, re-
build the distributions of data,
and calculate loss functions.

Training Variational
Autoencoders (VAEs) might

present difficulties and
require more computational

resources. Moreover, the
obtained latent space

representation may pose
difficulties in terms of

interpretation and the quality
of the generated data could

be limited by the architecture
of the model and the training

data.

It is utilized for activities such
as data compression, image
generation, and feature extrac-
tion.

DCGAN
The ability to generate high-
quality images through the uti-
lization of convolution layers.

An issue that could
potentially affect stability is
referred to as mode collapse.

The system employs
deep convolutional neural
networks.

WGAN Convergent, more stable, and
easily trainable.

The computation of the
Wasserstein-1 distance in

large dimensions may not be
accurate and needs a

significant amount of training
time.

Wasserstein Generative Ad-
versarial Networks can be uti-
lized for artistic style trans-
fer, enabling users to apply
the style of one image to an-
other while maintaining the
original content. Additionally,
WGANs can be employed for
data augmentation, anomaly
detection, and domain adapta-
tion.

Pro GAN

It allows for the creation of
images with varying resolu-
tions while maintaining image
fidelity.

Training Pro GAN requires
the utilization of powerful
GPUs or TPUs, substantial

memory capacity, and
adequate processing

resources.

Applicable to various tasks en-
compassing picture creation,
such as art generation, image
manipulation, and even medi-
cal image synthesis.

SR GAN
It produces highly realistic,
high-resolution images from
low-quality photographs.

Because the model requires a
lower resolution image as

input, it is unsuitable for the
task of generating samples.

Applications include enhanc-
ing the visual clarity of images
by augmenting their resolution
or elevating the resolution of
medical imaging.

CYCLE GAN

It possesses the capability to
convert images from one do-
main to another while preserv-
ing the original content.

It solely obtains information
about one-to-one

relationships, while most
interactions in other domains
tend to be more complicated.

A sophisticated Generative
Adversarial Network (GAN)
based Super-Resolution (SR)
model was utilized to produce
inappropriate material.
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Figure 22. Output of cycle GAN for face mask Removal application

have been discovered to enhance the training process in
GANs, surpassing the performance of traditional architec-
tural GANs. This work presents a comprehensive analysis of
the different variations of loss functions in GANs, providing
a mathematical understanding of each. Additionally, it gives
a concise overview of their benefits, uses, and drawbacks.
Different GANs have various advantages and disadvantages.
Pro GAN allows for image creation with varying resolutions
while maintaining image fidelity, but requires powerful
GPUs or TPUs. WGANs are convergent, stable, and easily
trainable, but may not be accurate in large dimensions.
SR GAN produces high-resolution images from low-quality
photographs, but is unsuitable for sample generation. DC
GAN generates high-quality images through convolution
layers, but mode collapse can affect stability. Variational
Autoencoders aim to obtain hidden representations of data,
but may present difficulties and require more computational
resources. CYCLE GAN converts images between domains
while preserving original content, but only obtains infor-
mation about one-to-one relationships. The research paper
conducted a comprehensive examination of various variants
of Variational Auto Encoder, DC GAN, WGAN, Pro GAN,
and SR GAN. These models were tested using MNIST,
celeba, celebahq, Emotion, and face mask datasets. The
analysis included both qualitative and quantitative evalu-
ations of the acquired outcomes. An extensive analysis of
the losses in different GANs has been carried out to identify
the most appropriate method for a specific application.
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